Opening the QCD Axion Window

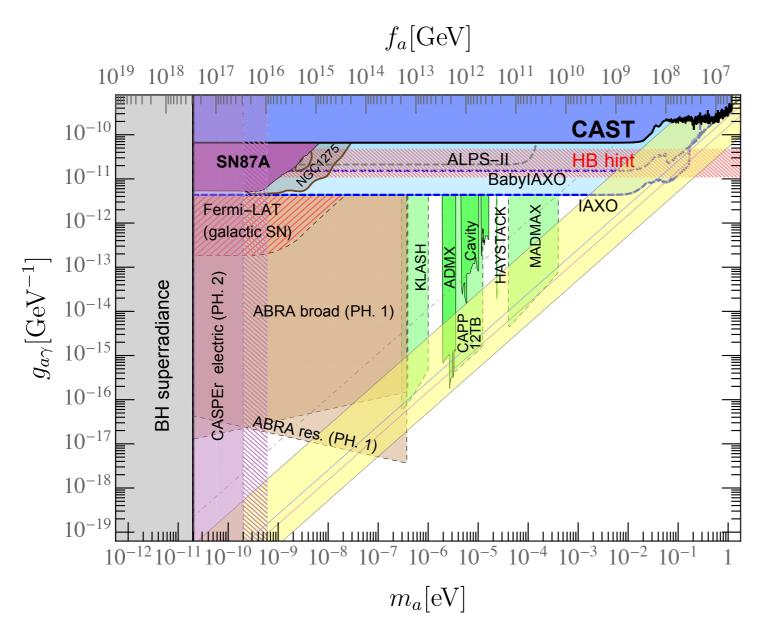
The First International Conference on Axion Physics and Experiment (Axion 2022) - 22.11.2022

Luca Di Luzio

Università degli Studi di Padova

Dipartimento di Fisica e Astronomia "Galileo Galilei"

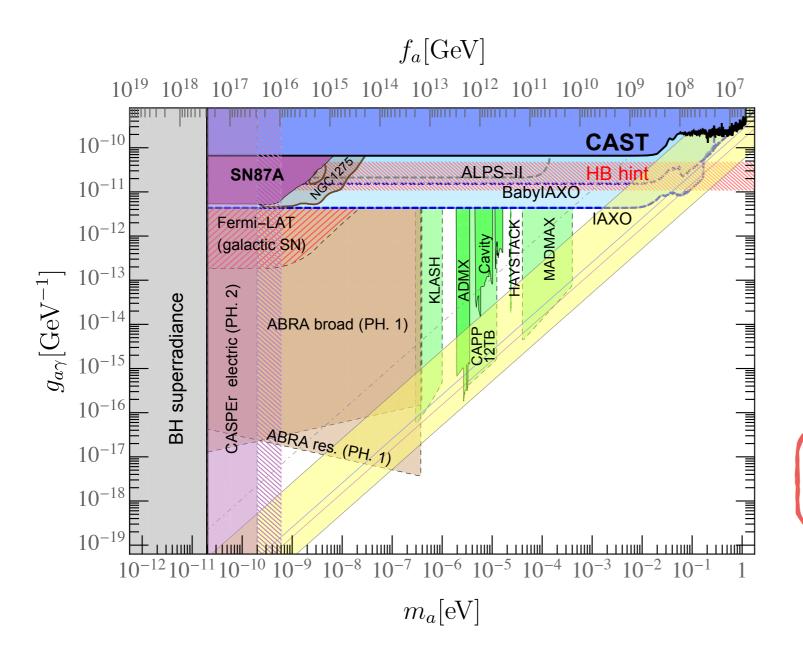
In 10 years from now?



[LDL, Giannotti, Nardi, Visinelli 2003.01100 (Phys. Rept.)]

♣ An experimental opportunity

In 10 years from now?



[LDL, Giannotti, Nardi, Visinelli 2003.01100 (Phys. Rept.)]

- An experimental opportunity
- ★ Time <u>now</u> to rethink the QCD axion
 - I. PQ mechanism
- Axion couplings [from EFTs to UV models]
- 3. QCD axions beyond standard benchmarks

QCD axion

Strong CP problem

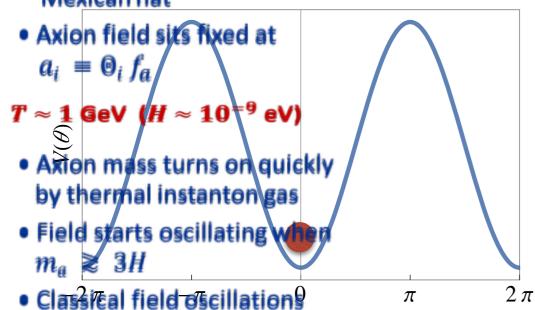
$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G} \hspace{0.5cm} | heta_1 \lesssim 10^{-16}$$

$T \approx f_{\rm fl}$ (very early universe)

(axions at rest)

promote Atoms dynamical field,

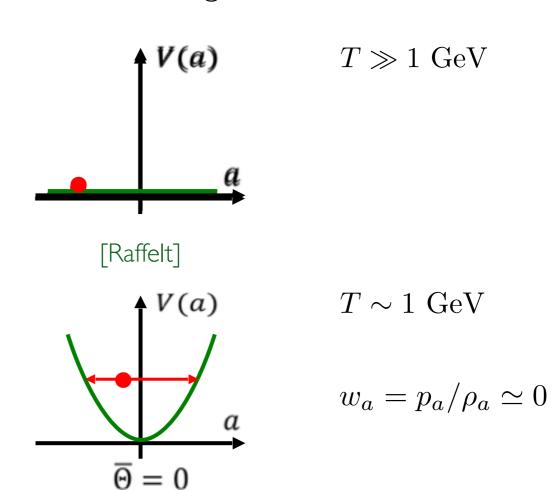
which relaxes to zero via QCD dynamics "Mexican hat"



$$\theta \to \frac{a}{f_a}$$
 with $\langle a \rangle = 0$

Dark Matter

vacuum re-alignment mechanism:



$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a \sin\left(\frac{a}{f_a}\right) = 0$$

• Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$rac{a}{f_a}rac{g_s^2}{32\pi^2}G ilde{G}$$
 $E(0)\leq E(\langle a
angle)$ [Vafa-Witten, PRL 53 (1984)]

• Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$rac{a}{f_a}rac{g_s^2}{32\pi^2}G ilde{G}$$

$$E(0) \le E(\langle a \rangle)$$
 [Vafa-Witten, PRL 53 (1984)]

$$\theta_{\text{eff}} = \frac{\langle a \rangle}{f_a}$$

$$e^{-V_4 E(\theta_{\text{eff}})} = \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}}$$

$$= \left| \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right|$$

$$\leq \int \mathcal{D}\varphi \, \left| e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right| = e^{-V_4 E(0)}$$

• Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G \tilde{G}$$
 $E(0) \leq E(\langle a \rangle)$ [Vafa-Witten, PRL 53 (1984)]

$$\theta_{\rm eff} = \frac{\langle a \rangle}{f_a}$$

$$e^{-V_4 E(\theta_{\text{eff}})} = \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}}$$

$$= \left| \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right|$$

$$\leq \int \mathcal{D}\varphi \, \left| e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right| = e^{-V_4 E(0)}$$

*Proof fails for a chiral theory (as in the SM)

$$\theta_{\mathrm{eff}} \sim G_F^2 f_\pi^4 j_{\mathrm{CKM}} \approx 10^{-18}$$
 [Georgi Randall, NPB276 (1986)]

PQ mechanism works accidentally in the SM!

$$j_{\text{CKM}} = \text{Im} V_{ud} V_{cd}^* V_{cs} V_{us}^* \approx 10^{-5}$$

• Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$rac{a}{f_a}rac{g_s^2}{32\pi^2}G ilde{G}$$

$$E(0) \le E(\langle a \rangle)$$

• its origin can be traced back to a global U(I)PQ

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

- 1. spontaneously broken (axion is the associated pNGB)
- 2. QCD anomalous

$$U(1)_{PQ}$$

$$\langle \sigma \rangle = v_{PQ}/\sqrt{2}$$

$$\sigma(x) = \frac{1}{2} (v_{PQ} + \rho(x)) e^{iA(x)/v_{PQ}} \underbrace{a}_{m_{\rho} \sim v_{PQ}}$$

$$m_{A} = 0$$

$$U(1)_{PQ}$$

$$\partial_{\mu} J^{\mu}_{U(1)_{PQ}} = -\frac{\alpha_{s}}{8\pi} N G^{a}_{\mu\nu} \tilde{G}^{a \mu\nu} - \frac{\alpha}{8\pi} E F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G}$$

Axion properties [model-indep.]

- Consequences of $\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G\tilde{G}$
 - I. axion mass

$$-\frac{a}{-} - \left(\text{QCD} \right) - \frac{a}{-} \sim \frac{\Lambda_{\text{QCD}}^4}{f_a^2}$$

$$-\frac{a}{f_a^2}$$
 $\sim \frac{\Lambda_{\rm QCD}^4}{f_a^2}$ $m_a \sim \Lambda_{\rm QCD}^2/f_a \simeq 0.1~{
m eV} \left(\frac{10^8~{
m GeV}}{f_a}\right)$

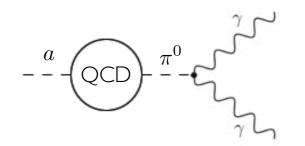
Axion properties [model-indep.]

• Consequentes of $\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G\tilde{G}$ n

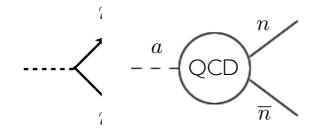
neutron

2 photon

 $\frac{d\omega}{dt} + \frac{2\pi}{2\pi} \frac{dt}{dt} + \frac{2\pi}{4} \frac{dt}{$



$$a - - QCD$$
 \overline{p}



$$-\frac{a}{-QCD} - \frac{\pi^0}{-qCD} - \frac{a}{-qCD} -$$

$$= \frac{2}{3} \frac{4m_d + m_u}{m_d \text{ Cm}} = \frac{C_{ap} \simeq [C_{au} - \frac{m_d}{m_u + m_d}]\Delta u + [C_{ad} - \frac{m_u}{m_u + m_d}]\Delta d}{C_{an} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta d + [C_{ad} - \frac{m_u}{m_u + m_d}]\Delta u} C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_n = \frac{E}{N} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_n = \frac{E}{N} = \frac{E}{N}$$

$$C_{a(u,d,e)} = 0$$

$$C_{au} = \frac{1}{3}\sin^2\beta$$

$$C_{a(d,e)} = \frac{1}{3}\cos^2\beta$$

$$C_{a(u,e)} = \frac{1}{3}\sin^2\beta$$

$$C_{ad} = \frac{1}{3}\cos^2\beta$$

	$C_{a\gamma} \simeq -1.92 \mathcal{L}$	$a \supset \frac{\text{(-0.5,-0.38)}}{8\pi} a F_{\mu\nu} \hat{F}$	$\gamma^{\mu u}$ + $(0.1 \neq 0.04) \overline{f} \gamma^{\mu} \gamma^{\mu$	$\gamma_5 f$ $\mathbf{\hat{0}}_{\left(f = p, r \right)} \overset{C_{a(u,d)}}{f}$	$\begin{bmatrix} a, e \\ b, e \end{bmatrix} = 0$	$C_{a\gamma}$
•	$C_{a\gamma} \simeq \frac{8}{3} - 1.92$	•••	•••	$C_{au} = rac{1}{2}$	$\frac{1}{3}\sin^2\beta$ $\frac{1}{6}\cos^2\beta$ $\frac{1}{6}\cos^2\beta$	$C_{a\gamma}$: Villado
	$C_{a\gamma} \simeq \frac{2}{3} - 1.92$	•••	•••	$C_{a(u,e)} =$ $C_{a(u,e)} = 1$		

SM quark/lepton

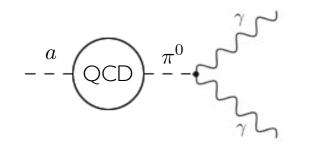
Axion properties [model-indep.]

ullet Consequences of $rac{a}{f_a} rac{g_s^2}{32\pi^2} G ilde{G}$ n

neutron

2 photon

 u_{+} u_{+



$$a - - QCD$$
 \overline{p}

$$-\frac{a}{\sqrt{2}} - \frac{a}{\sqrt{2}} = -\frac{1}{\sqrt{2}} = -$$

$$-\frac{a}{-} - QCD - \frac{\pi^0}{-} - QCD - \frac{a}{-} - QCD - \frac{e}{-} -$$

$$= \frac{2}{3} \frac{4m_d + m_u}{m_d \text{ Cm}} = \frac{C_{ap} \simeq [C_{au} - \frac{m_d}{m_u + m_d}]\Delta u + [C_{ad} - \frac{m_u}{m_u + m_d}]\Delta d}{C_{an} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta d + [C_{ad} - \frac{m_u}{m_u + m_d}]\Delta u} C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d + m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_{ap} \simeq [C_{au} - \frac{m_d}{m_d}]\Delta u C_n = -0.02(3)^{\circ} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_n = \frac{E}{N} = \frac{E}{N} = \frac{2}{\sqrt{3}} \frac{4m_d + m_u}{m_d} C_n = \frac{E}{N} = \frac{E}{N}$$

$$C_{au} = \frac{1}{3}\sin^2\beta$$

$$C_{a(d,e)} = \frac{1}{3}\cos^2\beta$$

$$C_{a(d,e)} = \frac{1}{3}\cos^2\beta$$

$$C_{a(u,e)} = \frac{1}{3}\sin^2\beta$$

$$C_{ad} = \frac{1}{3}\cos^2\beta$$

	$C_{a\gamma} \simeq -1.92 \mathcal{L}$	$a\supset \frac{ extbf{(-0.5,-0.38)}}{8\pi}aF_{\mu u}\hat{F}$	$T^{\mu u}$ $+$ (0.1 f 0.04) $\overline{f}\gamma^{\mu}\gamma$	$_{5}f$
β	$C_{a\gamma} \simeq \frac{8}{3} - 1.92$	•••	•••	
þ	reaks down at $C_{a\gamma} \simeq \frac{1}{3} - 1.92$	energies of or	der f _a	

$$C_{av} = \begin{pmatrix} C_{a(u,d,e)} = 0 \\ T_{a(u,d,e)} = 0 \end{pmatrix}$$

$$C_{a\gamma} \simeq -1.92$$

$$C_{av} = \begin{pmatrix} \frac{1}{3}\sin^2\beta \\ C_{a(d,e)} = \frac{1}{3}\cos^2\beta \end{pmatrix}$$

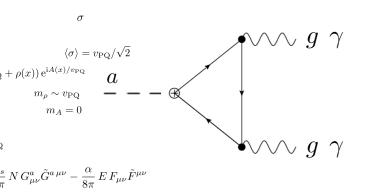
$$C_{a\gamma} \simeq \frac{8}{3} - 1.92$$

UV completien contrastically affect low-energy axion properties

SM quark/lepton

Axion properties [model-dep.]

I. Axion-photon



$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G} + \frac{E\alpha}{4\pi} F \cdot \tilde{F}$$

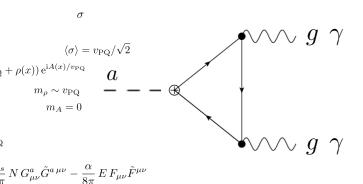
$$C_{\gamma} = E/N - 1.92(4)$$

depends on UV completion

enhance/suppress C_X

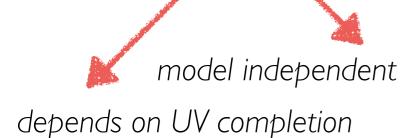
Axion properties [model-dep.]

I. Axion-photon



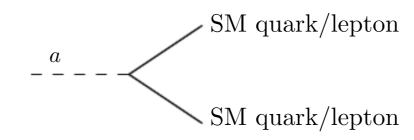
$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G} + \frac{E\alpha}{4\pi} F \cdot \tilde{F}$$

$$C_{\gamma} = E/N - 1.92(4)$$



enhance/suppress C₈

2. Axion-SM fermion current



$$\frac{\partial_{\mu} a}{2f_a} \overline{\psi}_i \gamma^{\mu} (C_{ij}^V + C_{ij}^A \gamma_5) \psi_j$$

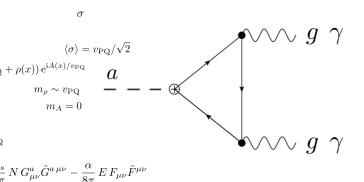
$$J_{PQ}^{\mu}$$

enhance/suppress C_{p,n,e}

flavour-violating axion coupling

Axion properties [model-dep.]

I. Axion-photon

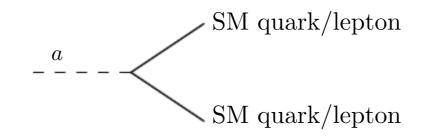


$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G} + \frac{E\alpha}{4\pi} F \cdot \tilde{F}$$

$$C_{\gamma} = E/N - 1.92(4)$$

enhance/suppress C₈

2. Axion-SM fermion current



$$\frac{\partial_{\mu} a}{2f_a} \overline{\psi}_i \gamma^{\mu} (C_{ij}^V + C_{ij}^A \gamma_5) \psi_j$$

$$J_{PQ}^{\mu}$$

enhance/suppress C_{p,n,e}

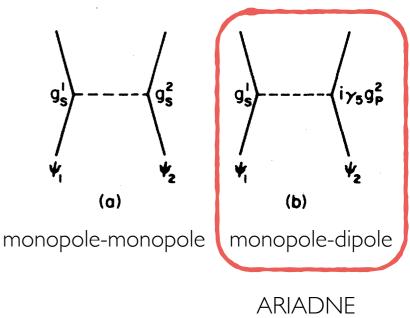
flavour-violating axion coupling

3. CP-violating axions

$$\frac{f_{\pi}}{2} \frac{a^2}{f_a^2} \overline{N} N \longrightarrow g_{aN}^S a \overline{N} N$$

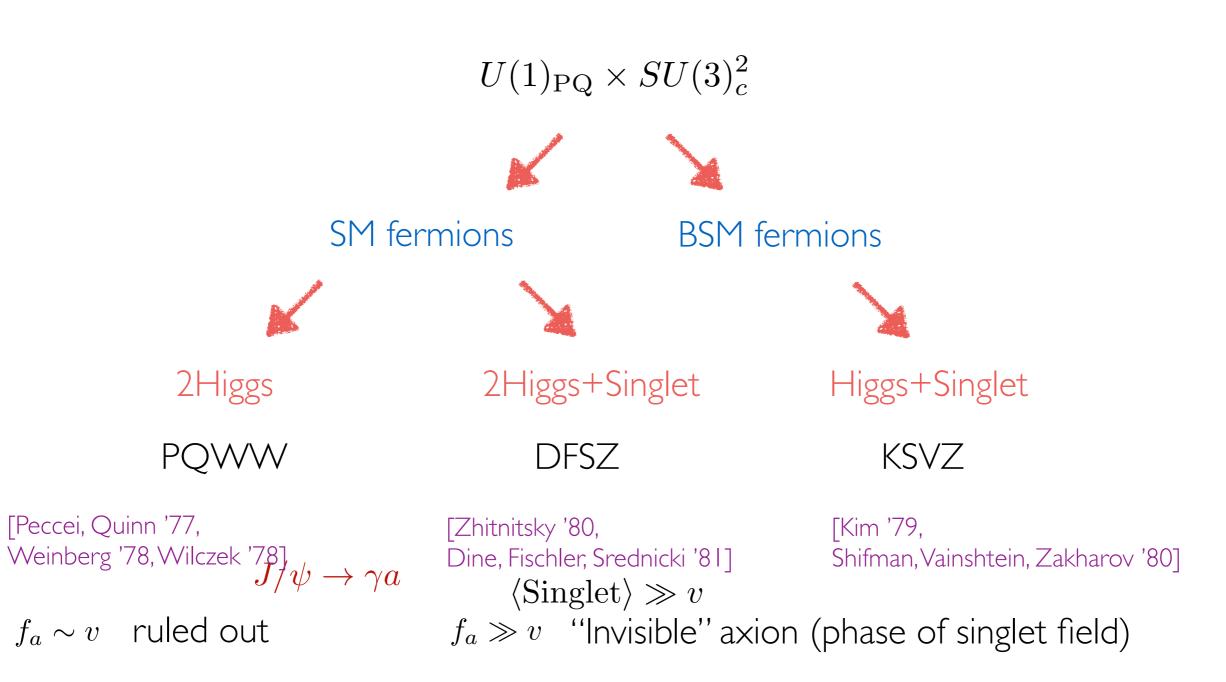
$$g_{aN}^S \sim \frac{f_\pi}{f_a} \theta_{\text{eff}} \qquad \theta_{\text{eff}} = \frac{\langle a \rangle}{f_a}$$

scalar axion coupling leads to *long-range forces*



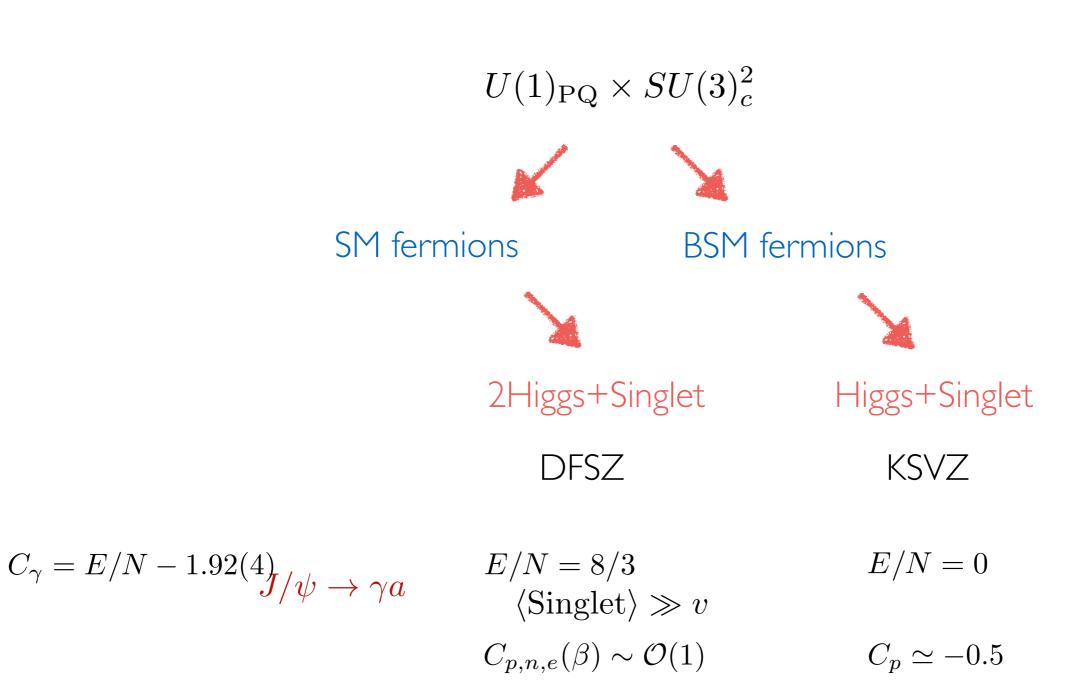
Benchmark axion models

• global U(I)_{PQ} (QCD anomalous + spontaneously broken)

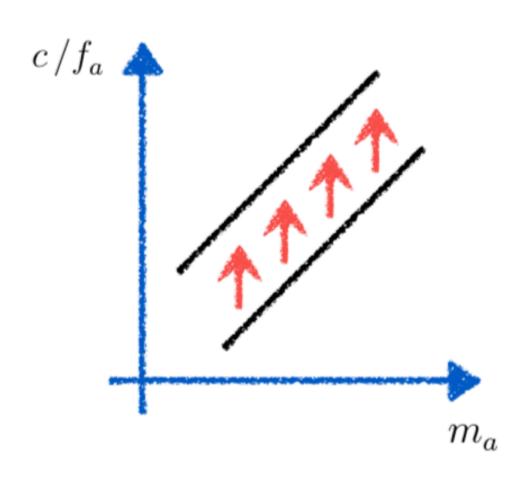


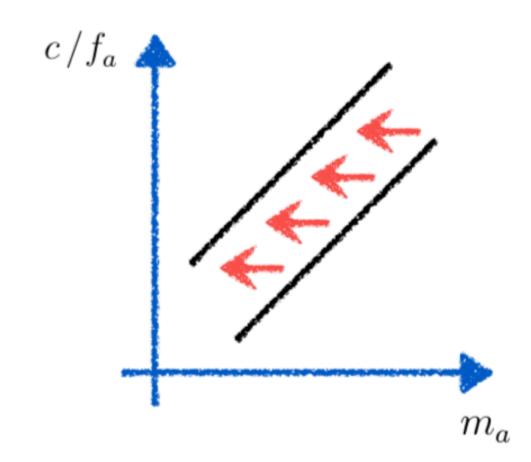
Benchmark axion models

global U(I)_{PQ} (QCD anomalous + spontaneously broken)



Axions beyond benchmarks





enhance Wilson coefficient for fixed m_a

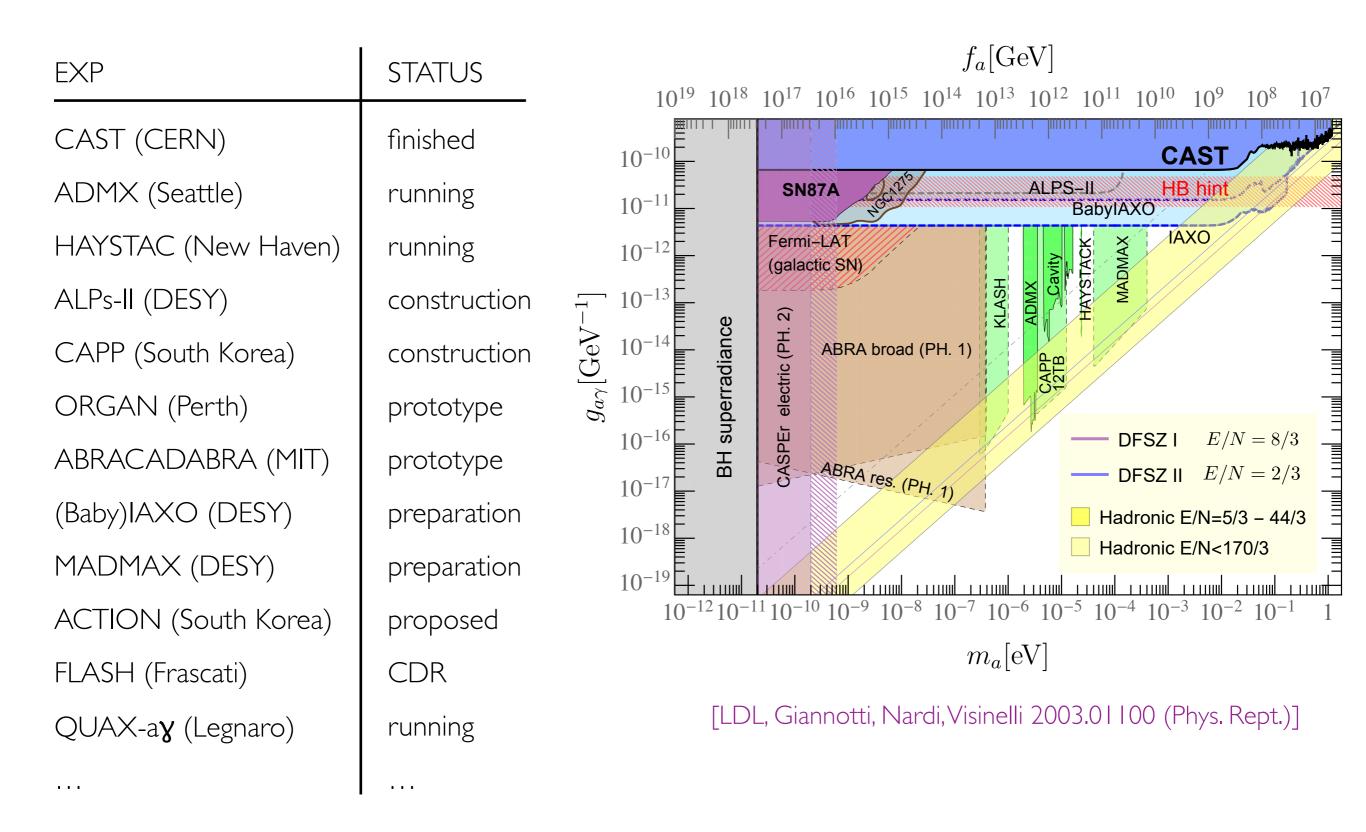
[LDL, Mescia, Nardi 1610.07593 + 1705.05370 Farina, Pappadopulo, Rompineve, Tesi 1611.09855 Agrawal, Fan, Reece, Wang 1709.06085 Darme', LDL, Giannotti, Nardi 2010.15846 Ringwald, Sokolov 2104.02574]

suppress axion mass for fixed f_a

[Hook 1802.10093, LDL, Gavela, Quilez, Ringwald 2102.00012 + 2102.01082]

QCD axion parameter space <u>much larger</u> than what traditionally thought

Axion-Photon



$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$
 $C_{a\gamma} = E/N - 1.92(4)$

$$\partial^{\mu}J_{\mu}^{PQ}=rac{Nlpha_{s}}{4\pi}G\cdot ilde{G}+rac{E}{4\pi}rac{E}{4\pi}F\cdot ilde{F}_{m_{
ho}\sim v_{
m PQ}}^{1\over 2}F_{m_{
ho}\sim v_{
m PQ}}^{1\over 2}F_{m_{
ho}\sim v_{
m PQ}} ---$$

gauge

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

 R_Q^w

 R_Q^s

$$C_{a\gamma} = E/N - 1.92(4)$$

R_Q	\mathcal{O}_{Qq}	$\Lambda_{\rm Landau}^{\rm 2-loop} [{\rm GeV}]$	E/N
(3,1,-1/3)	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3
(3,1,2/3)	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34} (g_1)$	8/3
(3,2,1/6)	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39} (g_1)$	5/3
(3,2,-5/6)	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27} (g_1)$	17/3
(3, 2, 7/6)	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22} (g_1)$	29/3
(3,3,-1/3)	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30} (g_2)$	14/3
(3,3,2/3)	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27} (g_2)$	20/3
(3,3,-4/3)	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18} (g_1)$	44/3
$(\overline{6}, 1, -1/3)$	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$2.3 \cdot 10^{37} (g_1)$	4/15
$(\overline{6}, 1, 2/3)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$5.1 \cdot 10^{30} (g_1)$	16/15
$(\overline{6}, 2, 1/6)$	$\overline{Q}_R \sigma_{\mu\nu} q_L G^{\mu\nu}$	$7.3 \cdot 10^{38}(g_1)$	2/3
(8,1,-1)	$\overline{Q}_L \sigma_{\mu\nu} e_R G^{\mu\nu}$	$7.6 \cdot 10^{22}(g_1)$	8/3
(8,2,-1/2)	$\overline{Q}_R \sigma_{\mu\nu} \ell_L G^{\mu\nu}$	$6.7 \cdot 10^{27} (g_1)$	4/3
(15, 1, -1/3)	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$8.3 \cdot 10^{21}(g_3)$	1/6
(15, 1, 2/3)	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$7.6 \cdot 10^{21}(g_3)$	2/3

$$\partial^{\mu}J_{\mu}^{PQ}=rac{Nlpha_{s}}{4\pi}G\cdot ilde{G}+rac{E}{4\pi}rac{E}{4\pi}rac{R}{e^{rac{1}{2}(v_{ ext{PQ}}+
ho(m{x}))}e^{\mathrm{i}A(x)/v_{ ext{PQ}}}}{4\pi} ext{global} \ = rac{V(1)_{ ext{PQ}}}{4\pi}F\cdot F_{m_{
ho}\sim v_{ ext{PQ}}} ext{global} \ = 0$$

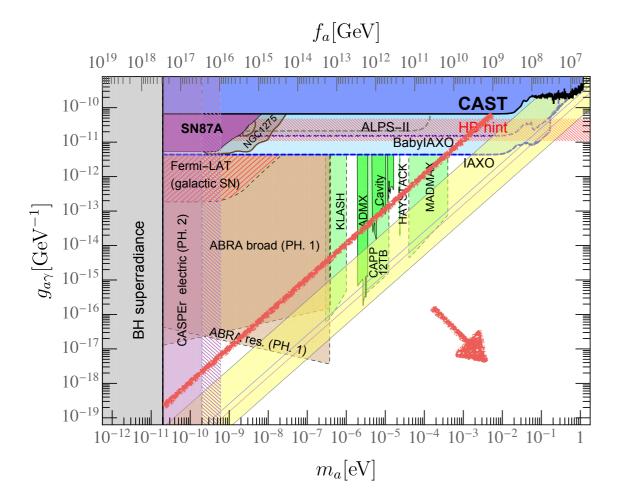
- Pheno preferred $\frac{\partial_{\mu}J^{\mu}_{U(1)_{PQ}} = -\frac{\alpha_{s}}{8\pi}NG^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} \frac{\alpha}{8\pi}EF_{\mu\nu}\tilde{F}^{\mu\nu}}{\text{hadronic axions}}$
 - 1. Q-fermions short lived (no coloured relics)
 - 2. No Landau poles below Planck

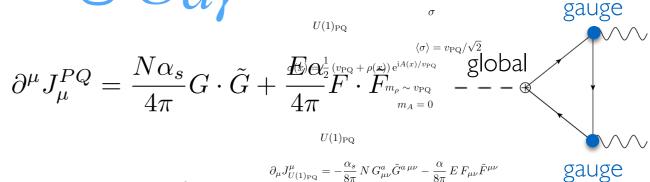
$$E/N \in [5/3, 44/3]$$

[LDL, Mescia, Nardi 1610.07593]

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

$$C_{a\gamma} = E/N - 1.92(4)$$





- Pheno preferred $\frac{\partial_{\mu}J^{\mu}_{U(1)_{PQ}} = -\frac{\alpha_{s}}{8\pi}NG^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} \frac{\alpha}{8\pi}EF_{\mu\nu}\tilde{F}^{\mu\nu}}{\text{hadronic axions}}$
- More Q's? [LDL, Mescia, Nardi 1705.05370]

$$E/N < 170/3$$
 (perturbativity)

$$g_{a\gamma} \to 0$$

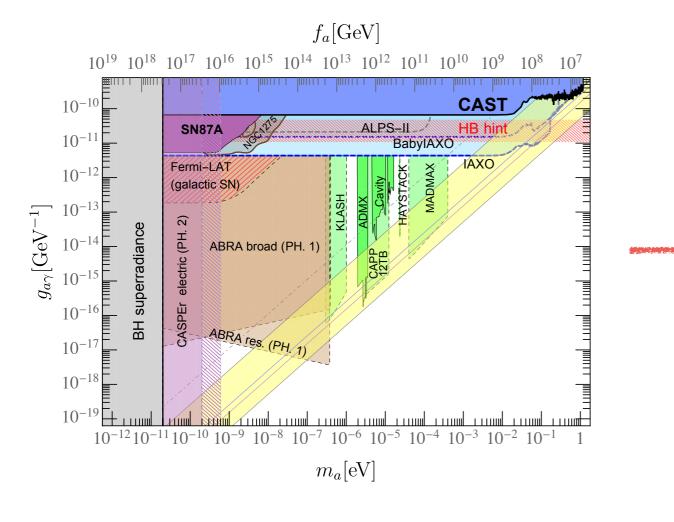
["such a cancellation is immoral, but not unnatural", D. B. Kaplan, NPB260 (1985)]

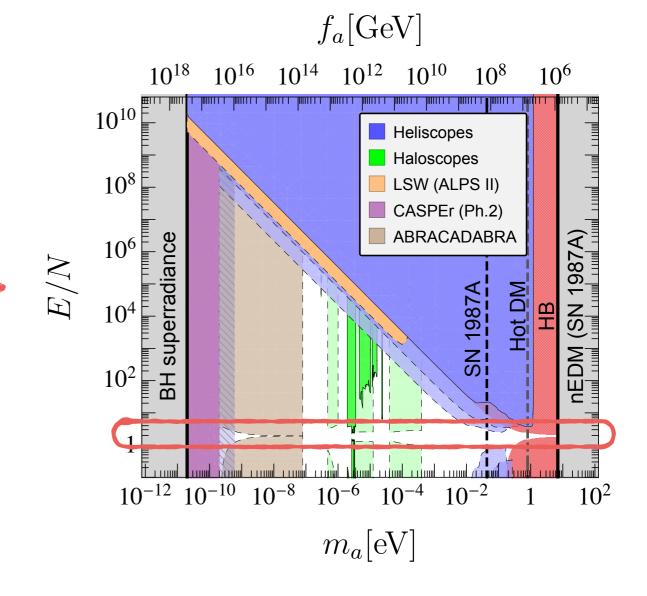
- Going above E/N = 170/3?
 - boost global charge (clockwork) → backup slides
 - be agnostic, E/N is a free parameter

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

$$C_{a\gamma} = E/N - 1.92(4)$$

[LDL, Giannotti, Nardi, Visinelli 2003.01100 (Phys. Rept.)]





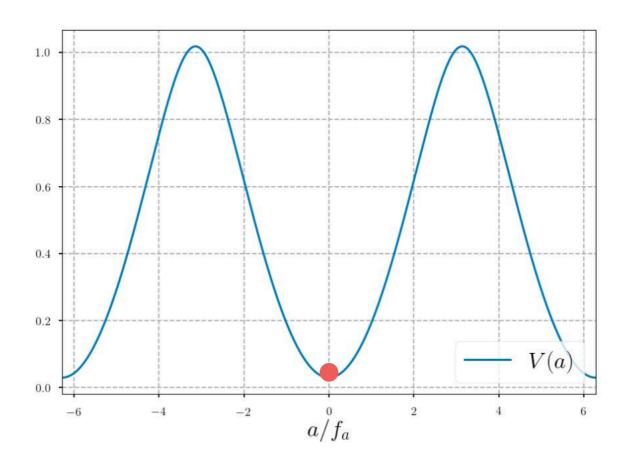
- 1. exp.s have just started to constrain E/N from above
- 2. $E/N \sim 1.92$ appears as a tuned region in theory space

Standard QCD axion

$$\frac{a}{f_a} \, \frac{\alpha_s}{8\pi} G\tilde{G}$$

$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G\tilde{G} \qquad V(a) = -m_\pi^2 f_\pi^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2\left(\frac{a}{2f_a}\right)}$$

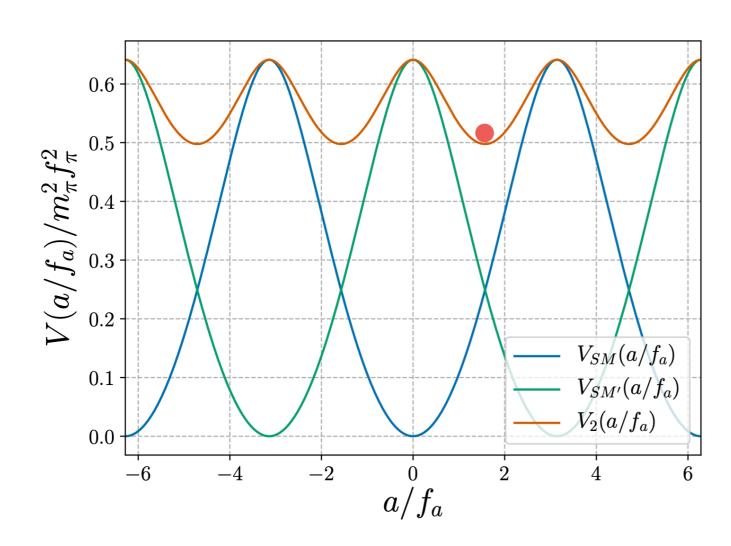
[Di Vecchia, Veneziano NPB171 (1980)]



• Z_2 axion: mirror world

$$SM \longleftrightarrow SM'$$
 $a \longrightarrow a + \pi f_a$

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{SM'} + \frac{\alpha_s}{8\pi} \left(\frac{a}{f_a} - \theta \right) G\widetilde{G} + \frac{\alpha_s}{8\pi} \left(\frac{a}{f_a} - \theta + \pi \right) G'\widetilde{G}'$$

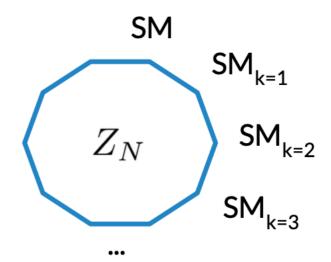


axion mass is suppressed but minimum in $\pi/2$

• Z_N axion: N mirror worlds [Hook 1802.10093]

$$SM_k \longrightarrow SM_{k+1 \pmod{N}}$$

 $a \longrightarrow a + \frac{2\pi k}{N} f_a,$



the axion ($\theta_a \equiv a I f_a$) realizes the Z_N symmetry non-linearly

$$\mathcal{L} = \sum_{k=0}^{\mathcal{N}-1} \left[\mathcal{L}_{\mathrm{SM}_k} + \frac{\alpha_s}{8\pi} \left(\theta_a + \frac{2\pi k}{\mathcal{N}} \right) G_k \widetilde{G}_k \right]$$

[LDL, Gavela, Quilez, Ringwald 2102.00012]

$$V_{\mathcal{N}}(\theta_a) = -m_{\pi}^2 f_{\pi}^2 \sum_{k=0}^{\mathcal{N}-1} \sqrt{1 - \frac{4z}{(1+z)^2} \sin^2\left(\frac{\theta_a}{2} + \frac{\pi k}{\mathcal{N}}\right)} \qquad z \equiv \frac{m_u}{m_d} \sim 1/2$$

$$z \equiv \frac{m_u}{m_d} \sim 1/2$$

$$\simeq \frac{m_{\pi}^2 f_{\pi}^2}{\sqrt{\pi}} \sqrt{\frac{1-z}{1+z}} \mathcal{N}^{-1/2} (-1)^{\mathcal{N}} \mathbf{z}^{\mathcal{N}} \cos(\mathcal{N}\theta_a)$$

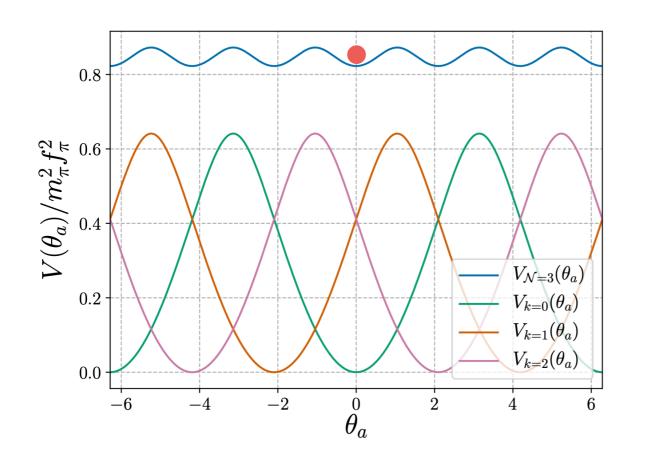
axion potential exponentially suppressed at large N

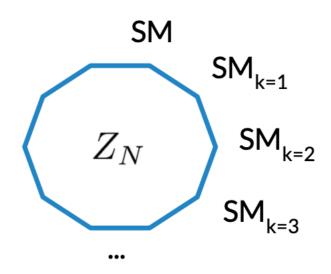
• Z_N axion: N mirror worlds [Hook 1802.10093]

$$SM_k \longrightarrow SM_{k+1 \pmod{N}}$$

 $a \longrightarrow a + \frac{2\pi k}{N} f_a,$

e.g. Z_3 axion





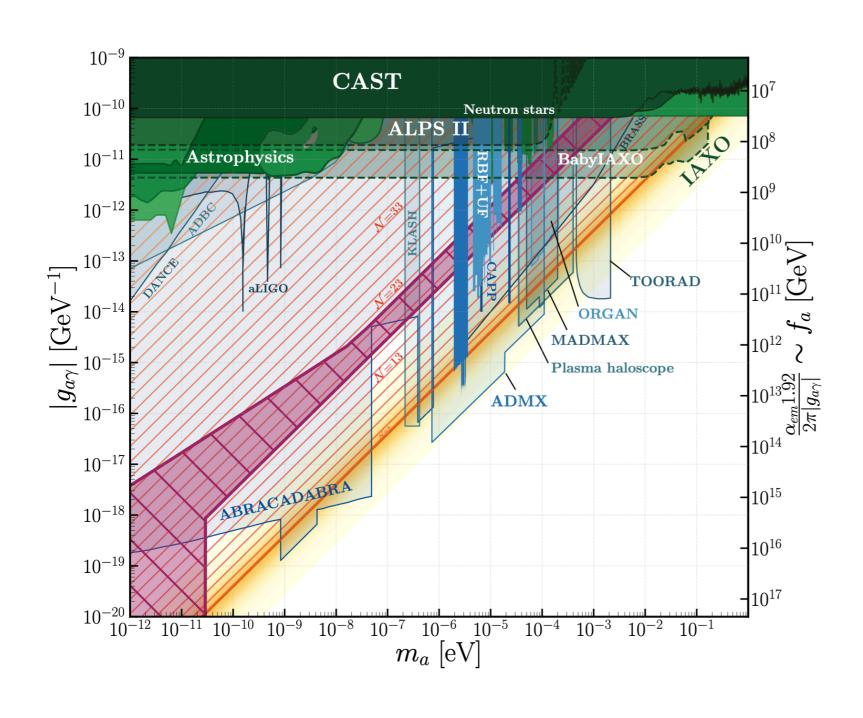
[LDL, Gavela, Quilez, Ringwald 2102.00012]

N needs to be odd in order to have a minimum in zero

(strong CP problem is solved with 1/N probability)

• Z_N axion: N mirror worlds

[LDL, Gavela, Quilez, Ringwald 2102.00012 + 2102.01082]



$$m_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{f_a^2} \frac{1}{\sqrt{\pi}} \sqrt{\frac{1-z}{1+z}} \ \mathcal{N}^{3/2} \, z^{\mathcal{N}}$$

universal enhancement of all axion couplings w.r.t. standard QCD axion

CASPEr-Electric could disentangle enhanced coupling vs. suppressed mass mechanism → backup slides

Conclusions

- QCD axion: 2 birds with 1 stone
 - I. Strong CP problem
 - 2. Dark Matter
- Experimentally driven phase

we are entering <u>now</u> the preferred window for the QCD axion

Take home message

axion couplings are <u>UV dependent</u> (enhanced/suppressed couplings, flavour, CPV, etc.)

if an "axion-like particle" will be ever discovered away from the canonical QCD window, it will be still tempting to think that it had something to do with the strong CP problem

Backup slides

A photo- and electro-philic Axion?

 \bullet Consider a DFSZ-like construction with 2 + n Higgs doublets + a SM singlet Φ

$$\mathcal{L}_Y = Y_u \, \overline{Q}_L u_R H_u + Y_d \, \overline{Q}_L d_R H_d + Y_e \, \overline{L}_L e_R H_e$$

$$\frac{E}{N} = \frac{\frac{4}{3}\mathcal{X}(H_u) + \frac{1}{3}\mathcal{X}(H_d) + \mathcal{X}(H_e)}{\frac{1}{2}\mathcal{X}(H_u) + \frac{1}{2}\mathcal{X}(H_d)}$$

$$g_{ae} = \underbrace{\frac{\mathcal{X}(H_e)}{2N} \frac{m_e}{f_a}}_{m_e}$$

naively, a large PQ charge for H_e would make the job... but, enhanced global symmetry

$$U(1)^{n+3} \to U(1)_{PQ} \times U(1)_Y$$

must be explicitly broken in the scalar potential via non-trivial invariants (e.g. $H_uH_d\Phi^2$)

non-trivial constraints on PQ charges

A photo- and electro-philic Axion?

• Consider a DFSZ-like construction with 2 + n Higgs doublets + a SM singlet Φ

clockwork-like scenarios allow to consistently boost E/N [LDL, Mescia, Nardi 1705.05370]

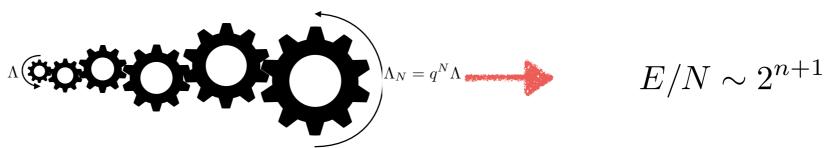
$$\frac{E}{N} = \frac{\frac{4}{3}\mathcal{X}(H_u) + \frac{1}{3}\mathcal{X}(H_d) + \mathcal{X}(H_e)}{\frac{1}{2}\mathcal{X}(H_u) + \frac{1}{2}\mathcal{X}(H_d)}$$

$$g_{ae} = \underbrace{\frac{\mathcal{X}(H_e)}{2N} \frac{m_e}{f_a}}_{m_e}$$

$$(H_uH_d\Phi^2)$$

$$(H_k H_{k-1}^*)(H_{k-1}^* H_d^*)$$

$$(H_eH_n)(H_nH_d)$$



[Giudice, McCullough]

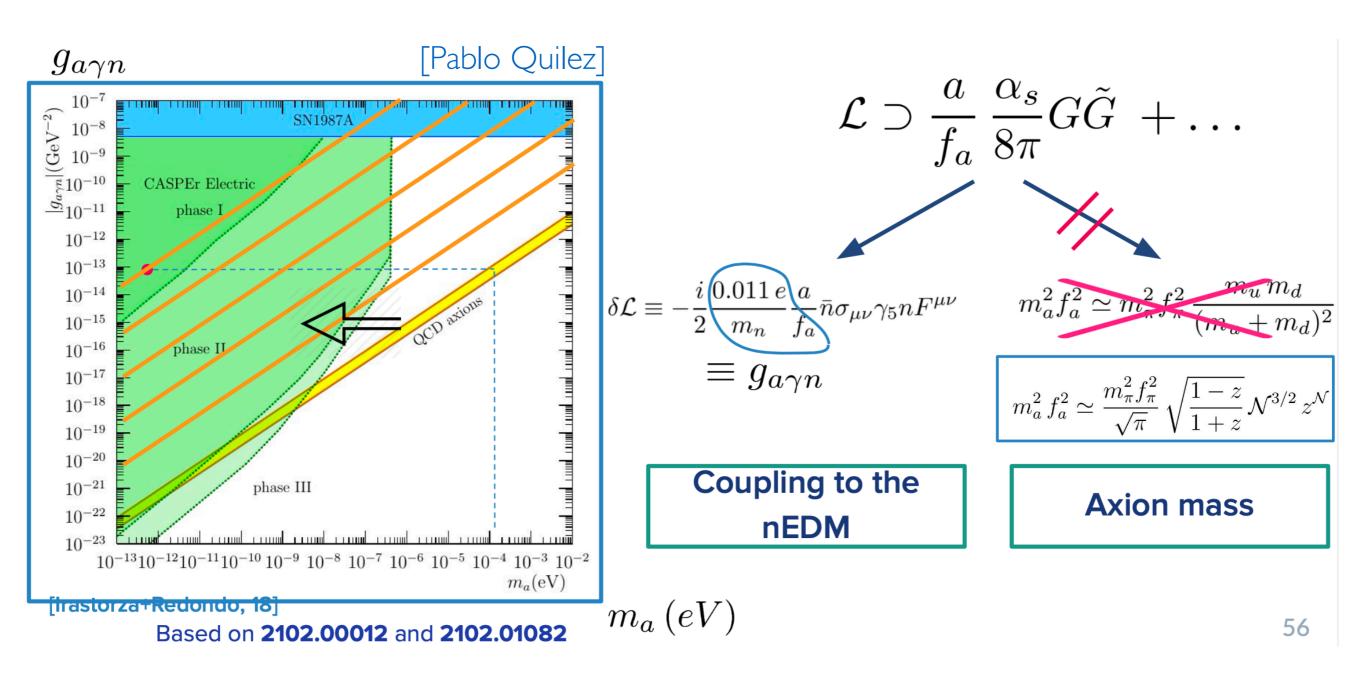
$$E/N \sim 2^{n+1}$$

[See also Farina et al. 1611.09855, for KSVZ clockwork]

$$\mathcal{X}(H_e) = 2^{n+1} \left(1 - \frac{v_e^2}{v^2} \right) - \sum_{k=2}^n 2^k \frac{v_k^2}{v^2}$$

How to tell which mechanism?

CASPEr-Electric could disentangle enhanced coupling vs. suppressed mass



CASPEr-Electric

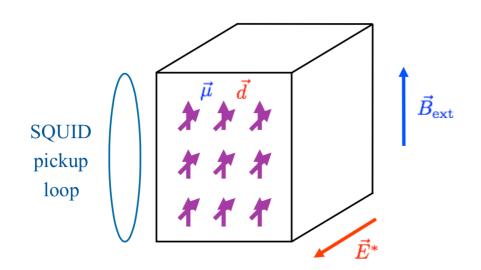
Cosmic Axion Spin Precession Experiment

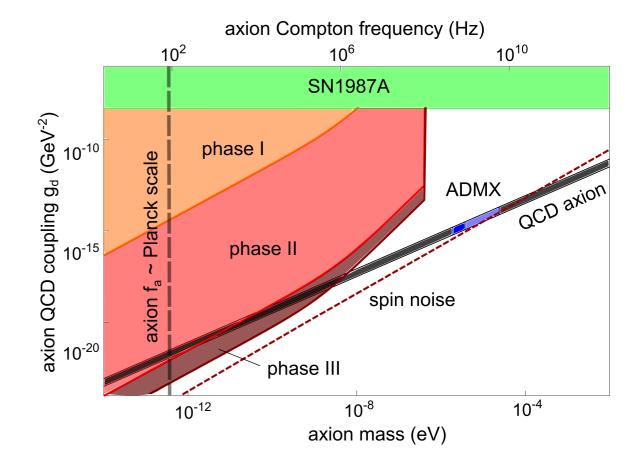
[Graham, Rajendran <u>1306.6088</u>, Budker+ <u>1306.6089</u>, Jackson Kimball+ <u>1711.08999</u>]

Axion DM field induces an oscillating nEDM

$$\mathcal{L} \supset -\frac{i}{2} \underbrace{g_d a \, \overline{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu}}_{d_n(t) = g_d \frac{\sqrt{2\rho_{\rm DM}}}{m_a}} \cos(m_a t)$$

...which is detected via NMR techniques





CPV axion & long-range forces

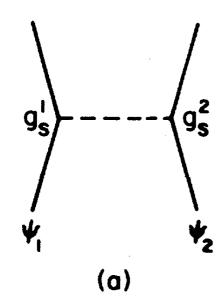
New <u>CP violation</u> in the UV can source a scalar axion-nucleon coupling

$$\frac{f_{\pi}}{2} \frac{a^2}{f_a^2} \overline{N} N \longrightarrow \overline{g}_{aN} a \overline{N} N \qquad \overline{g}_{aN} \sim \frac{f_{\pi}}{f_a} \theta_{\text{eff}} \qquad \left(\theta_{\text{eff}} = \frac{\langle a \rangle}{f_a} \neq 0\right)$$

$$\overline{g}_{aN} \sim \frac{f_{\pi}}{f_a} \theta_{\text{eff}}$$

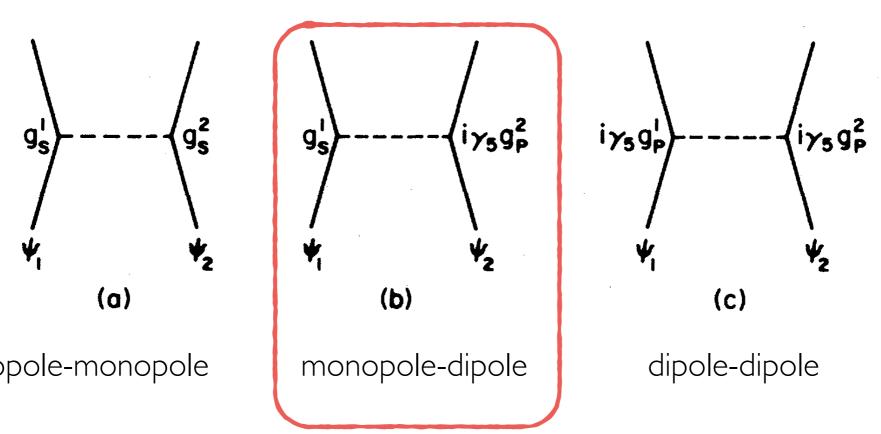
$$\left(\theta_{\text{eff}} = \frac{\langle a \rangle}{f_a} \neq 0\right)$$

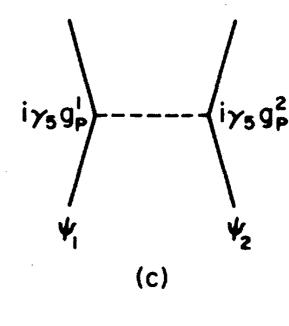
[Moody, Wilczek PRD30 (1984)]



monopole-monopole

$$V(r) = \frac{-g_S^1 g_S^2 e^{-m_{\varphi}r}}{4\pi r}$$





dipole-dipole

$$V(r) = \left(g_S^1 g_P^2\right) \frac{\hat{\sigma}_2 \cdot \hat{r}}{8\pi M_2} \left[\frac{m_{\varphi}}{r} + \frac{1}{r^2} \right] e^{-m_{\varphi} r}$$

CPV axion & long-range forces

New <u>CP violation</u> in the UV can source a scalar axion-nucleon coupling

