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Pulsars
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✦ Pulsars emit electromagnetic pulses with extraordinary regularity, with the period ranging from 
milliseconds to seconds. Up to now about 3000 pulsars observed in our galaxy    

✦ Millisecond pulsars (MSPs) are especially stable due to mass and angular momentum transfer 
from a companion. Although emission mechanism not fully clarified, they play significant roles 
as astronomical clocks

1
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Hellings and Downs curve 
(quadrupolar correlations) 
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Figure 24: Geometry for calculating the change in the photon propagation time from ~r1
to ~r2 = r1 + Lû in the presence of a plane gravitational wave propagating in direction k̂.

received at ~r2 at time t is given by [72]:

�T (t) =
1

2c
uaub

Z L

s=0
ds hab(t(s), ~x(s)) , (5.14)

where the 0th-order expression for the photon trajectory can be used in hab:

t(s) = (t � L/c) + s/c , ~x(s) = ~r1 + sû . (5.15)

Since hab(t, ~x) = hab(t + n̂ · ~x/c) for a plane wave, it is relatively easy to do the integral.
The result is
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where we factored out ei2⇡f(t+n̂·~r
2

/c), corresponding to the time and location of the mea-
surement, to get the last line. Note that the two terms in square brackets in (5.16)
correspond to sampling the gravitational-wave phase at photon reception (location ~r2 at
time t2 ⌘ t) and photon emission (location ~r1 at time t1 ⌘ t � L/c), respectively. In
the context of pulsar timing, these two terms are called the Earth term and pulsar term,
respectively.
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“Earth” “pulsar”

Pulsar timing arrays (PTAs)
✦ Global PTA network monitors over 80 MSPs in the timespan of years. FAST/SKA may 

increase the number to the order of 1000  

✦ Given precise timing model of the expected time of arrival of the pulse, the measured 
time difference can be directly related to gravitational waves (GWs)

✦ PTAs with MSPs in different 
directions serve as galactic 
interferometers to measure nHZ 
GWs. Stochastic GW backgrounds 
(SGWBs) can be identified by the 
quadrupolar spatial correlations 
among pulsars

0 45 90 135 180
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

angle between pulsars (degrees)

Figure 37: Plot of the Hellings and Downs curve as a function of the angular separation
between two distinct pulsars.

in the cosine of the angle between the two pulsars. This follows immediately if one uses
(5.37) for the overlap function and (5.23) for the pulsar timing response functions in the
tensor spherical harmonic basis. As shown in [78]:

�(⇣IJ) =
3

4

1X

l=2

((2)Nl)
2(2l + 1)Pl(p̂I · p̂j) , (5.54)

where p̂I and p̂J are unit vectors that point in the directions to the two pulsars. A Legendre
series expansion out to lmax = 4 (i.e., only three terms) gives very good agreement with
the exact expression for the Hellings and Downs function, except for very small angular
separations. This is illustrated in Figure 38.

5.5 Moving detectors

So far, we have ignored any time-dependence in the detector response introduced by the
motion of the detectors relative to the gravitational-wave source. In general, this relative
motion produces a modulation in both the amplitude and the phase of the response of
a detector to a monochromatic, plane-fronted gravitational wave [63]. For Earth-based
interferometers like LIGO, the modulation is due to both the Earth’s daily rotation and
yearly orbital motion around the Sun. For space-based interferometers like LISA, the
modulation is due to the motion of the individual spacecraft as they orbit the Sun with a
period of one year. For example, for the original LISA design, three spacecraft fly in an
equilateral-triangle configuration around the Sun. The center-of-mass (or guiding center)
of the configuration moves in a circular orbit of radius 1 AU, at an angle of 20� behind

84

Hellings and Downs curve 
(quadrupolar correlations)

Hellings and Downs, 
1983, ApJL, 265, L39



Pulsar timing arrays (PTAs)
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Recently, the explorations on the PTA targets extended to dark matter (DM) physics 
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Figure 1. Pulsar timing signal from the scalar field dark matter (3.9) for a range of scalar

field masses m. Shaded wedges represent the estimated sensitivity of various pulsar timing

array observations (adopted from [7]). For masses below 10�23 eV the scalar field behaves

like hot dark matter, and is incompatible with the observed power spectrum of density

perturbations [3, 13].

Therefore, the scalar field dark matter has the same e↵ect on the pulsar timing

measurements as gravitational wave background with characteristic strain

h

c

= 2
p
3 

c

= 2 · 10�15

✓
⇢

DM

0.3GeV/cm3

◆✓
10�23 eV

m

◆2

, (3.9)

at frequency

f ⌘ 2⇡! = 5 · 10�9 Hz
⇣

m

10�23 eV

⌘
. (3.10)

The amplitude of the signal from the scalar field dark matter for a range of masses

m is shown in Fig. 1 together with the sensitivity curves of the pulsar timing array

experiments. The sensitivities are taken from [7] where three cases are considered.

The current limit from the Parkes PTA [9] corresponds to h

c

⇡ 2 · 10�14 at the

frequency f = 8 · 10�9 Hz. The sensitivity achievable by PPTA by monitoring

20 pulsars for 5 years with the timing precision �t

rms

= 100 ns is estimated as

h

c

⇡ 2 · 10�15 at the frequency f = 7 · 10�9 Hz. Finally, assuming that SKA will

be able to monitor 100 pulsars for 10 years with the timing precision 50 ns, the

sensitivity of h
c

⇡ 10�16 at the frequency f = 3 · 10�9 Hz can be achieved. We see

from Fig. 1 that the scalar field dark matter signal can be observed with SKA pulsar

timing array for the dark matter mass m . 2.3 · 10�23 eV.
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FIG. 2: Limits from PTAs on the dark matter mass fraction f = ⌦/⌦
DM

in subhalos of mass

M for di↵erent subhalo concentration parameters, c = 10, 100, 104, and the PBH limit,

c ! 1. Results derived in Ref. [30] from deterministic single transiting objects and static

signals are labeled ‘DopDet-P’, ‘DopStatic’, ‘ShapDet’, and ‘ShapStatic’ and shown in green

and orange. The ‘DopDet-P’ and ‘ShapDet’ constraints have been weakened relative to

Ref. [30] due to the subtraction procedure discussed in Appendix B. New results of this paper

utilizing a stochastic signal induced by multiple transiting subhalos are labeled ‘DopStoch’

and ‘ShapStoch’, and shown in blue and pink, respectively. An SKA-like PTA, described in

Sec. II C, with identical pulsars was assumed. Lensing constraints in gray are from

Refs. [22–26, 53], and disappear for c < 107.
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FIG. 1: Constraints on the dark photon mass mA and the coupling constant ✏2 for the U(1)B (left) and U(1)B�L (right) gauge groups. The
red solid and dashed lines are derived in this work using the PPTA DR2 data, under the assumptions that the dark photon field polarizations
are correlated and uncorrelated among various pulsars, respectively. The horizontal solid line is the limit from the MICROSCOPE weak
equivalence principle (WEP) experiment [18]. The black dashed line and the gray shaded region indicate the parameter space where the
gravitational e↵ect (studied in Refs. [22, 41, 43]) dominates over the gauge interaction (studied here), for pulsar timing observations. More
details about the WEP experiments and gravitational e↵ects are presented in the Supplemental Material [51]. Note that in the WEP experiments,
the dark photon is not required to be the dark matter.

and consistent result.
The grey shaded regions in Fig. 1 indicate the parameter

space for which the “gravitational e↵ect” due to the space-
time metric oscillation induced by the wavelike DPDM field
dominates over the gauge interaction discussed in this work.
See the Supplemental Material [51] for more details of the
estimate of the grey regions. In such parameter regions, ded-
icated analysis with both e↵ects being included in the signal
model is required and will be studied in future work.

Summary — Ultralight fuzzy dark matter is proposed as an
attractive candidate of dark matter in the Universe which helps
solve the small-scale crises of the classical cold dark matter
scenario. Using the precise timing observations of 26 pulsars
by the PPTA project, we study the possible couplings between
ultralight dark matter and ordinary matter. Taking the DPDM
as an example, we obtain by far the strongest constraints on
the parameters of the DPDM. The upper limits on the dimen-
sionless coupling constant ✏ derived in our study are improved
by up to two orders of magnitude when the dark photon mass
is smaller than 3⇥10�22 eV (10�22 eV) for the U(1)B (U(1)B�L)
scenario.

The search sensitivity for the DPDM is expected to im-
prove significantly in the near future as more pulsars are mon-
itored with continually-extending data spans by the world-
wide pulsar timing array campaigns including the PPTA,
the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav [46]), and the Europe Pulsar Timing Ar-
ray (EPTA [47]), which have jointly formed the International
Pulsar Timing Array (IPTA [48]). The Five-hundred-meter
Aperture Spherical Telescope (FAST [49]) and the Square

Kilometer Array (SKA [50]) are also expected to join the
IPTA collaboration. These e↵orts are likely to bring revolu-
tionary progress in studying a wide range of dark matter mod-
els, and more generally in answering the related fundamental
questions in physics.
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✦ Pulsar radio emissions typically have strong linear polarization

Pulsar polarization arrays (PPAs)
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ATNF Pulsar Catalogue  
(Version: 1.66)

RM =
PA

�2

wavelength

polarization 
angle

rotation 
measure

✦ Polarization profiles are usually obtained as a by-product of PTAs due to 
the crucial role played by polarization calibration for precise timing
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Measured polarization angle: 

PA = PA
source

+ PA
instru

+ PA
propa

• Source: change of pulsar orientation/
magnetosphere; stochastic variation of 
single pulse profile (jitter noise) 

• Instrument: related to PA calibration; 
radiometer noise 

• Propagation: Faraday rotation caused 
by interstellar magnetic field/Earth’s 
ionosphere

New physics effects?? 



Axion and axion-like particles (ALPs)
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Figure 1: Summary of constraints and probes of axion cosmology.
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D. Marsh, Phys. Rept. 643, 1-79 (2016)

ALPs landscapes 

6

✦ QCD axion well motivated to solve the 
strong CP problem and also serve as an 
DM candidate; ALPs introduced in many 
BSM scenarios, e.g. string axions. 

✦ Ultralight ALPs (ma<10-18eV) can be 
generated as a Bose-Einstein condensate 
from misalignment; behave effectively as 
a classical scalar field  

✦ Ultralight ALPs may serve as DM or DE 
during cosmic evolution. Here we focus 
on ALDM (e.g. fuzzy DM at ma~10-22eV, 
subdominant at ma<10-24eV)



Physical properties of ALDM
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✦ Local ALDM field made up by a large number of ALP classical fields with uncorrelated 
random phases 

✦ ALPs effective action: gravitational interaction, coupling to SM particles…  

• Non-relativistic limit:                ; velocity distribution fx(v) peaked around |v|~v0~10-3c 
(CDM velocity in our galaxy) 

• Random nature: random amplitude !d and phase "d (follow the Rayleigh and uniform 
distributions) 

!a ⇡ ma, k ⇡ mav
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Chern-Simons coupling
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ALDM induced cosmic birefringence 
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Chern-Simons coupling g corrects the dispersion 
relations of two circular polarization modes of 
photons, yielding polarization angle (PA) rotation 
of linearly polarized photons

8

“Earth”“Pulsar”
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Parity-violation => Different dispersion relations for left- and right-circular polarized photons 
=> Oscillating linearly polarization position angle         

14

�✓ = �g

Z tf

ti

@ta(x, t) dt

=

g

ma
[

p
⇢i cos(mati +mav · xi + �)

�p
⇢f cos (matf +mav · xf + �)]

• relies only on field profiles at two endpoints of photon traveling  
• quasi-monochromatic oscillation around the frequency #a ≈ ma  
• no frequency dependence (Faraday Rotation increases with wavelength)
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Detection of cosmic birefringence 
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A variety of astrophysical light sources proposed to detect cosmic birefringence

• Carroll, Field, Jackiw, PRD 41, 1231 (1990) 
• Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993). 
• Ivanov, Kovalev, Lister, Panin, Pushkarev, Savolainen, Troitsky, JCAP 02, 059 

(2019), 1811.10997 
• Fujita, Tazaki, Toma, Phys. Rev. Lett. 122, 191101 (2019), 1811.03525 
• Liu, Smoot, Zhao, Phys. Rev. D 101, 063012 (2020), 1901.10981. 
• Caputo, Sberna, Frias, Blas, Pani, Shao, Yan, Physical Review D 100, 063515 (2019).  
• Chigusa, Moroi, Nakayama, Phys. Lett. B 803, 135288 (2020), 1911.09850. 
• Chen, Shu, Xue, Yuan, Zhao, Phys. Rev. Lett. 124, 061102 (2020), 1905.02213 
• …

Mainly focus on the temporal oscillation feature of the signal for individual sources; 
spatial correlations among different sources not properly considered 

Cosmological Birefringence

To detect wave DM with pulsars, we will focus on their polarization data,  
exploiting an effect known as ``cosmological birefringence’’ 

13

PPA may provide an excellent tool to study the spatial correlations 
of cosmic birefringence induced by the ultralight ALDM 



PA rotation signal on PPAs with many pulsars 

ALDM induced signal for PPAs  

2

where F

µ⌫ , F̃µ⌫ are electromagnetic field strength and
its Hodge dual, and g is topological Chern-Simon cou-
pling. While photons propagate in the ALDM field, this
topological interaction corrects the dispersion relations of
their positive and negative circular polarization modes in
a parity-violating manner, yielding

!± ' k ± g
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relativistic

k ± g

@a

@t

. (2)

If these photons are linearly polarized, Eq. (2) implies a
non-trivial rotation �✓ to their polarization angle (PA),
inducing the well-known e↵ect of cosmological birefrin-
gence [18–20]. In the non-relativistic limit, the ALDM
field is approximately given by [21]
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where the oscillating frequency !a ⇡ ma in natural units.
Here the random amplitude ↵

v

and phase �

v

follow the
Rayleigh and uniform distributions, respectively; ⇢(x)
denotes the ALDM density profile; and f

x

(v) is the ve-
locity distribution at x.

The PA rotation induced by ALDM can be probed by
linearly polarized pulsar light [15, 16]. For detecting the
pulsar signals, we consider average pulse profiles to over-
come jitter noise due to the stochastic variation of indi-
vidual ones [22, 23]. With a segment of observation over
the timespan Tp, the data for the p-th MSP of the PPA
consists of a time series of points �✓p,n ⌘ �✓p(tn) for
n = 1, . . . , Np, with each point being defined by one av-
erage profile over the folding time ⌧

fold

. To maintain the
oscillation pattern of signals, we should keepma ⌧fold . 1.
Then for the data point at tn, the PA rotation is
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where ⇢i ⌘ ⇢(xi), fi(v) ⌘ f

xi
(v), with i = p, e, and

we take xe = 0, with Lp = |xp| the distance from the
pulsar to the Earth. Already for one pulsar, the ALDM-
induced signal di↵ers from PA Faraday rotation in three
aspects. First, the former has no radio frequency depen-
dence, while the latter increases with the wavelength.
Second, the former relies only on the field profiles at two
endpoints of photon traveling due to the topological na-
ture of the parity-violating Chern-Simon coupling. As a
result, Eq. (4) is characterized by “pulsar” and “Earth”
terms as in the case of pulsar timing. Finally, the former
features quasi-monochromatic oscillation around the fre-
quency ma, while no characteristic time dependence is
expected for the latter.

For PPAs consisting of N � 1 pulsars, we can con-
struct a signal vector
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for �✓p,n in Eq. (4), with p = 1, ...,N and n = 1, ..., Np.
Integrating out the random amplitude ↵

v

and phase �

v

,
the vector s is found to follow a multivariable Gaussian
distribution with zero mean [21], and the statistical prop-
erties are determined by the covariance matrix ⌃

(s), with

⌃(s)
p,n;q,m = h�✓p,n�✓q,mi. To simplify the phase space in-

tegral, we assume an isotropic distribution of v. Given
that this distribution peaks sharply at the characteristic
velocity of cold DM in our galaxy, namely v

0

⇠ 10�3 in
natural units, we obtain

⌃(s)
p,n;q,m ⇡ g

2

m

2

a

⇢

⇢e cos(ma�t) (6)

+
p
⇢p⇢q cos[ma(�t��L)]

sin ypq
ypq
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⇢e⇢p cos[ma(�t� Lp)]

sin yep
yep

�p
⇢e⇢q cos[ma(�t+ Lq)]

sin yeq
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,

where �t = tp,n � tq,m, �L ⌘ Lp � Lq, ypq = �x/lc

(�x = |xp � xq|), yep(q) = Lp(q)/lc. lc ⌘ 1/(mav0) de-
notes the de Broglie coherence length for ALDM. For
pulsar-related terms, the distance dependence in cosines
is related to the light travel time between two objects.
The sinc function (sin y/y) results from an average over
di↵erent directions and measures the strength of spatial
correlations. The spatial correlation degrades when the
pulsar-pulsar and Earth-pulsar distances are far beyond
the coherence length or y � 1.
It is instructive to compare the ALDM-induced signal

in Eq. (6) with the response of PTAs to GWs. Isotropic
SGWBs are characterized by the quadrupolar spatial cor-
relations among pulsars following the Hellings and Downs
curve [24]. As a comparison, the Earth-Earth (⇢e) term
in Eq. (6) features monopolar correlations, and cannot be
distinguished from correlated noise universal for pulsars.
It is the pulsar-related terms playing a more decisive role
for characterizing ALDM. Because of the de Broglie co-
herence length lc dependence in the sinc functions, spa-
tial correlations degrade more slowly with distance than
that for SGWBs. Thus, with the nontrivial field den-
sity dependence following the DM halo profile [15], the
ALDM-induced signal can be distinguished from the PA
Faraday rotation by its characteristic pulsar location de-
pendence, say the signal would be greatly enhanced for
pulsars near the galactic center. This is similar to the
PTA detection of ALDM-induced periodic oscillations in
gravitational potentials [2]. Therefore, detection of ul-
tralight DM provides motivations for PPAs and PTAs
to incorporate pulsars more broadly distributed in our
galaxy, in particular those near the galactic center.
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where F

µ⌫ , F̃µ⌫ are electromagnetic field strength and
its Hodge dual, and g is topological Chern-Simon cou-
pling. While photons propagate in the ALDM field, this
topological interaction corrects the dispersion relations of
their positive and negative circular polarization modes in
a parity-violating manner, yielding
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If these photons are linearly polarized, Eq. (2) implies a
non-trivial rotation �✓ to their polarization angle (PA),
inducing the well-known e↵ect of cosmological birefrin-
gence [18–20]. In the non-relativistic limit, the ALDM
field is approximately given by [21]
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where the oscillating frequency !a ⇡ ma in natural units.
Here the random amplitude ↵

v

and phase �

v

follow the
Rayleigh and uniform distributions, respectively; ⇢(x)
denotes the ALDM density profile; and f

x

(v) is the ve-
locity distribution at x.

The PA rotation induced by ALDM can be probed by
linearly polarized pulsar light [15, 16]. For detecting the
pulsar signals, we consider average pulse profiles to over-
come jitter noise due to the stochastic variation of indi-
vidual ones [22, 23]. With a segment of observation over
the timespan Tp, the data for the p-th MSP of the PPA
consists of a time series of points �✓p,n ⌘ �✓p(tn) for
n = 1, . . . , Np, with each point being defined by one av-
erage profile over the folding time ⌧

fold

. To maintain the
oscillation pattern of signals, we should keepma ⌧fold . 1.
Then for the data point at tn, the PA rotation is
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where ⇢i ⌘ ⇢(xi), fi(v) ⌘ f

xi
(v), with i = p, e, and

we take xe = 0, with Lp = |xp| the distance from the
pulsar to the Earth. Already for one pulsar, the ALDM-
induced signal di↵ers from PA Faraday rotation in three
aspects. First, the former has no radio frequency depen-
dence, while the latter increases with the wavelength.
Second, the former relies only on the field profiles at two
endpoints of photon traveling due to the topological na-
ture of the parity-violating Chern-Simon coupling. As a
result, Eq. (4) is characterized by “pulsar” and “Earth”
terms as in the case of pulsar timing. Finally, the former
features quasi-monochromatic oscillation around the fre-
quency ma, while no characteristic time dependence is
expected for the latter.

For PPAs consisting of N � 1 pulsars, we can con-
struct a signal vector

s ⌘ (�✓

1,1, ...,�✓

1,N1 , ...,�✓N ,1, ...,�✓N ,NN )T , (5)

for �✓p,n in Eq. (4), with p = 1, ...,N and n = 1, ..., Np.
Integrating out the random amplitude ↵

v

and phase �

v

,
the vector s is found to follow a multivariable Gaussian
distribution with zero mean [21], and the statistical prop-
erties are determined by the covariance matrix ⌃

(s), with

⌃(s)
p,n;q,m = h�✓p,n�✓q,mi. To simplify the phase space in-

tegral, we assume an isotropic distribution of v. Given
that this distribution peaks sharply at the characteristic
velocity of cold DM in our galaxy, namely v

0

⇠ 10�3 in
natural units, we obtain

⌃(s)
p,n;q,m ⇡ g

2

m

2
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⇢

⇢e cos(ma�t) (6)

+
p
⇢p⇢q cos[ma(�t��L)]

sin ypq
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sin yep
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where �t = tp,n � tq,m, �L ⌘ Lp � Lq, ypq = �x/lc

(�x = |xp � xq|), yep(q) = Lp(q)/lc. lc ⌘ 1/(mav0) de-
notes the de Broglie coherence length for ALDM. For
pulsar-related terms, the distance dependence in cosines
is related to the light travel time between two objects.
The sinc function (sin y/y) results from an average over
di↵erent directions and measures the strength of spatial
correlations. The spatial correlation degrades when the
pulsar-pulsar and Earth-pulsar distances are far beyond
the coherence length or y � 1.
It is instructive to compare the ALDM-induced signal

in Eq. (6) with the response of PTAs to GWs. Isotropic
SGWBs are characterized by the quadrupolar spatial cor-
relations among pulsars following the Hellings and Downs
curve [24]. As a comparison, the Earth-Earth (⇢e) term
in Eq. (6) features monopolar correlations, and cannot be
distinguished from correlated noise universal for pulsars.
It is the pulsar-related terms playing a more decisive role
for characterizing ALDM. Because of the de Broglie co-
herence length lc dependence in the sinc functions, spa-
tial correlations degrade more slowly with distance than
that for SGWBs. Thus, with the nontrivial field den-
sity dependence following the DM halo profile [15], the
ALDM-induced signal can be distinguished from the PA
Faraday rotation by its characteristic pulsar location de-
pendence, say the signal would be greatly enhanced for
pulsars near the galactic center. This is similar to the
PTA detection of ALDM-induced periodic oscillations in
gravitational potentials [2]. Therefore, detection of ul-
tralight DM provides motivations for PPAs and PTAs
to incorporate pulsars more broadly distributed in our
galaxy, in particular those near the galactic center.

+...
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• Construct a signal vector s from the time series of PA rotation for each pulsar in PPA  

• Signal s follows a multivariable Gaussian distribution with zero mean and the covariance matrix
ypq = �x/lc

lc = 1/(mav0)

(coherence length)
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interaction corrects the dispersion relations of their posi-
tive and negative circular polarization modes in a parity-
violating manner, yielding
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If these photons are linearly polarized, Eq. (2) implies a
non-trivial rotation of their PA, inducing the well-known
e↵ect of cosmological birefringence [17–19].

Pulsar lights with strong linear polarizations provide a
perfect target to look for such corrections [24, 25]. Be-
cause of jitter noise induced by the stochastic variation
of individual pulses [28, 29], we consider average pulse
profiles to extract the ALDM-induced signal. With a
segment of observation over the timespan Tp, the data
for the p-th MSP consists of a time series of points
�✓p,n ⌘ �✓p(tn) for n = 1, . . . , Np, with each point being
defined by one average profile over the folding time ⌧

fold

.
As the ALDM field is highly non-relativistic, its oscillat-
ing frequency !a is approximately ma in natural units.
To maintain the oscillation pattern, we keep ma ⌧fold . 1,
and the PA rotation for the data point at tn is
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Here C is the light travel path, n

µ is its null tangent
vector. ⇢i and fi(v) denote the ALDM density profile
and velocity distribution at Earth (i = e) and pulsar
(i = p). The random amplitude ↵v and phase �v follow
the Rayleigh and uniform distributions, respectively. For
the phase, we take xe = 0, and Lp = |xp| is the distance
from the pulsar to the Earth.

Already for one pulsar, the ALDM-induced signal dif-
fers from Faraday rotation in three aspects. Firstly, the
former features quasi-monochromatic oscillation around
the frequency ma, while no characteristic time depen-
dence is expected for the latter. Secondly, the former has
no radio frequency dependence, while the latter increases
with the wavelength. Finally, the former relies only on
the field profiles at two endpoints of photon traveling due
to the topological nature of the parity-violating Chern-
Simons coupling. As a result, Eq. (3) is characterized by
a “pulsar” term and an “Earth” term.

For PPAs consisting of N � 1 pulsars, we can con-
struct a signal vector

s ⌘ (�✓

1,1, ...,�✓

1,N1 , ...,�✓N ,1, ...,�✓N ,NN )T , (4)

for �✓p,n in Eq. (3), with p = 1, ...,N and n = 1, ..., Np.
Integrating out the random amplitude ↵v and phase �v,
the vector s is found to follow a multivariable Gaussian
distribution with zero mean, as in the case of Ref. [30].

The statistical properties are then determined by the co-

variance matrix ⌃

(s), with ⌃(s)
p,n;q,m = h�✓p,n�✓q,mi. To

simplify the phase space integral, we assume an isotropic
distribution of v. Given that this distribution peaks
sharply at the characteristic velocity of cold DM in our
galaxy, namely v

0

⇠ 10�3 in natural units, we obtain

⌃(s)
p,n;q,m ⇡ g

2

m

2

a

⇢

⇢e cos(ma�t) (5)

+
p
⇢p⇢q cos[ma(�t��L)]

sin ypq
ypq
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⇢e⇢p cos[ma(�t� Lp)]

sin yep
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�p
⇢e⇢q cos[ma(�t+ Lq)]

sin yeq
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,

where �t = tp,n� tq,m, �L ⌘ Lp�Lq, yij = |xi�xj |/lc.
lc ⌘ 1/(mav0) denotes the de Broglie coherence length
for ALDM. For pulsar-related terms, the sinc function
(sin yij/yij) results from an average over di↵erent direc-
tions and measures the strength of spatial correlations.
The spatial correlation degrades when the pulsar-pulsar
and Earth-pulsar distances are far beyond the coherence
length or yij � 1. The distance dependence in cosines is
related to the light travel time between two objects.
It is instructive to compare the ALDM-induced sig-

nal in Eq. (5) with the response of PTAs to GWs. The
time di↵erence measured by PTAs can also be put as
the Earth and pulsar terms. For isotropic SGWBs, the
pulsar-related terms are suppressed in the large-antenna
limit, i.e. !Lp � 1, due to degrading spatial correlation,
and the sensitivity is dominated by the Earth-Earth term
that features the quadrupolar spatial correlations among
pulsars [31]. As a comparison, the Earth-Earth (⇢e) term
in Eq. (5) features monopolar correlations, and cannot be
distinguished from correlated noise universal for pulsars.
Instead, the pulsar-related terms play a more decisive
role for characterizing ALDM. Because of the lc depen-
dence of the sinc functions, spatial correlations degrade
more slowly with distance than those do for SGWBs. The
ALDM signal then can be greatly enhanced for pulsars
near the galactic center, where the DM halo is denser,
similar to PTA detection of the ALDM-induced periodic
oscillations in gravitational potentials [4]. This strongly
motivates the incorporation of pulsars more broadly dis-
tributed in our galaxy for both PPAs and PTAs, in par-
ticular the ones near the galactic center, in contrast to
GW detection.

PULSAR CORRELATIONS

To see how pulsar auto- and cross-correlations improve
the ALDM detectability, let us consider a simple case
where the background is dominated by white noises n.
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Comparison SGWB ALDM (PTAs and PPAs)

Earth-term 
correlation quadrupolar correlation monopolar correlation (universal)

pulsar-term 
correlation

pulsar-terms suppressed in  
L≫1/# limit; spatial corre-

lations rapidly degrade

spatial correlations degrade slower 
(L≫lc≫1/ma); encode DM density 

dep.; enhanced at galactic center



• Both auto-correlation of individual pulsars and cross-correlation among different pulsars contribute  

• Cross-correlation highly valuable to distinguish spatial correlated and uncorrelated contributions 
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where the background is dominated by white noises n.
The hypothesized data d = s + n then follows a multi-
variate Gaussian distribution with zero mean and a co-
variance matrix ⌃ = ⌃

(s) + ⌃

(n), where the noise con-

tribution is ⌃(n)
p,n;q,m = �p �p,q �n,m, with �p denoting the

variance of noise. The likelihood function for the stochas-
tic ALDM signal model is

L(✓|d) = 1
p

det[2⇡⌃]
exp



�1

2
d

T ·⌃�1 · d
�

, (6)

where d denotes the measured PA with the initial PA
contribution subtracted and ✓ ⌘ {g,ma} are the model
parameters (more details provided in the supplementary
material). Then given a mass ma, the exclusion limit for
the coupling g is set by a test statistics [30]

q(g,ma) ⌘ 2[lnL(ĝ,ma|d)� lnL(g,ma|d)] , (7)

where ĝ maximizes L(g,ma|d). With q(g,ma) = 0 for
g < ĝ, the upper limit at 95% C.L. g

95%

is given by
q(g

95%

,ma) = 2.71.
The projected sensitivities are estimated using Asimov

form of the test statistics, by averaging di↵erent noise
realizations. Expanding the test statistics to the second
order of ⌃(s) in the small-signal limit, we obtain [32]

hqi ⇡ 1

2

X

p,q

1

�p�q
Tr
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(s)
pq ⌃

(s)
qp

⌘

, (8)

where with a null-signal assumption we have ĝ = 0. The
projected 95% C.L. upper limit of g is set by hqi = 2.71.

Note that the test statistics considered above receives
contributions from both auto-correlation of individual
pulsars (⌃(s)

pp ) and cross-correlation of di↵erent pulsars

(⌃(s)
pq with p 6= q). The auto-correlation is significant

when the noise variances are known well enough [33],
while the cross-correlation can distinguish a signal with
long-range spatial correlations, such as the one caused
by ALDM, from the noises either non-correlated or corre-
lated in di↵erent patterns. Especially, if the backgrounds
of unknown origins exist and share similar signatures of
auto-correlation of the signal, the cross-correlation may
become highly valuable. As a concrete example, let us
consider the sinusoidal trends of pulsar PA rotation with
a period of one to two years reported by NANOGrav [16].
As shown in Fig. 1, the auto-correlation of the data for
two individual MSPs both indicates an anomalous peak
in the khaki region, which may be explained by ALDM
physics with ma ⇡ 7⇥10�23 eV. But, by evaluating their
cross-correlation, we see null excess at this ma. So the
NANOGrav observations are very unlikely to be related
to ALDM. This demonstrates the essential role played by
the cross-correlation.

For the sake of completeness, we consider both auto-
and cross-correlations of pulsars in the remainder of the
paper, but in a comparative manner. Below let us get a

FIG. 1: g95% obtained from the NANOGrav data of J1918-
0642 (820MHz) and J1909-3744 (820MHz) [16]. The blue and
green lines are derived from pulsar auto-correlations, while the
red line is based on their cross-correlation.

picture on their roles in determining the PPA sensitivities
through their contributions to Tr(⌃(s)

⌃

(s)) in Eq. (8).

For the auto-correlation of a pulsar p, the matrix ⌃

(s)
pp

can be decomposed as: ⌃

(s)
pp ⇡ App⌃̂

(s)
pp . The matrix

⌃̂(s)
p,n;p,m = cos[ma(tp,n � tp,m)] encodes temporal cor-

relations of data points, yielding Tr(⌃̂(s)
pp ⌃̂

(s)
pp ) / N

2

p

for the number of data points Np su�ciently large.

Complementary to ⌃̂

(s)
pp , App = (g2/m2

a)[⇢e + ⇢p �
2
p
⇢e⇢p cos(maLp) sin yep/yep] contains the messages on

physical properties of axion, its halo profile and spatial
distribution of pulsars. Relying on the pulsar location,
the ⇢p term could be either dominant over or compara-
ble to the ⇢e term in terms of their contributions to the
trace. The last term of App reflects the Earth-pulsar cor-
relation, and is subject to a suppression when Lp � lc.
Approximately we have
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Notably, the enhancement factor from temporal correla-
tions, namely N

2

p , is not very sensitive to the distribution
of sampled points and hence the data-taking strategy.
For the cross-correlation of two pulsars p and q,

the matrix ⌃

(s)
pq can be decomposed in a similar way,

where the temporal correlations are encoded in two ma-

trixes: ⌃̂(s)
p,n;q,m = cos[ma(tp,n � tq,m)] and ⌃̂0(s)

p,n;q,m =
sin[ma(tp,n � tq,m)]. Approximately, we have
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As in the case of auto-correlations, an enhancement fac-
tor (⇠ NpNq) appears due to temporal correlations re-
gardless of the distribution of sampled points. For spatial

auto-corr v.s. cross-corr

Likelihood function:                                                                     , d = s + n (white),  
Exclusion TS on the coupling g:
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The hypothesized data d = s + n then follows a multi-
variate Gaussian distribution with zero mean and a co-
variance matrix ⌃ = ⌃

(s) + ⌃

(n), where the noise con-

tribution is ⌃(n)
p,n;q,m = �p �p,q �n,m, with �p denoting the

variance of noise. The likelihood function for the data d

given the ALDM signal model is

L(✓|d) = 1
p

det[2⇡⌃]
exp



�1

2
d

T ·⌃�1 · d
�

, (6)

where ✓ ⌘ {g,ma,✓
in} is a vector of model parameters.

✓in = (✓in
1

, ..., ✓

in

N ) denote intrinsic PAs of pulsars. Their
values are usually unknown, so we will marginalize them
by taking L(g,ma|d) =

R L(✓|d)⇡(✓in) d✓in, with a flat
prior ⇡(✓in). Then given a mass ma, the exclusion limit
for the coupling g is set by a test statistics [30]

q(g,ma) ⌘ 2[lnL(ĝ,ma|d)� lnL(g,ma|d)] , (7)

where ĝ maximizes L(g,ma|d). With q(g,ma) = 0 for
g < ĝ, the upper limit at 95% C.L. g

95%

is given by
q(g

95%

,ma) = 2.71.
The projected sensitivities are estimated using Asimov

form of the test statistics, by averaging over di↵erent
noise realizations. Expanding the test statistics to the
second order of ⌃(s) in the small-signal limit, we then
obtain [32]
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1
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(s)
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, (8)

where with a null-signal assumption we have ĝ = 0. The
projected 95% C.L. upper limit of g is set by hqi = 2.71.

Note that the test statistics considered above re-
ceives contributions from both auto-correlation of in-
dividual pulsars (⌃(s)

pp ) and cross-correlation of di↵er-

ent pulsars (⌃(s)
pq with p 6= q). The auto-correlation

is significant when the noise variances are known well
enough [33]. However, if backgrounds of unknown origins
exist and share similar signatures of the signal, the cross-
correlations become highly valuable. They can distin-
guish a signal with long-range spatial correlations, such
as the one caused by ALDM, from the noises either non-
correlated or correlated in di↵erent patterns. As a con-
crete example, let us consider the sinusoidal trends of
pulsar PA rotation with a period of one to two years re-
ported by NANOGrav [16]. As shown in Fig. 1, the auto-
correlation of the data for two MSPs indicates anomalous
peaks around the same period, which may be explained
by ALDM physics with ma ⇡ 7⇥10�23 eV. But, by eval-
uating their cross-correlation, we see null excess at this
ma. So the NANOGrav observations are unlikely to be
related to ALDM. This demonstrates the essential role
played by cross-correlations.

For the sake of completeness, we consider both auto-
and cross-correlations of pulsars in the remainder of the
paper, but in a comparative manner. Below let us get a

FIG. 1: g95% obtained from the NANOGrav data of J1918-
0642 (820MHz) and J1909-3744 (820MHz) [16]. The blue and
green lines are derived from pulsar auto-correlations, while the
red line is based on their cross-correlation.

picture on their roles in determining the PPA sensitivities
through their contributions to Tr(⌃(s)

⌃

(s)) in Eq. (8).

For the auto-correlation of a pulsar p, the matrix ⌃

(s)
pp

can be decomposed as: ⌃

(s)
pp ⇡ App⌃̂

(s)
pp . The matrix

⌃̂(s)
p,n;p,m = cos[ma(tp,n � tp,m)] encodes temporal cor-

relations of data points, yielding Tr(⌃̂(s)
pp ⌃̂

(s)
pp ) / N

2

p

for the number of data points Np su�ciently large.

Complementary to ⌃̂

(s)
pp , App = (g2/m2

a)[⇢e + ⇢p �
2
p
⇢e⇢p cos(maLp) sin yep/yep] contains the messages on

physical properties of axion, its halo profile and spatial
distribution of pulsars. Relying on the pulsar location,
the ⇢p term could be either dominant over or compara-
ble to the ⇢e term in terms of their contributions to the
trace. The last term of App reflects the Earth-pulsar cor-
relation, and is subject to a suppression when Lp � lc.
Approximately we have
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Notably, the enhancement factor from temporal correla-
tions, namely N

2

p , is not very sensitive to the distribution
of sampled points and hence the data-taking strategy.
For cross-correlation of two pulsars p and q, the matrix

⌃
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As in the case of auto-correlations, an enhancement fac-
tor (⇠ NpNq) appears due to temporal correlations re-
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PULSAR CORRELATIONS

To see how pulsar auto- and cross-correlations improve
the ALDM detectability, let us consider a simple case
where the background is dominated by white noises n.
The hypothesized data d = s + n then follows a multi-
variate Gaussian distribution with zero mean and a co-
variance matrix ⌃ = ⌃

(s) + ⌃

(n), where the noise con-

tribution is ⌃(n)
p,n;q,m = �p �p,q �n,m, with �p denoting the

variance of noise for a given pulsar. The likelihood func-
tion for the data d given the ALDM signal model is

L(✓|d) = 1
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det[2⇡⌃]
exp
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where ✓ ⌘ {g,ma,✓
in} is a vector of model parameters.

✓in = (✓in
1

, ..., ✓

in

N ) denote intrinsic PAs of pulsars. Their
values are usually unknown, so we will marginalize them
by taking L(g,ma|d) =

R L(✓|d)⇡(✓in) d✓in, with a flat
p.d.f. ⇡(✓in). Then given a mass ma, the exclusion limit
for the coupling g is set by a test statistics [21]

q(g,ma) ⌘ 2[lnL(ĝ,ma|d)� lnL(g,ma|d)] , (8)

where ĝ maximizes L(g,ma|d). With q(g,ma) = 0 for
g < ĝ, the upper limit at 95% C.L. g

95%

is given by
q(g

95%

,ma) = 2.71.
The projected sensitivities are estimated using Asimov

form of the test statistics, by averaging over di↵erent
noise realizations. Expanding the test statistics to the
second order of ⌃(s) in the small-signal limit, we then
obtain [25]
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where with a null-signal assumption we have ĝ = 0. The
projected 95% C.L. upper limit of g is set by hqi = 2.71.

Note that the test statistics considered above receives
contributions from both auto-correlation of individual
pulsars (⌃(s)

pp ) and cross-correlation of di↵erent pulsars

(⌃(s)
pq with p 6= q). The auto-correlation is useful in iden-

tifying the signal only if backgrounds of unknown origins
do not share similar oscillating signatures. However, if
such backgrounds exist, cross-correlations become highly
valuable for distinguishing a signal with long-range spa-
tial correlations, such as the one caused by ALDM, from
the noises either non-correlated or correlated in di↵er-
ent patterns. As an explicit example, let us consider
the sinusoidal trends of pulsar PA rotation with a pe-
riod of one to two years reported by NANOGrav [13].
As shown in Fig. 1, the auto-correlation of the data for
PSRs J1918-0642 and J1909-3744 indicates anomalous
peaks around the same period, which may be explained
by ALDM physics with ma ⇡ 7⇥10�23 eV. But, by eval-
uating the cross-correlation of these two MSPs, we see

null excess at this ma. So the NANOGrav observations
are unlikely to be related to ALDM. This demonstrates
the essential role played by cross-correlations.

FIG. 1: g95% obtained from the NANOGrav data of J1918-
0642 (820MHz) and J1909-3744 (820MHz) [13]. The blue and
green lines are derived from pulsar auto-correlations, while the
red line is based on their cross-correlation.

For the sake of completeness, we consider both auto-
and cross-correlations of pulsars in the remainder of the
paper, but in a comparative manner. Below let us get a
picture on their roles in determining the PPA sensitivities
through their contributions to Tr(⌃(s)

⌃

(s)) in Eq. (9).

For the auto-correlation of a pulsar p, the matrix ⌃
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can be decomposed as
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the messages on physical properties of axion, its halo
profile and spatial distribution of pulsars. Relying on
the pulsar location, the pulsar-pulsar (⇢p) term could be
either dominant over or comparable to the Earth-Earth
(⇢e) term in terms of their contributions to the trace. The
last term of App reflects the Earth-pulsar correlation, and
is subject to a suppression when Lp � lc. Approximately
we have
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Notably, the enhancement factor from temporal correla-
tions, namely N

2

p , is not very sensitive to the distribution
of sampled points and hence the data-taking strategy.
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tial correlations, such as the one caused by ALDM, from
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riod of one to two years reported by NANOGrav [13].
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red line is based on their cross-correlation.
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Notably, the enhancement factor from temporal correla-
tions, namely N
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p , is not very sensitive to the distribution
of sampled points and hence the data-taking strategy.
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where the background is dominated by white noises n.
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in} is a vector of model parameters.
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N ) denote intrinsic PAs of pulsars. Their
values are usually unknown, so we will marginalize them
by taking L(g,ma|d) =

R L(✓|d)⇡(✓in) d✓in, with a flat
p.d.f. ⇡(✓in). Then given a mass ma, the exclusion limit
for the coupling g is set by a test statistics [28]

q(g,ma) ⌘ 2[lnL(ĝ,ma|d)� lnL(g,ma|d)] , (8)

where ĝ maximizes L(g,ma|d). With q(g,ma) = 0 for
g < ĝ, the upper limit at 95% C.L. g

95%

is given by
q(g

95%

,ma) = 2.71.
The projected sensitivities are estimated using Asimov

form of the test statistics, by averaging over di↵erent
noise realizations. Expanding the test statistics to the
second order of ⌃(s) in the small-signal limit, we then
obtain [32]
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where with a null-signal assumption we have ĝ = 0. The
projected 95% C.L. upper limit of g is set by hqi = 2.71.

Note that the test statistics considered above re-
ceives contributions from both auto-correlation of in-
dividual pulsars (⌃(s)

pp ) and cross-correlation of di↵er-

ent pulsars (⌃(s)
pq with p 6= q). The auto-correlation

is significant when the noise variances are known well
enough [33]. However, if backgrounds of unknown ori-
gins exist and share similar signatures of the signal, the
cross-correlations become highly valuable. They can dis-
tinguish a signal with long-range spatial correlations,
such as the one caused by ALDM, from the noises ei-
ther non-correlated or correlated in di↵erent patterns.
As a concrete example, let us consider the sinusoidal
trends of pulsar PA rotation with a period of one to two
years reported by NANOGrav [16]. As shown in Fig. 1,
the auto-correlation of the data for PSRs J1918-0642
and J1909-3744 indicates anomalous peaks around the
same period, which may be explained by ALDM physics
with ma ⇡ 7 ⇥ 10�23 eV. But, by evaluating the cross-
correlation of these two MSPs, we see null excess at this

ma. So the NANOGrav observations are unlikely to be
related to ALDM. This demonstrates the essential role
played by cross-correlations.

FIG. 1: g95% obtained from the NANOGrav data of J1918-
0642 (820MHz) and J1909-3744 (820MHz) [16]. The blue and
green lines are derived from pulsar auto-correlations, while the
red line is based on their cross-correlation.

For the sake of completeness, we consider both auto-
and cross-correlations of pulsars in the remainder of the
paper, but in a comparative manner. Below let us get a
picture on their roles in determining the PPA sensitivities
through their contributions to Tr(⌃(s)
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the messages on physical properties of axion, its halo pro-
file and spatial distribution of pulsars. Relying on the
pulsar location, the ⇢p term could be either dominant
over or comparable to the ⇢e term in terms of their con-
tributions to the trace. The last term of App reflects the
Earth-pulsar correlation, and is subject to a suppression
when Lp � lc. Approximately we have
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Notably, the enhancement factor from temporal correla-
tions, namely N

2

p , is not very sensitive to the distribution
of sampled points and hence the data-taking strategy.
For cross-correlation of two pulsars p and q, the matrix
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For cross-correlation of two pulsars p and q, the matrix
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Now the temporal correlations are encoded in ⌃̂(s)
p,n;q,m =

cos[ma(tp,n � tq,m)] and ⌃̂0(s)
p,n;q,m = sin[ma(tp,n � tq,m)],

while the spatial correlations are manifested by their co-
e�cients. Approximately, we have

Tr
⇣

⌃

(s)
pq ⌃

(s)
pq

⌘

⇠ g4

m4
a
NpNq

h

⇢

2

e + ⇢p⇢q
sin

2 ypq

y2
pq

+2⇢e
p
⇢p⇢q cos(ma�L) sin ypq

ypq
+ f(yep, yeq)

i

. (13)

As in the case of auto-correlations, an enhancement fac-
tor (⇠ NpNq) appears due to temporal correlations re-
gardless of the distribution of sampled points. For spatial
correlation, the universal cross-correlation of the Earth
terms (⇠ ⇢

2

e) always contributes. But, the most interest-
ing contribution is from the ⇢p⇢q term which exclusively
encodes the cross-correlation of physics around two pul-
sars, e.g. ⇢p and ⇢q, and hence distinguishes itself from
others by nature. As one of the core observables of PPAs,
this term can greatly enhance the detection e�ciency es-
pecially for pulsars around the galactic center and with
the separation not considerably bigger than the axion
coherence length, namely �x/lc <

p
⇢p⇢q/⇢e.

As it happens to the GW detections with PTAs, the
uncertainty of pulsar distance may significantly impact
the sensitivity of PPAs. In the former case, this un-
certainty makes the phase of pulsar-related terms un-
predictable, and the current sensitivities are dominated
by the Earth term [26, 27]. For PPAs, this uncertainty
can easily cause a rapid oscillation of the Earth-pulsar
terms in Eqs. (11) and (13) and hence eliminates their
contributions. However, there is no such oscillation for
the ⇢p⇢q term in Eq. (13), for which the distance uncer-
tainty enters only through the sinc function. Below we
will marginalize the distance uncertainty for evaluating
hqi. Currently, the pulsar distance is inferred mostly from
the observed dispersion measure, where the uncertainty
may reach a level ⇠ 100%. Model-independent measure-
ments (e.g. VLBI astrometry) can push the distance er-
ror down to ⇠ 20%, but only for dozens of MSPs [28].
The situation may be greatly improved in the upcoming
FAST/SKA era [29]. Even for MSPs around the galac-
tic center, a precision ⇠ 20% may be achieved by using
timing parallax methods [30].

PROJECTED SENSITIVITIES OF PPAS

Below we will demonstrate the projected sensitivity
of PPAs to detect ultralight ALDM. As counterparts of
PTAs at di↵erent stages, three PPA scenarios will be
considered, including

• Near PPA (NPPA): 100 MSPs distributed around
the Earth, which we take as the observed MSPs in
the ATNF Pulsar Catalogue [31] with 0.50 kpc 
Lp  1.52 kpc. Each pulsar has Np = 100 data
points with a constant time separation over Tp =
10 years. The noise variance is assumed to be
�p = (1 degree)2, typical for the current PA mea-
surements from PTAs [12].

• Far PPA (FPPA): 100 MSPs randomly but uni-
formly distributed within a (1.0 kpc)3 cube around
galactic center, i.e, the bulge area. Np, Tp and �p

for each pulsar are assumed the same as above.

• Optimal PPA (OPPA): 1000 MSPs randomly but
uniformly distributed within a (2.2 kpc)3 cube (to
ensure the same pulsar density as that of FPPA)
around galactic center. Each pulsar has Np = 260
(⇡ 10 ⇥ 365days/14days) data points. Tp and �p

are assumed the same as above.

Note that these scenarios may not be fully realistic, but
their performances can serve as inputs for optimizing
later PTA+PPA operations.
Another input is the galactic density profile of ultra-

light ALDM. It is known that ALDM can form a cored
soliton-like structure in its halo due to quantum pres-
sure, at a distance from the center r . lc [32]. But, a
full simulation for the overall profile of halo with various
ma values and relic-abundance shares in DM remains ab-
sent in literatures. So we simply model this halo with a
soliton+NFW profile [33] in the analysis, namely

⇢(r) = ⇥
(

0.019( ma

ma,0
)�2( lc

1kpc

)�4

M�pc�3

, for r < lc.

⇢0

r/RH(1+r/RH)

2 , for r > lc .

(14)
Here ma,0 = 10�22eV is a reference ma value that the
core profile is mostly reliable. ⇢

0

⇡ 0.014M�pc�3 and
RH = 16.1kpc are NFW parameters normalized with the
local DM density near the Earth [34].  = ⌦a/⌦DM

represents the relic abundance of ALDM, which is con-
siderably constrained by the CMB anisotropies for ma .
10�24 eV [35].
The projected g

95%

limits as a function of ma are dis-
played in Fig. 2. For each of the three PPA scenarios, we
present the constraints from auto- and cross-correlation
separately, in order to highlight their respective roles in
detection.1 For comparison, we also include the limits set
by the CAST [36] and SN1987A measurements [37] that
are insensitive to the ma values, and the CMB limits on

1
Note that we impose constraints on ALDM for a wide range

of ma through its overall contribution. For detection, properly

estimating the oscillation frequency when ma ⌧ 1/Tp or ma �
Np/Tp is non-trivial.

• Earth-terms cross-correlations (1st) universal 
• Pulsar-terms cross-correlations (2nd) dominate 

for pulsars around galactic center

(small signal limit; λ noise variance)

Asimov form of exclusion TS for projection: averaging different data realizations under the 
background only assumption

hqi = Tr
⇥
B(⌃�1 �B�1)

⇤
+ ln det⌃/ ln detB+ ...



✦ Three PPA scenarios (different stage of PTAs)  

✦ Galactic ALDM density profile: soliton formed by 
quantum pressure (r < lc,             ) + NFW (r > lc); 
CMB constraints on relic abundance imposed   

✦ Pulsar distance uncertainty (~20%) marginalized    
in constraints estimate 
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and finally increase. The cross-correlation limits are typ-
ically stronger than the auto-correlation ones, except in
the large ma region for FPPA.

FIG. 2: Projected g95% with NPPA, FPPA and OPPA,
based on auto- and cross-correlations of pulsars. Segments
of the curves are thickened to highlight the region of 1/Tp <
ma < Np/Tp, where ma can be inferred from discrete Fourier
analysis. The blue and orange regions are excluded by the
CAST [44] and SN1987A measurements [45] that are insen-
sitive to the ma values. The green is excluded by the CMB
measurements of isotropic cosmological birefringence [46, 47],
which is significant for ma . 10�27eV where ALPs behave
more like dark energy.

Consider NPPA first for details. For ma & 10�24eV,
NPPA locates in the NFW halo and hence ⇢p ⇠ ⇢e inde-
pendent of ma. The g

95%

value is essentially determined
by the (⇢e + ⇢p)2 terms in Eq. (11) and the Earth (⇢2e)
term in Eq. (13). So we approximately have g

95%

⇠
ma �

1/2
N

�1/2
p ⇢

�1/2
e N�1/4 for auto-correlation and one

enhanced by N�1/4 for cross-correlation. The ALDM
around the Earth can induce similar oscillations in CMB
polarization also. But the constraint is weaker [48]. For
10�26 . ma . 10�24eV, the ALDM soliton encompasses
NPPA, and the ma dependence in g

4

/m

4

a is cancelled by
that in the soliton profile. So g

95%

is approximately flat
except a small decrease at ma ⇠ 10�25eV due to the
CMB constraints on  [43]. As ma falls below 10�26eV,
the Earth-pulsar terms yield a large cancellation. The
g

95%

limits get weakened as / m

�1

a . Compared to NPPA,
FPPA benefits from soliton-enhanced ⇢p. The limit is sig-
nificantly improved forma ⇠ 10�22 eV due to a large con-
trast of DM density ⇢p/⇢e ⇠ 105. Above ma ⇠ 10�21eV,
the cross-correlation limit degrades with decreasing co-
herence length lc and approaches that of NPPA. OPPA
benefits from the increased N and Np. The enhance-
ment from N is most significant for intermediate ma

when most MSPs are spatially well-correlated. Given
g

95%

/ �

1/2, the limits could be one order stronger if
� ⇠ (0.1deg)2 can be reached in the future. Apparently,
the projected PPA limits form a great complementarity
with the existing bounds.

SUMMARY AND OUTLOOK

In this letter we propose the development of PPAs with
the same data acquired for PTAs, and demonstrate their
physical potential using the detection of ultralight ALDM
as an example. Two important directions for future
explorations can be immediately seen. Firstly, we can
cross-correlate PPAs and PTAs to further strengthen the
ALDM detectability, given that the periodic oscillations
in PA rotation have the same origin as the oscillations
in gravitational potentials [3–5]. Secondly, PPAs provide
a new tool for exploring fundamental physics. To fully
resolve the physics targets such as new parity-violating
origins of cosmic birefringence, it is valuable to synergize
PPAs with other experimental/observational tools to im-
prove the capability to distinguish di↵erent scenarios. We
leave these explorations to a later work.
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A. Noise for PA Measurements

The measured PA for pulsar light can be manifested
as [13],

PA = PA
ALDM

+ PA
source

+ PA
FR

+PA
instr

+ PA
noise

+ PA
jitter

. (15)

Here PA
ALDM

represents the signal of ALDM. PA
source

denotes variations due to changes in orientation of the
pulsar or its magnetosphere. PA

FR

quantifies Faraday
rotation in the interstellar medium and Earth’s iono-
sphere. PA

instr

is related to a conversion of absolute PA
on the sky to that measured in the instrumental frame
by referring to a calibrator pulsar (or other bright po-
larized sources). PA

noise

denotes the radiometer noise
that is inversely proportional to the signal-to-noise ratio
(SNR). PA

jitter

is from jitter noise unique to pulsars. It
is related to a stochastic variation of single pulse ampli-
tude and phase due to activities in the magnetosphere
of neutron stars [13, 29, 30], and is independent of the
SNR. The jitter e↵ects can be reduced by considering
average polarization profile, namely the average of a suf-
ficiently large number of pulses. The variance of jitter

(solar axions)  

(SN axions)  

(isotropic cosmic 
birefringence)  

PPA projected sensitivity to ALDM

13

NPPA: 100 MSPs around 1kpc (current PTAs) 
FPPA: 100 MSPs in galactic bulge (FAST/SKA era) 
OPPA: 100 MSPs following ATNF (FAST/SKA era)

⇢c / m2
a

• Cross-correlation limits are typically stronger than auto-correlation ones 
• As ma decreases, the limit decreases (fuzzy DM), stay flat and increases 
• Projected PPA limits form a great complementarity with the existing bounds   
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• PTA signal: temporal oscillation of scalar field induces temporal oscillating gravitational 
potential and then changes the pulse time of arrival (TOA)
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3 E↵ect on the pulsar timing

The time-dependent oscillations (2.9) of the metric induce a time-dependent fre-

quency shift and a time delay for any propagating signal. Such a delay, in principle,

can be captured in the pulsar timing experiments. For this one detects the pulse

arrival times for a set of nearby millisecond pulsars, for which these times in the

laboratory frame can be well modelled. The main e↵ects that contribute to the vari-

ation of signal arrival times are the motion of the laboratory frame with respect to

the Solar System barycentre, the peculiar motion of the pulsar, the dispersion by the

interstellar medium, and the intrinsic variation of the pulsar period (cf. [8]). After

all these e↵ects are taken into account, the residual variation of the arrival times can

be attributed to the e↵ect of propagation in a time-dependent metric. In particular,

this method is employed for gravitational wave search (see, e.g., [9] and references

therein).

Let us estimate the time-dependent part of the timing residuals induced by the

time variation (2.9) of the metric in the case when the ultralight scalar field is the

major component of the galactic dark matter halo. It is useful to express the change

in the arrival time of the pulse at the time t as an integral of the relative change in

the arrival frequency of the pulse:

�t(t) = �
Z

t

0

⌦(t0)� ⌦0

⌦0
dt

0
. (3.1)

Here ⌦(t) is the pulse arrival frequency at the detector at the moment t, and ⌦0 is the

frequency in the absence of the time variation of the metric, which coincides with the

pulse emission frequency at the pulsar. The frequency shift for a signal propagating

in a non-trivial metric is analogous to the Sachs–Wolfe e↵ect for CMB photons [10].

To the leading order, the relative frequency shift is proportional to the gravitational

potentials  and �. For a signal emitted with frequency ⌦0 at the point xp at the

moment t0 and detected at the point x at the moment t the frequency shift is given

by

⌦(t)� ⌦0

⌦0
=  (x, t)� (xp, t

0)�
Z

t

t

0
n

i

@

i

�
 (x00

, t

00) + �(x00
, t

00)
�
dt

00
, (3.2)

where n

i

is a unit vector in the direction of the signal propagation. The integral is

taken along the signal trajectory x

00 = x

00(t00) in the unperturbed metric. Therefore,

the time of the propagation of the pulse equals t � t

0 = D, the distance to the

pulsar. Most of the pulsars used in the pulsar timing measurements are located at

the distances D & 100 pc � m

�1 from the Solar System [11]. Hence, the integrand

in (3.2) is a fast oscillating function over the integration interval. Since the spatial

variation of the metric occurs on scales of the order of �
dB

, the integral in (3.2)

is suppressed by a factor k/! = v ⇠ 10�3 in comparison with the first two terms,

– 5 –

4

to which the standard Einstein-Hilbert action for the
metric should be added. The � equation of motion is
the Klein-Grodon-Fock Equation: (⇤

g

+ m2)�(x) = 0.
We are interested in a computation of � and the met-
ric g

µ⌫

inside the Galaxy. The metric is approximately
Minkowski plus corrections at the level of 10�6. To good
approximation, � everywhere in the Galaxy oscillates at
an angular frequency mc2/~ (corrections due to the mo-
mentum of the particles and the gravitational potential
are small). The energy-momentum tensor to the lead-
ing order diagonal and its spatial components (pressure)
oscillate at twice the field particle mass. This produces
time-dependent gravitational potentials g

00

= 1 + 2�(t)
and g

ij

= �1 � 2 (t)�
ij

in the metric tensor (in the
Newtonian covariant form) with leading oscillating con-
tributions at a frequency

f =
2mc2

h
⇡ 4.8 ⇥ 10�8

⇣ m

10�22 eV

⌘
Hz . (5)

The amplitude of oscillating parts of the potentials  
and � are a factor of (v/c)2 smaller than the time-
independent parts �

0

= � 
0

⇠ G⇢
SF

�2

dB

, where ⇢
SF

is
the local scalar field dark matter density. For cosmolog-
ically favoured boson masses ⇠ 10�22 eV, the frequency
is fortuitously located in the sensitivity range of PTAs.

As in the case of GWs [39], a pulsar emitting pulses
propagating in a time-dependent metric experiences a
frequency shift �⌫, which is related to timing residuals
[34]

s(t) =

Z
t

0

�⌫

⌫
dt =

 
c

(x
e

)

2⇡f
sin[2⇡ft + 2↵(x

e

)]

� c

(x
p

)

2⇡f
sin


2⇡f

✓
t � d

p

c

◆
+ 2↵(x

p

)

�

+

✓
 + �

2⇡f

◆
O
⇣v
c

⌘
, (6)

where d
p

is the distance to the pulsar and  
c

is the
amplitude of cosine component of the oscillating part of
the energy-momentum tensor. The subsequent terms in
Eq. (6) are suppressed with respect to  

c

by a factor
v/c ' 10�3, and to the leading order the signal s(t) does
not depend on the oscillating part of the potential �.

As one can see in Eq. (6), the dark matter signal also
has “Earth” and “pulsar” terms. Oscillation frequen-
cies at the Earth and at the pulsar are identical, which
makes it analogous to the case of nonevolving continu-
ous GWs [56]. The scalar-field oscillation phases on the
Earth ↵(x

e

) and pulsar ↵(x
p

) generally take di↵erent val-
ues; but they become correlated when the Earth and a
pulsar are located within the coherence de Broglie wave-
length �

dB

.
The amplitude  

c

, which can be e↵ectively probed in
pulsar timing experiments, depends on the local density
of dark matter ⇢

SF

,

 
c

=
G⇢

SF

⇡f2

⇡ 6.1 ⇥ 10�18

⇣ m

10�22 eV

⌘�2

✓
⇢
SF

⇢
0

◆
, (7)

where ⇢
0

= 0.4 GeV cm�3 is the measured local dark
matter density [57–59]. The root-mean-square (rms) am-
plitude of induced pulsar-timing residuals is

�t ⇡ 0.02 ns
⇣ m

10�22 eV

⌘�3

✓
⇢
SF

0.4 GeV cm�3

◆
. (8)

The expected signal amplitude scales strongly with the
boson mass. At 10�22 eV and above, the signal is negli-
gibly small. For mass below 10�23 eV, the induced rms
residuals (& 20 ns) are comparable to current timing pre-
cision for the best pulsars, as we discuss in Sec. III A.

In this work, we assume the Earth term and pulsar
terms have the same amplitude  

c

. This is a reasonable
approximation since most PPTA pulsars are relatively
close (. 1 kpc) to the Earth (see Table I). We discuss
e↵ects of the dark matter density variability in Sec. V.
Under this assumption, Eq. (6) can be written into a
more compact form,

s(t) =
 

c

⇡f
sin(↵

e

� ✓
p

) cos(2⇡ft + ↵
e

+ ✓
p

) , (9)

where we have defined ↵
e

= ↵(x
e

) and ✓
p

= ↵
p

�⇡fd
p

/c
with ↵

p

= ↵(x
p

). Defining ✓
p

this way allows us search-
ing for a single phase parameter per pulsar. One should
note, however, that the parameter pair (↵

e

, ✓
p

) is indis-
tinguishable from (↵

e

± ⇡, ✓
p

± ⇡).

III. PPTA DATA AND NOISE PROPERTIES

A. Observations and timing analysis

Here we provide a brief overview of the data set used
in this work. The data set is available from the CSIRO
pulsar data archive4. The observing systems and data
processing techniques are similar to the first data release
(DR1) as described in Ref. [42]. Table I summarizes
key characteristics of the PPTA data set, including the
median ToA uncertainties, weighted rms values of timing
residuals, data spans and the number of observations.

Our data set consists of observations for 26 pulsars col-
lected between 2004, February 5 and January 31, 2016
using the Parkes telescope. It includes DR1 data that
were acquired between March 2005 and March 2011 for
20 pulsars, along with some earlier data for some pulsars
that were observed in the 20-cm observing band prior
to the o�cial start of the PPTA project. Currently, the
PPTA observes 25 pulsars, with PSR J1732�5049 having
been removed from the pulsar sample in 2011 because we
were unable to obtain high quality data sets for this pul-
sar. The observing cadence is normally once every two to
three weeks. In each session, every pulsar was observed

4 https://doi.org/10.4225/08/5afff8174e9b3
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has “Earth” and “pulsar” terms. Oscillation frequen-
cies at the Earth and at the pulsar are identical, which
makes it analogous to the case of nonevolving continu-
ous GWs [56]. The scalar-field oscillation phases on the
Earth ↵(x
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) and pulsar ↵(x
p

) generally take di↵erent val-
ues; but they become correlated when the Earth and a
pulsar are located within the coherence de Broglie wave-
length �
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.
The amplitude  
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, which can be e↵ectively probed in
pulsar timing experiments, depends on the local density
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where ⇢
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= 0.4 GeV cm�3 is the measured local dark
matter density [57–59]. The root-mean-square (rms) am-
plitude of induced pulsar-timing residuals is
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The expected signal amplitude scales strongly with the
boson mass. At 10�22 eV and above, the signal is negli-
gibly small. For mass below 10�23 eV, the induced rms
residuals (& 20 ns) are comparable to current timing pre-
cision for the best pulsars, as we discuss in Sec. III A.

In this work, we assume the Earth term and pulsar
terms have the same amplitude  

c

. This is a reasonable
approximation since most PPTA pulsars are relatively
close (. 1 kpc) to the Earth (see Table I). We discuss
e↵ects of the dark matter density variability in Sec. V.
Under this assumption, Eq. (6) can be written into a
more compact form,
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note, however, that the parameter pair (↵
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tinguishable from (↵
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p

± ⇡).

III. PPTA DATA AND NOISE PROPERTIES

A. Observations and timing analysis

Here we provide a brief overview of the data set used
in this work. The data set is available from the CSIRO
pulsar data archive4. The observing systems and data
processing techniques are similar to the first data release
(DR1) as described in Ref. [42]. Table I summarizes
key characteristics of the PPTA data set, including the
median ToA uncertainties, weighted rms values of timing
residuals, data spans and the number of observations.

Our data set consists of observations for 26 pulsars col-
lected between 2004, February 5 and January 31, 2016
using the Parkes telescope. It includes DR1 data that
were acquired between March 2005 and March 2011 for
20 pulsars, along with some earlier data for some pulsars
that were observed in the 20-cm observing band prior
to the o�cial start of the PPTA project. Currently, the
PPTA observes 25 pulsars, with PSR J1732�5049 having
been removed from the pulsar sample in 2011 because we
were unable to obtain high quality data sets for this pul-
sar. The observing cadence is normally once every two to
three weeks. In each session, every pulsar was observed

4 https://doi.org/10.4225/08/5afff8174e9b3
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The expected signal amplitude scales strongly with the
boson mass. At 10�22 eV and above, the signal is negli-
gibly small. For mass below 10�23 eV, the induced rms
residuals (& 20 ns) are comparable to current timing pre-
cision for the best pulsars, as we discuss in Sec. III A.

In this work, we assume the Earth term and pulsar
terms have the same amplitude  

c

. This is a reasonable
approximation since most PPTA pulsars are relatively
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A. Observations and timing analysis

Here we provide a brief overview of the data set used
in this work. The data set is available from the CSIRO
pulsar data archive4. The observing systems and data
processing techniques are similar to the first data release
(DR1) as described in Ref. [42]. Table I summarizes
key characteristics of the PPTA data set, including the
median ToA uncertainties, weighted rms values of timing
residuals, data spans and the number of observations.

Our data set consists of observations for 26 pulsars col-
lected between 2004, February 5 and January 31, 2016
using the Parkes telescope. It includes DR1 data that
were acquired between March 2005 and March 2011 for
20 pulsars, along with some earlier data for some pulsars
that were observed in the 20-cm observing band prior
to the o�cial start of the PPTA project. Currently, the
PPTA observes 25 pulsars, with PSR J1732�5049 having
been removed from the pulsar sample in 2011 because we
were unable to obtain high quality data sets for this pul-
sar. The observing cadence is normally once every two to
three weeks. In each session, every pulsar was observed
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FIG. 4. Upper limits on the dark matter density ⇢ in the
Galaxy. The current PPTA upper limits (black solid line) are
shown along with projected limits in the FAST/SKA era (pur-
ple lines, all assuming 10-yr data span): a) 10 pulsars, 14-day
cadence, 30-min integration, b) 100 pulsars, 14-day cadence,
30-min integration, and c) 100 pulsars, 1-day cadence, 2-hours
integration (turbo). The black dashed lines show the dark
matter density in the Halo at 8 kpc (⇢

SF

= 0.4GeV cm�3)
and 2 kpc (⇢

SF

= 3.4GeV cm�3) from the Galactic Center,
assuming NFW profile. The 8 kpc line demonstrates the pre-
dicted dark matter density, applicable to current PPTA pul-
sars and the Earth, while the 2 kpc line applies to pulsars
located at 2 kpc distance from the Galactic Center. For bo-
son masses m . 4 ⇥ 10�23 eV the size of the solitonic core
becomes larger than 2 kpc [29], and the dark matter density
will deviate from the NFW prediction towards higher values
(see text for details).

100 ns level down to below 10 ns [90]. However, it might
be too optimistic to assume a white noise level of 10 ns
because of the so-called jitter noise, which is thought to
be associated with the intrinsic and stochastic variability
in the shape of individual pulses [91]. Such a limitation
implies that the timing precision stops improving for the
brightest pulsars even when better instruments are used.
The level of jitter noise can be approximately estimated
with the following relation [92]

�
J

⇡ 0.2W

r
P

T
int

, (30)

where T
int

is the time of integration, W and P are the
pulse width and pulse period, respectively. Note that
the only way to reduce jitter noise is to increase T

int

. In
comparison, the radiometer noise is given by [90]

�
r

⇡ W

S/N
⇡ WS

sys

S
mean

p
2�fT

int

r
W

P � W
, (31)

where S/N is the pulse profile signal-to-noise ratio, S
sys

is the system-equivalent flux density, S
mean

is the pul-

TABLE IV. White noise for 10 PPTA pulsars in the
FAST/SKA era.

Pulsar Name �
r

(ns) �J (ns) � (ns)
J0437�4715 0.06 50.4 50.4
J1017�7156 4.6 13.7 14.5
J1446�4701 26.0 22.1 34.1
J1545�4550 15.6 36.1 39.3
J1600�3053 2.9 26.6 26.8
J1713+0747 0.8 35.1 35.1
J1744�1134 3.9 41.2 41.4
J1832�0836 3.7 14.2 14.8
J1909�3744 1.2 11.2 11.3
J2241�5236 1.5 15.4 15.5

sar mean flux density and �f is the observing band-
width. We adopt nominal SKA parameters9, S

sys

= 1.8
Jy, �f = 770 MHz and set a fiducial T

int

= 30 minutes.
Table IV lists white noise budgets (�

r

, �
J

and the total
white noise �) expected in the FAST/SKA era for ten
PPTA pulsars that have the lowest value of �. As one
can see, for the SKA, jitter noise will dominate over the
radiometer noise for the majority of bright pulsars. In
order to realistically estimate the PTA sensitivity in the
FAST/SKA era, we use the total white noise given in
Table IV plus the intrinsic spin noise (where appropriate)
with parameters determined from the Bayesian analysis.

Figure 4 shows forecasted upper limits on the density
of FDM in the Galaxy for three cases, all assuming a
data span of ten years. Case a) is a conservative PTA
that includes only ten pulsars as listed in Table IV and an
observing cadence of once every 14 days. Upper limits in
this case are obtained by running full Bayesian analysis
of simulated data. We analytically scale this limit curve
to two more ambitious cases10. We increase the number
of pulsars to 100 in case b), leading to a factor of

p
10 im-

provement. For case c), we further increase the cadence
to once every day and adopt an integration time of two
hours, providing another factor of

p
4 ⇥ 14 improvement.

Case c) might be an interesting option in the SKA era
since small radio telescopes (compared to SKA/FAST),
such as Parkes, can be dedicated for high-cadence and
long integration observations of the brighter pulsars.

As one can see from Fig. 4, we will be able to constrain
the contribution of FDM to the local dark matter density
below 10% for m . 10�23 eV in ten years under the
conservative assumption for SKA sensitivity. However,
it is more challenging for boson masses above 10�22 eV;
we estimate that decade-long observations of hundreds
of pulsars timed at nearly daily cadence with precision
. 20 ns are necessary to place interesting limits.

There are a couple of ways to improve our analy-
sis. First, the coherence between pulsar terms and

9

SKA1 system baseline V2 description https://www.

skatelescope.org/
10

Note that the scaling factor should be a good approximation at

high frequencies where red noise plays a less important role.
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velocity that we assume isotropic distributed. Without loss of generality, we consider cross-
correlating timing residuals between pulsar p and q with their respective local axion density
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Broglie coherence length for ALDM, we obtain the cross-covariance for pulsar timing residuals
after integrating out velocity and random variables marginalized. The cross-covariance of
pulsar timing residuals is

h�t
p,n

�t
q,m

i = (
⇡G

2m3

a

)2
(

⇢2
e

cos(2m
a

�t) + ⇢
p

⇢
q

cos[2m
a

(�t � �L)]

✓

sin y
pq

y
pq

◆

2

� ⇢
p

⇢
e

cos[2m
a

(�t � L
p

)]

✓

sin y
ep

y
ep

◆

2

� ⇢
e

⇢
q

cos[2m
a

(�t + L
q

)]

✓

sin y
eq

y
eq

◆

2

)

=

✓

⇡G

2m3

a

◆

2

X

i,j=0,1

(�1)i+j⇢(x(i)

p

)⇢(x(j)

q

) cos[2m
a

(t(i)
p,n

� t(j)
q,m

)]

 

sin y(ij)
pq

y(ij)
pq

!

2

,

(2.17)

where y(ij)
pq

= m
a

v
0

|x(i)

p

� x
(j)

q

|.
Letting p = q for the same pulsar, the auto-covariance then becomes
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It is notable that here the auto-covariance can still greatly enhanced by local axion den-
sity when pulsar is located close the center of galaxy, that is similar to [7]. In such a
case ⇢
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, the auto-covariance is then dominated by pulsar-pulsar term and scales as
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2.3 Pulsar Polarization

Stokes Vectors Fast rotating pulsars emits electromagnetic (EM) pulse with a highly
regular time interval. Each pulse received by telescope at time t is analyzed to measure its
intensity and polarization state. Since the EM wave fast oscillating within each pulse, the
polarization intensity of the pulse for each direction or helicity is measured by taking time
average of squared EM wave projected on certain direction
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It is notable that here the auto-covariance can still greatly enhanced by local axion den-
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2.3 Pulsar Polarization

Stokes Vectors Fast rotating pulsars emits electromagnetic (EM) pulse with a highly
regular time interval. Each pulse received by telescope at time t is analyzed to measure its
intensity and polarization state. Since the EM wave fast oscillating within each pulse, the
polarization intensity of the pulse for each direction or helicity is measured by taking time
average of squared EM wave projected on certain direction

E
ˆ

n

= hRe (n̂ · E)2i ,

– 5 –

earth receive the PA rotation induced by ALDM with respect to average signal at data point
t
n

is [12, 13]
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The integral in eq. (2.21) results in the PA rotation only depends on two endpoints, that is
pulsar and earth terms. Using the ansatz in eq. (2.1), we evaluate the integral in eq. (2.21)
to obtain
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.

The cross-covariance for PA rotation is then determined by spacial distribution of pulsars
and time interval given by [13]
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Di↵erent from cross-covariance of ALDM induced timing residuals (2.17), the cross-covariance
of ALDM induced PA residuals is proportional to the first order of local axion density and the
first order of sinc functions, which is due to the fact that PA residuals contains one random
phase. The ALDM induced PA residuals oscillates with a frequency m

a

that is half of the
ALDM induced timing residuals. The auto-covariance of PA residuals is
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Such observation can be also enhanced by axion density if pulsar locates near galactic center
where the local axion density is much larger than around earth, the auto-covariance is then

scales as ( g

ma
)2⇢
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�t) + O(
q

⇢e
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).

2.4 Timing and PA residual correlations

The axion field produce timing residual in PTAs (2.9) and PA residuals in PPAs (2.22).
Given the axion mass m

a

and the coupling constant g, such ALDM induced residuals should
be universal to all pulsars. While the intrinsic pulsar noise for TOAs and PAs respectively
are unlikely to correlate with each other. This motives us to correlate pulsar timing residuals
and pulsar PA residuals among di↵erent pulsars.
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earth receive the PA rotation induced by ALDM with respect to average signal at data point
t
n

is [12, 13]
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The integral in eq. (2.21) results in the PA rotation only depends on two endpoints, that is
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to obtain

�✓
p,n

=
g

m
a

Z

↵
v

(

q

⇢
p

f
p

(v) cos[#(x
p

, t � L
p

)] �
p

⇢
e

f
e

(v) cos[#(x
e

, t)]

)

d3v, (2.22)

where the phase #(x, t) = m
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.

The cross-covariance for PA rotation is then determined by spacial distribution of pulsars
and time interval given by [13]
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Di↵erent from cross-covariance of ALDM induced timing residuals (2.17), the cross-covariance
of ALDM induced PA residuals is proportional to the first order of local axion density and the
first order of sinc functions, which is due to the fact that PA residuals contains one random
phase. The ALDM induced PA residuals oscillates with a frequency m

a

that is half of the
ALDM induced timing residuals. The auto-covariance of PA residuals is
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Such observation can be also enhanced by axion density if pulsar locates near galactic center
where the local axion density is much larger than around earth, the auto-covariance is then

scales as ( g

ma
)2⇢
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).

2.4 Timing and PA residual correlations

The axion field produce timing residual in PTAs (2.9) and PA residuals in PPAs (2.22).
Given the axion mass m

a

and the coupling constant g, such ALDM induced residuals should
be universal to all pulsars. While the intrinsic pulsar noise for TOAs and PAs respectively
are unlikely to correlate with each other. This motives us to correlate pulsar timing residuals
and pulsar PA residuals among di↵erent pulsars.
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• Cross-correlation of TOA and PA rotation  

Second order correlations The lowest order of the cross correlations is the product
between �t
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, which is given by
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The expectation value of such product involves an integrand hsin['
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)] cos[#
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)]i
that random variables shall be marginalized, in which we can recognize that such integrand
leaves one random phase and therefore vanishes after marginalizing random distributions.
Similarly the left integrand contain the combinations of sines and cosines and vanish due to
additional random phase. This leads to all second order of such correlation vanishes, that is
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i = 0. (2.26)

This result can be beforehand estimated, since PA residuals contains one random phase and
timing residuals contains two, where the product always leave addition random phase term
cos �

v

that vanishes after marginalizing random distributions.

Third order correlations Due to the fact that there is one independent random phase
in PA residuals and two in timing residuals, we consider the form of h�✓
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would cancel the random phase. The correlation of the third order is
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(2.27)
In order to figure out the expectation value in (2.27), we consider the following combinations
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Denoting the delta function �(v
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) ⌘ �
(123)

1, we have the following expectation
values that contains delta functions The covariance is therefore given by where �t

nl

⌘ t
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,
1After taking average of random variables in (2.28), the remaining delta functions are either �(v1�v3)�(v2�

v0
3) or �(v2�v3)�(v1�v0

3). We found that the integrating out velocities in (2.27) does not change the result.
Hence we just use factor of delta function �(v1 � v3)�(v2 � v0

3) for simplicity.
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due to non-cancellation of the random phases
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covariance can be written in a compact way
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3 Statistical Analysis

3.1 Modeling the Data

TOAs Following the modeling of TOAs in [14, 15], we manifest the measured TOAs as

�t = �t
ALDM

+ �t
white

+ �t
red

+ �t
SSE

. (3.1)

Here, �t
ALDM

is the ALDM induced time residual signals in eq. (2.9) that we are interested
in.

The time uncorrelated white noise �t
white

described by three parameters, that is EQUAD,
ECORR and EFAC [16]. The quadratic correction EQUAD, together with a multiplication fac-
tor EFAC characterizes template matching errors, that comes from radiometer noise [17]. Such

template matching error leads to the TOA uncertainties (�) scaled as � ! EFAC
p

�2 + EQUAD2.
ECORR characterizes a noise that is uncorrelated among di↵erent time epochs while correlated
within the same time epoch of given pulse obtained at di↵erent frequencies measured simul-
taneously. Such correlated noise among di↵erent frequency bins could be jitter noise [14, 18],
and can be suppressed by averaging over a number of pulses.

The time correlated red noise �t
red

has varies origins. Such as spin noise, pulse profile
changes, imperfectly modeled dispersion measure variations [? ]. The red noise is considered

as a stationary Gaussian process with a power spectrum of power law P (f) = A2

red

⇣

f

f

yr

⌘

�

red

,

where A
red

is the amplitude of the red noise, �
red

is the spectral index and f
yr

= 1yr�1.
Solar System ephemeris (SSE) errors produce the noise �t

SSE

measuring TOAs. The
SSE is used to refer TOA measurements to an inertial frame located at the Solar System
barycenter (SSB). As stressed in [15], such error can manifest as a false GWB signal in PTA
data.

PAs The relative PA rotation measured contains ALDM induced signals and a set of
noise [19]
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+ �✓
instr
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. (3.2)

3.2 Likelihood Function

Given Gaussian distributed data, we write the likelihood as

L(M, ✓|d) =
1

p

det(2⇡⌃(✓))
exp



�1

2
dT · ⌃(✓) · d

�

, (3.3)

where d = (d
p

1

,d
p

2

, ...)T is a one dimensional data vector that contains recorded data for
all pulsars and d

p

= (d
p,1

, d
p,2

, ...)T is the data vector for pulsar p obtained at moments
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(leading order contribution)

• Stochastic description for both TOA and PA rotation 

(linear in ALDM field)

(quadratic in ALDM field)



Summary and Outlook 
✦ We propose development of PPAs with the same data acquired for PTAs. PPAs can 

be used to detect ultralight ALDM induced cosmic birefringence with special 
temporal and spatial correlations. Projected limits on its Chern-Simons coupling 
form a great complementarity with existing bounds

✦ Real data analysis with PPTA polarization data 

✦ Cross-correlation of ALDM-induced signals on PPAs and PTAs

 

✦ More physical targets for PPAs as a new tool for exploring fundamental physics? 

✦ Synergize PPAs with other observations to further distinguish different scenarios? 

Liu, JR, Xu, 2022, ongoing… 

Liu, Luu, JR, Shu, Xue, Zhao 2022, ongoing… 
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Thank You!


