Searching for axion dark matter via nuclear decay anomalies
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The big picture

/

Fundamentally, we believe that nuclear decay is random and spontaneous

However, we also expect QCD axion DM will lead to an oscillating 8-angle

As @ modifies nuclear physics, this can lead to non-random decay behaviour



What is nuclear decay?

 “Nuclear decay is the process by which an unstable atom loses
energy by emitting radiation, generally changing the number of
protons and neutrons in the nucleus”

 We can only predict how often this will happen on average

2 N(1) ~ Noexp(=t/t)

Percentage of
sample remaining

o 1 2 3 4 5 6 7 8 9 10

Half-lives

 Thisis well established science, why should we question this?



Normalized #??°Ra (PTB) Data with Earth-Sun Distance
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Date

« Should we believe this?

“Time-dependent nuclear decay parameters: New evidence for new forces?”, Space Sci.Rev. 145 (2009) 285-335
“Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory”, arxiv: 2111.03149



Reasons to be skeptical: 1

There are three kinds of lies:

lies, damned lies, and statistics.

— Benjamin Disraeli

* T[he data analysis here is quite subtle

* Is it possible these anomalies are due to incorrect statistics?



Reasons to be skeptical: 2

Physics Is simple,

but subtle.

Paul Ehrenfest

 (Can we explain these anomalies without rewriting the laws of physics?
e Did seasonal variations in temperature influence the experiment?

 |sthere any possible explanation in terms of fundamental physics?



Recall: the misalignment mechanism
V(0)
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« For QCD axions, with initial condition 6, ; we typically have

> 0

fo N0 2ppu S
QO h? ~ 2 x 10 (1016 GeV) (0. 0= cos(wt+ p - x + @)

e Many aspects of nuclear physics depend on @, for example:

d, = £ ( ‘ )m <ﬁ> ( T >9, m, —m, =~ (1.29 +0.37 6) MeV
dr \ m,f, m, m, + my P

P

e By modifying nuclear binding energies, 6 changes decay rates



Tritium decay

* For simple nuclei this is calculable, let’s consider tritium decay:

SH — SHe + e~ + U, tp=~12.3 years, Q = 18.6 keV

'’ °H) = %ﬁme(Gﬁmg)z(BF@H) + Bor CH)IP(CH)

2 2

1
Br(H) = > sme((L/2 1) o I (1/2)*)m

1
Bor(CH) = gii

sme((L/2D 1) 1 (1/2)")sm

1 Ei—Ef
I’CH) = — f Fo(Z+1, E))p.E.(E; — Ef — E,.)* dE,
me me

e Where does -dependence enter?
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« @ changes the decay rate by modifying SHPPHe binding energies

« Fortunately for 3 and 4 nucleon systems this is already calculated
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6-dependence of light nuclei and nucleosynthesis, 2006.12321



Tritium decay

(Using Primakoff-Rosen
approximation for F))

« So, let’s add a perturbation 0E(0) to E; — E :

ST 55E(9)<Ef2 — 2E{(E; + m,) + E} + 2Em, + 3m§) :
=1 + O(SE?)
r (E; — E;+m,) <3me(Ei —Ep) + (B - EP + 6mg)

e From the previous slide, we know how OF depends on 6, and so

2 2
sy 10'°GeV 10~%%eV
OF ~ ueV cos(wt)
0.4GeV/cm’ f. m,

e S0, now all we need is some tritium...




Tritium decay data
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Data is from the European Union’s Joint Research Centre,
at the Directorate for Nuclear Safety and Security in Belgium



Let's compare the real data to Monte Carlo simulations:
Generate N datasets with randomly generated 1(¢)

For each dataset, convert to frequency space
Construct the CDF at each frequency

Find the 95 % CL limit

Compare to the real power at that frequency

For example:
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Lomb-Scargle periodogram
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« Repeating this process N times allows us to estimate the
probability distribution function (PDF) of power at each frequency
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* This PDF integrates to give a cumulative probability distribution
(CDF):
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Repeating this at each frequency:
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We can see that the real data points (blue) are all below the 95 %
CL limit (orange), and hence well-modelled by random noise

No evidence of non-random behaviour!



* Repeating this with an injected axion signal:

ps+b( Q)
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* Varying the axion coupling allows us to find the threshold values



Resulting constraint
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AxionLimits)
Can we talk about these effects so far away from the QCD axion band?

See Luca Di Luzio’s talk from yesterday



More observation Resulting constraint

time
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Can we talk about these effects so far away from the QCD axion band?

See Luca Di Luzio’s talk from yesterday



Discussion and conclusions

We have examined reports of non-random behaviour in nuclear
decay

In 12 years of trititum decay data we find no evidence of this
phenomenon

We used the data to place constraints on axion DM

Is nuclear decay random? Yes, probably...

More details in a paper soon to appear online!
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Thanks for listening!



