The First International Conference on Axion Physics and Experiment

November 24th 2022

Lepton-flavor-violating decays into axion-like particles

Lorenzo Calibbi

mainly based on LC, D. Redigolo, R. Ziegler, J. Zupan, <u>JHEP 09 (2021) 173</u>

Introduction

Assume there is a *light*, *invisible*, new particle "*a*" with *flavour-violating couplings* to leptons

Light:
$$m_a < m_\mu, m_\tau$$

Invisible:

- Neutral
- Feebly coupled (long-lived)

CLFV modes would then be
$$\mu \to e a, \tau \to \mu a, \mu \to e \gamma a, \text{ etc.}$$

Interesting interplay with cosmo/astro:

- DM candidate? (if long-lived enough)
- Bounds from star cooling/supernovae (if light and feeble enough)

Why should *a* be light and feebly-coupled?

That's natural, if it is the (pseudo) Nambu-Goldstone boson (PNGB) of a broken global U(1), *aka* an axion-like particle (ALP)

Example	es:	
Global symmetry:	PNGB:	<u>Wilczek '82</u>
 Lepton Number 	Majoron	<u>Pilaftsis '93</u> <u>Feng et al. '97</u>
 Peccei-Quinn 	Axion	<u>LC Goertz Redigolo</u> Ziegler Zupan '16
• Flavour symmetry	Familon	<u>Di Luzio et al. '17, '19</u>
•••		

Equivalent possibility: light Z' of a local U(1), e.g. L_i - L_j (with $g \ll 1$)

Heeck '16

Where does *lepton flavour violation* come from?

- If lepton U(1) charges are flavour non-universal
 naturally flavour-violating couplings
- Alternatively, loop-induced flavour-violating couplings

Explicit examples at the end...

LFV decays into ALPs: model-independent approach

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left(C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right)$$

This generic Lagrangian induces 2-body LFV decays such as:

$$\Gamma(\ell_i \to \ell_j a) = \frac{1}{16\pi} \frac{m_{\ell_i}^3}{F_{ij}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$
Feng et al. '97

Goal: constrain the effective LFV scales (F_{ij}) using experimental data

- Which experiments?
- What are the future prospects?

Summary plot

Decays mediated by dim-5 operators: much larger NP scales can be reached than $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu \rightarrow e$ conv. (from dim-6 ops, NP scale reach ~10⁷-10⁸GeV)

LFV experiments

Signal: monochromatic positron with

Differential decay rate:
$$\frac{d\Gamma(\ell_i \to \ell_j a)}{d\cos\theta} = \frac{m_{\ell_i}^2}{32\pi F_{\ell_i \ell_j}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \left[1 + 2P_\ell \cos\theta \frac{C_{\ell_i \ell_j}^V C_{\ell_i \ell_j}^A}{(C_{\ell_i \ell_j}^V)^2 + (C_{\ell_i \ell_j}^A)^2}\right]$$
signal depends on the chirality of the couplings
Michel spectrum:
$$\frac{d^2\Gamma(\mu^+ \to e^+ \nu_e \bar{\nu}_\mu)}{dx_e d\cos\theta} \simeq \Gamma_\mu \left((3 - 2x_e) - P_\mu(2x_e - 1)\cos\theta\right) x_e^2 \qquad x_e = \frac{2p_e}{m_\mu}$$
And "surface" muons are highly polarized (produced by pion decays at rest on the surface of the production target) \rightarrow the SM background can be suppressed
$$m_a \left(\text{MeV}\right) \xrightarrow{105} 94. \begin{array}{c} 82. & 67. & 47. \\ 0.5 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$$
the bkd goes to zero in the "forward" direction (the direction opposite to the muon polarization) \\ \hline \mu^+ \cdots \\ \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \hline \mu^+ \cdots \\ \mu^+ \cdots

LFV into ALPs

Past searches: $\mu \rightarrow e a$

Past searches: $\mu \rightarrow e a$

LFV into ALPs

Present bounds based on old experiments and/or not-so-high luminosities (<10⁹ total muon decays)

 $\pi E5$ beamline at PSI (where MEGII and Mu3e are located) can deliver >10⁸ muons *per second*: next generation experiment must do better!

slide borrowed from A. Papa

MEG: Signature and experimental setup

- The MEG experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~10⁻¹³ (previous upper limit BR($\mu^+ \rightarrow e^+ \gamma$) ≤ 1.2 x 10⁻¹¹ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, 9_{eg} , ϕ_{eg}) to characterize $\mu \rightarrow e\gamma$ events

Final result (with 7.5x10¹⁴ μ^+ on target): BR($\mu \to e\gamma$) < 4.2 × 10⁻¹³ (90% CL)

LFV into ALPs

• Prospect at MEG II for $\mu \rightarrow e a$

What about a Jodidio-like search at MEG II for m_a ≈ 0 with a forward calorimeter?
We propose a modified setup of MEG II ("MEGII-fwd") and ~2 weeks dedicated run idea from discussions with A. Papa and G. Signorelli, thanks!

Our estimate of the sensitivity of a dedicate run (2 weeks with $10^8 \mu^+/s$):

LFV into ALPs

Future prospects: Mu3e

Mu3e: The $\mu^+ \rightarrow e^+ e^+ e^-$ search

slide borrowed from A. Papa

- The Mu3e experiment aims to search for µ⁺ → e⁺ e⁻ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II). Previous upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1 x 10⁻¹² @90 C.L. by SINDRUM experiment)
- Observables (E_e, t_e, vertex) to characterize $\mu \rightarrow$ eee events

• Mu3e prospect for $\mu \rightarrow e a$ (Perrevoort '18) Potential search for performed on positron momentum

histograms filled with *online* reconstructed short tracks

Astrophysics and cosmology

Astrophysical bounds

Well-known bounds on ALP-electron couplings from energy loss in star systems [red giants (RG), white dwarfs (WD)] due to processes like: Raffelt Weiss '94 (possible if a is not much heavier $e^- + N \rightarrow e^- + N + a$ than T inside the star) $F_{ee}^A \gtrsim 4.6 \times 10^9 \text{ GeV (WD)}$ $F_{ee}^A \gtrsim 2.4 \times 10^9 \text{ GeV (RG)}$ $(m_a \lesssim 1 - 10 \text{ keV})$ Bertolami at al '14 Viaux at al '13 Hints (~3 σ) for non-standard WD cooling require: $F_{ee}^A \approx 6 \times 10^9 \text{ GeV}$ Giannotti at al '17 We extend the bounds to the case of massive ALP: Boltzmann suppression we need to rescale the energy loss rate by the ratio Raffelt Phys. Rept. '90 $R(m_a, T) \equiv \mathcal{E}_a(m_a, T) / \mathcal{E}_a(0, T)$

energy density:
$$\mathcal{E}_{a}(m_{a},T) = \frac{1}{2\pi^{2}} \int_{m_{a}}^{\infty} \frac{E^{2}\sqrt{E^{2}-m_{a}^{2}}}{e^{E/T}-1} dE = \begin{cases} \frac{\pi^{2}}{30}T^{4} & m_{a} \ll T\\ \frac{1}{(2\pi)^{3/2}}T^{4}\left(\frac{m_{a}}{T}\right)^{5/2}e^{-m_{a}/T} & m_{a} \gg T \end{cases}$$

 $T_{\rm RG} \approx 10^8 K \approx 8.6 \,\mathrm{keV}$ $T_{\rm WD} \approx 10^7 K \approx 0.8 \,\mathrm{keV}$

LFV into ALPs

Similarly, bounds can be obtained for the $\mu\mu$ coupling and the μ e coupling

Process	Decay constant	Bound (GeV)	Experiment
	F^A_{ee}	4.6×10^9	WD
	F^A_{ee}	2.4×10^9	RG
Star cooling	F^A_{ee}	$3.4 imes 10^7$	$SN1987A_{ee}$
	$F^A_{\mu\mu}$	$1.3 imes 10^8$	$SN1987A_{\mu\mu}$
	$F_{\mu e}$	1.4×10^8	$SN1987A_{\mu e}$

ALP dark matter

Putting everything together...

Summary of model-independent bounds

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left(C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right)$$

LFV into ALPs

Models

- How generic is a PNGB with flavour-violating couplings to leptons?
- Can we test ALPs with LFV beyond stars?
- That is, how are FC and FV couplings related (F_{ee} , $F_{\mu e}$, etc.) ?

To answer these questions, we need to consider specific models

• LFV QCD axion:

QCD axion (DSFZ type) with leptons carrying non-universal PQ

• LFV axiflavon:

QCD axion obtained by identifying PQ = Froggatt-Nielsen U(1) (FV axion-quark couplings suppressed by an additional flavour SU(2))

• Leptonic familon

PNGB from spontaneously broken Froggatt-Nielsen U(1) (acting on leptons only)

• Majoron

spontaneously broken lepton number (in the context of low-energy seesaw)

LFV QCD axion

LFV QCD axion

Majoron

Type I seesaw:
$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N}\partial N - \left(Y_N\overline{N}\widetilde{\Phi}^{\dagger}L + \frac{1}{2}M_N\overline{N}N^c + \text{h.c.}\right)$$

 \mathcal{L} -breaking term
 $\mathcal{M}_{\nu} = \left(\begin{array}{cc} 0 & Y_N^T v/\sqrt{2} \\ Y_N v/\sqrt{2} & M_N \end{array}\right) \xrightarrow{M_N \gg Y_N v} m_{\nu} = -\frac{v^2}{2}Y_N^TM_N^{-1}Y_N$

Spontaneous breaking of the lepton number:

$$\frac{1}{2}\lambda_{N}\sigma\bar{N}^{c}N, \quad \sigma = \frac{f_{N} + \hat{\sigma}}{\sqrt{2}}e^{iJ/f_{N}} \implies M_{N} = \lambda_{N}f_{N}/\sqrt{2}$$
PNGB: Majoron! Chikashige Mohapatra Peccei '80
Couplings to SM fermions:
$$J - \underbrace{\bigcap_{n_{j}}^{n_{i}} Z}_{q,\bar{\ell}} q, \ell \qquad n_{i} - \ell$$

$$J - \underbrace{\bigcap_{n_{j}}^{n_{i}} Z}_{\bar{q},\bar{\ell}} q, \ell \qquad n_{j} - \ell$$

Majoron

Type I seesaw:
$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N}\partial N - \left(Y_N\overline{M}\widetilde{\Phi}^{\dagger}L + \frac{1}{2}M_N\overline{N}N^c + \text{h.c.}\right)$$

 \mathcal{L} -breaking term
 $\mathcal{M}_{\nu} = \left(\begin{array}{ccc} 0 & Y_N^T v/\sqrt{2} \\ Y_N v/\sqrt{2} & M_N \end{array}\right) \xrightarrow{M_N \gg Y_N v} m_{\nu} = -\frac{v^2}{2}Y_N^T M_N^{-1}Y_N$

Spontaneous breaking of the lepton number:

$$\frac{1}{2}\lambda_N \sigma \bar{N}^c N, \quad \sigma = \frac{f_N + \hat{\sigma}}{\sqrt{2}} e^{iJ/f_N} \implies M_N = \lambda_N f_N / \sqrt{2}$$
PNGB: Majoron! Chikashige Mohapatra Peccei '80

Couplings to SM fermions:

$$\begin{split} C_{q_iq_j}^V &= 0\,, \qquad \qquad C_{q_iq_j}^A = -\frac{T_3^q}{16\pi^2} \delta_{ij} \operatorname{Tr}\left(Y_N Y_N^{\dagger}\right)\,, \\ C_{\ell_i\ell_j}^V &= \frac{1}{16\pi^2} \left(Y_N Y_N^{\dagger}\right)_{ij}\,, \qquad C_{\ell_i\ell_j}^A = \frac{1}{16\pi^2} \begin{bmatrix} \delta_{ij}}{2} \operatorname{Tr}\left(Y_N Y_N^{\dagger}\right) - (Y_N Y_N^{\dagger})_{ij} \end{bmatrix} \\ & \text{Generically flavour-violating, (V-A)} \qquad \begin{array}{c} \operatorname{Pilaftsis} \operatorname{'94}\\ \operatorname{Garcia-Cely Heeck} \operatorname{'17} \end{array}$$

LFV into ALPs

Majoron

Lepton number anomaly free: suppressed coupling to photons ($E_{UV}=0$)

$$\Gamma(a \to \gamma \gamma) = \frac{\alpha_{\rm em}^2 E_{\rm eff}^2}{64\pi^3} \frac{m_a^3}{f_a^2}, \qquad m_a \ll m_{\ell_i} : \ E_{\rm eff} \simeq E_{\rm UV} \qquad \mathcal{L}_{\rm eff} = E_{\rm UV} \frac{\alpha_{\rm em}}{4\pi} \frac{a}{f_a} F \tilde{F}$$

Summary

PNGBs from non-universal global U(1)s (or due to loop effects) give rise to lepton-flavour-violating decays

We have huge room for improvement over the old limits We propose to start with a MEGII-fwd phase of MEG II

Essential interplay among μ , τ , and astrophysical bounds

Very large symmetry-breaking scales can be probed

Future CLFV limits can supersede stellar bounds even for small ALP masses and start testing the ALP DM region

Thank you! 谢谢

Additional slides

Summary of the model-independent bounds

Comparison in the case $m_a \approx 0$

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left(C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right) \qquad F_{ij}^{V,A} \equiv \frac{2f_a}{C_{ij}^{V,A}} \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$

Present best limits								
Process	BR Limit	Decay constant	Bound (GeV)	Experiment				
Star cooling		F^A_{ee}	4.6×10^9	WDs $[44]$				
	_	$F^A_{\mu\mu}$	$1.6 imes 10^6$	$SN1987A_{\mu\mu}$ [45]				
	4×10^{-3}	$F_{\mu e}$	1.4×10^8	SN1987 $A_{\mu e}$ (Sec. 6.1)				
$\mu \to e a$	$2.6\times 10^{-6*}$	$F_{\mu e} \ (V {\rm or} A)$	4.8×10^9	Jodidio at al. $[9]$				
$\mu \to e a$	$2.5\times10^{-6*}$	$F_{\mu e} \ (V+A)$	4.9×10^9	Jodidio et al. $[9]$				
$\mu \to e a$	$5.8\times10^{-5*}$	$F_{\mu e} \ (V - A)$	1.0×10^9	TWIST $[10]$				
$\mu \to e a \gamma$	$1.1 \times 10^{-9*}$	$F_{\mu e}$	$5.1 imes 10^{8 \#}$	Crystal Box $[46]$				
$\tau \to e a$	$2.7\times10^{-3**}$	$F_{ au e}$	$4.3 imes 10^6$	ARGUS [43]				
$ au o \mu a$	$4.5 \times 10^{-3**}$	$F_{ au\mu}$	$3.3 imes 10^6$	ARGUS [43]				

LFV into ALPs

Analysis for massless familon $m_a \approx 0$ (with 1.4×10¹² stopped μ^+) yields:

$$BR(\mu \to e \, a \, \gamma) < 1.1 \times 10^{-9} \quad (90\% \text{ CL})$$

$$BR(\mu \to e \, a \, \gamma) \approx \frac{\alpha_{em}}{2\pi} \mathcal{I}(x_{\min}, y_{\min}) BR(\mu \to e \, a)$$
Hirsch et al. '09

$$\mathcal{I}(x_{\min}, y_{\min}) = \int_{x_{\min}, y_{\min}}^{1} dx dy \frac{(x-1)(2-xy-y)}{y^2(1-x-y)}$$

$$x = 2E_e/m_\mu \qquad y = 2E_\gamma/m_\mu$$

Crystal Box energy thresholds:

$$E_e > 38 - 43 \text{ MeV}$$
, $E_\gamma > 38 \text{ MeV} \Rightarrow x_{\min} = 0.72 - 0.81$, $y_{\min} = 0.72$

$$\Rightarrow$$
 $F_{e\mu} > (5.1 - 8.3) \times 10^8 \text{ GeV}$

weaker but independent of V/A nature of the couplings

LFV into ALPs

Past searches: $\tau \rightarrow e a$, $\tau \rightarrow \mu a$

LFV into ALPs

• Belle prospect for $\tau \rightarrow \mu a$ (Yoshinobu Hayasaka '17)

Simulation of *S* and *B* and limit that can be set using the Belle data set (1/ab):

LFV into ALPs

Future prospects: B-factories/Belle-II

"Low-energy seesaw" Majoron

Low-energy seesaw: pseudo-Dirac neutrinos \rightarrow approximately conserved (generalised) lepton number Ibarra Molinaro Petcov '11 $M_N = \begin{pmatrix} 0 & M \\ M & 0 \end{pmatrix} = \frac{\lambda}{\sqrt{2}} \begin{pmatrix} 0 & f_N \\ f_N & 0 \end{pmatrix} \qquad \qquad y_N = \begin{pmatrix} y_{e1} & y_{e2} \\ y_{\mu 1} & y_{\mu 2} \\ y_{-1} & y_{-2} \end{pmatrix}$ Global U(1) symmetry in the limit $y_{\ell 1} \rightarrow 0$ After imposing fit to neutrino obs., two free parameters: *M*, $y = \max \left| \operatorname{eig}(y_N y_N^{\dagger}) \right|$ $y_N y_N^{\dagger} \approx y^2 \frac{m_3}{m_2 + m_3} A_i^* A_j ,$ where $A_i = U_{i3} + iU_{i2}\sqrt{m_2/m_3}$ $F_{ee}^{A} = \frac{1.1 \times 10^{10} \,\text{GeV}}{\lambda y^{2}} \left(\frac{M}{10^{7} \,\text{GeV}}\right), \qquad F_{\mu e} = \frac{1.4 \times 10^{10} \,\text{GeV}}{\lambda y^{2}} \left(\frac{M}{10^{7} \,\text{GeV}}\right), \qquad F_{\tau e} = \frac{1.6 \times 10^{10} \,\text{GeV}}{\lambda y^{2}} \left(\frac{M}{10^{7} \,\text{GeV}}\right), \qquad F_{\tau \mu} = \frac{0.71 \times 10^{10} \,\text{GeV}}{\lambda y^{2}} \left(\frac{M}{10^{7} \,\text{GeV}}\right)$

LFV into ALPs

CLFV from short-lived ALPs

