

Università degli Studi di Bari «Aldo Moro» Dipartimento intarateneo di Fisica «Michelangelo Merlin»

Characterization of massive ALPs emissivity from a core-collapse Supernova

Alessandro Lella

Work in progress with : Pierluca Carenza, Giuseppe Lucente, Alessandro Mirizzi, Maurizio GiannottiTo be published soon!

Bari, 24th November 2022

Outline

- Axions and ALPs nuclear interactions.
- Supernova (SN) explosion and neutrino emission.
- Massive ALP emission via NN Bremsstrahlung.
- Massive ALP emission via Pionic Compton processes.
- Cooling Bound on the ALP-nucleon coupling.
- ALP Gravitational trapping.
- Conclusions.

Axions and Axion-like particles

- The QCD axion is a hypothetical particle postulated by Wilzcek and Weinberg in relation to the Peccei-Quinn mechanism [*Peccei & Quinn, Phys. Rev. Lett. 38 (1977)*] to solve the strong-CP problem of the QCD [*Weinberg, PRL 40 (1978)*; *Wilzcek, Phys. Rev. Lett. 40 (1978)*].
- Axion-like particles (ALPs) are novel particles which behave similarly to the QCD axion. They emerge in UV completions of the Standard Model.
- The QCD axion acquires a small mass as a consequence of the mixing with pions.

$$m_a f_a \approx f_\pi m_\pi$$

• For ALPs no relation between their mass and couplings.

Axions and Axion-like particles

Axions and ALPs could interact with all the Standard model particles.

$$\mathcal{L}_{a} = \frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \frac{\alpha_{s}}{8\pi f_{a}}a \operatorname{Tr} G^{\mu\nu}\tilde{G}_{\mu\nu} + \frac{g_{a\psi}}{2m_{\psi}}\bar{\psi}\gamma_{5}\gamma_{\mu}\psi\partial^{\mu}a - \frac{1}{4}g_{a\gamma}a\tilde{F}^{\mu\nu}F_{\mu\nu}$$

• In this work we focus on their interaction with nuclear matter

$$\mathcal{L}_{nuc} = \sum_{i=p,n} \frac{g_{ai}}{2m_N} \overline{N}_i \gamma_\mu \gamma_5 N_i \partial^\mu a + \frac{g_{a\pi N}}{f_{\pi}} \partial^\mu a (i\pi^+ \bar{p}\gamma_\mu n - i\pi^- \bar{n}\gamma_\mu p)$$

$$N \longrightarrow N$$

$$N \longrightarrow N$$

$$N \longrightarrow N$$

$$N \longrightarrow N$$

Alessandro Lella

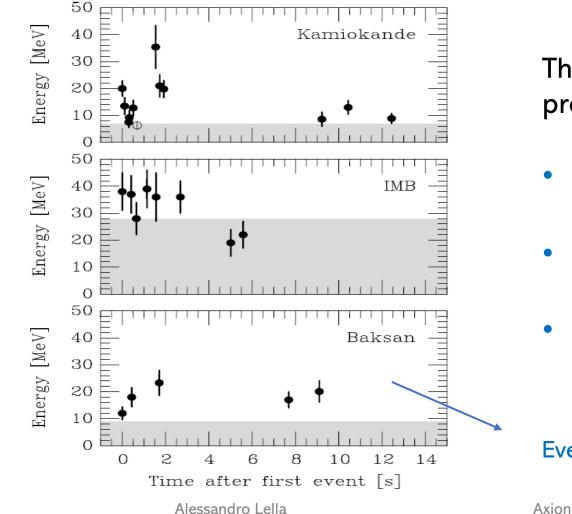
Axion2022

24th November 2022

Supernova explosion and Neutrino emission

Core-collapse SN is the terminal phase of a massive star [M $\ge 8 M_{\odot}$].

> Subsequent SN explosion and cooling of the remnant by neutrino emission.



The explosion of SN 1987A confirmed the prediction from the SN simulation.

- Duration of the burst $\sim 10 \text{ s}$
- $\langle E_{\nu} \rangle \sim 15 \text{ MeV}$
- $L_{\nu} \approx 10^{52} \text{ erg/s}$

Events from SN 1987A

Bounds on the ALP-nucleon coupling

 ALPs emission could represent an additional energy-loss channel during a SN explosion, which could shorten significantly the neutrino burst.

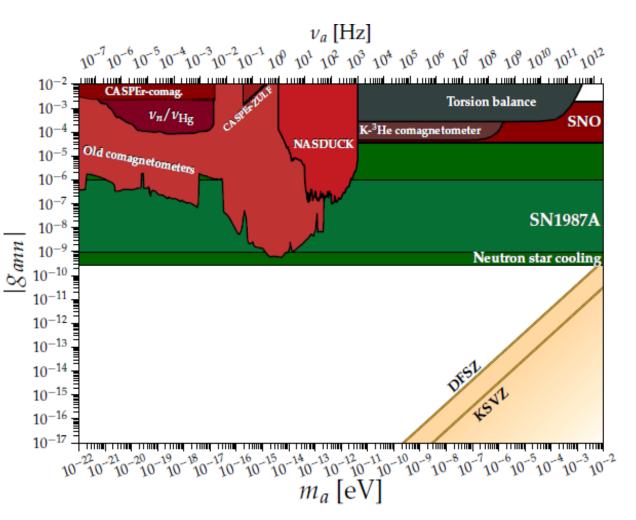
→ Cooling bound.

• From SN 1987A [Carenza & al., JCAP 1010 (2019)]:

 $g_{ap} < 1.2 \times 10^{-9}$

 From Neutron Star cooling (Hess J1731-347) [Beznogov, Phys. Rev. C 98.3 (2018)] :

 $g_{an} < 2.8 \times 10^{-10}$



[Payez, JCAP 02 (2020)]

Aim of the work

- Extend the computation for ALP emissivity via nuclear interaction to massive ALP [m_a ~ O(10 − 100 MeV)], including all the effects due to the nuclear medium.
 T_{core} ~ 30 MeV → Boltzmann suppression ~ e^{-m_a}/_T for m_a ~ O(100 MeV).
- Obtain a complete overview of ALP emission via nuclear processes in a realistic SN model.
- Extract new bounds on g_{aN} in the whole range of masses studied.

Two main processes for ALP production in a nuclear medium: *NN* bremsstrahlung and pion conversions.

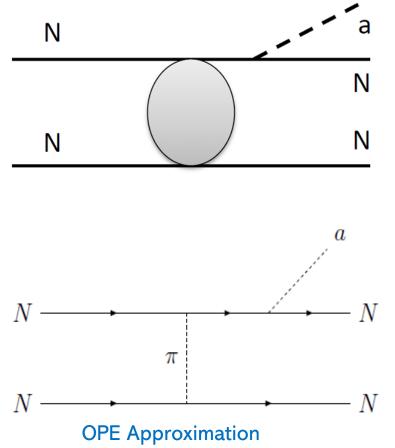
NN Bremsstrahlung

NN Bremsstrahlung is the emission of an ALP after the scattering of two nucleons in a dense nuclear medium.

- First approach: «One Pion Exchange (OPE) approximation»
- In the massive case, the matrix element in OPE is given by [Giannotti & Nesti, Phys. Rev. D 72 (2005)]:

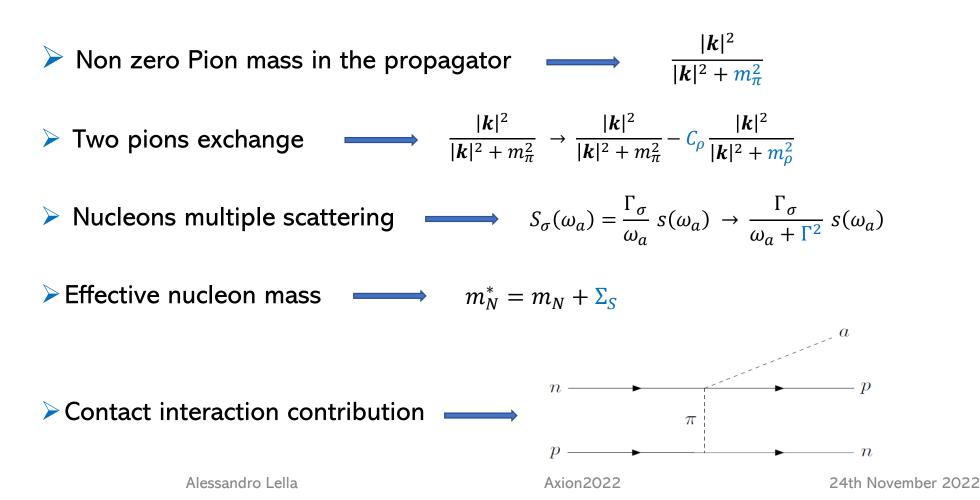
$$S\sum_{\text{spins}} |\mathcal{M}|^2 = \left(\frac{p_a^2}{\omega_a^2}\right) |M_0|^2$$

Where $|M_0|^2$ is the matrix element in the massless case.



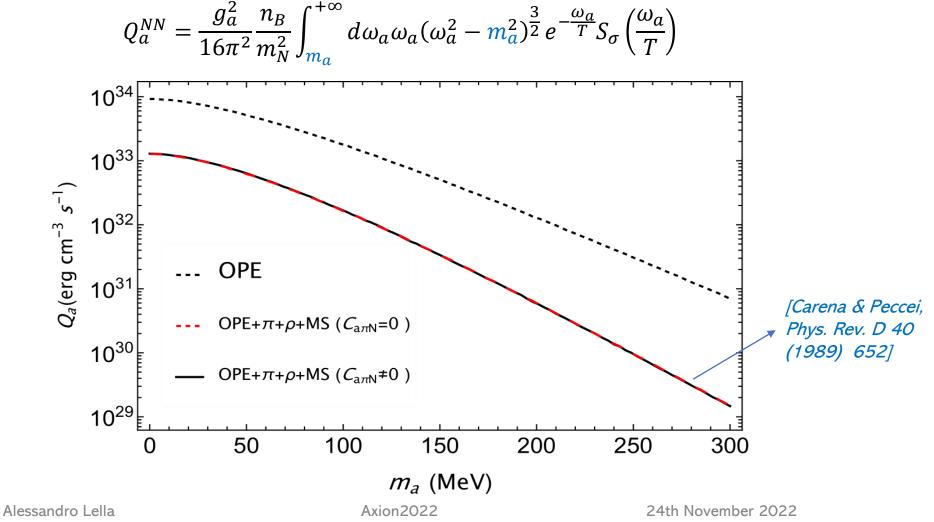
NN Bremsstrahlung

Corrections to the OPE approximation for the massless case [Carenza et al., JCAP 10.10 (2019)]:



NN Bremsstrahlung

The extension to the massive case of the complete axion emission rate (emissivity) is given by:

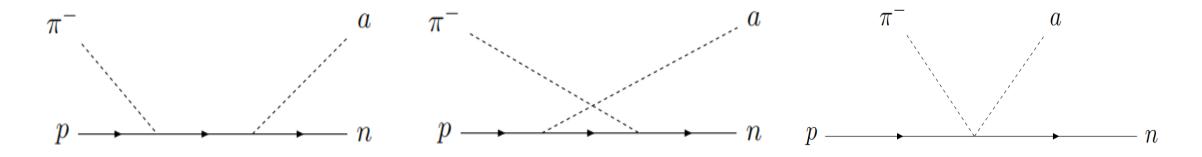


Pionic Compton processes

In this processes a pion is converted into an ALP after the scattering on a nucleon.

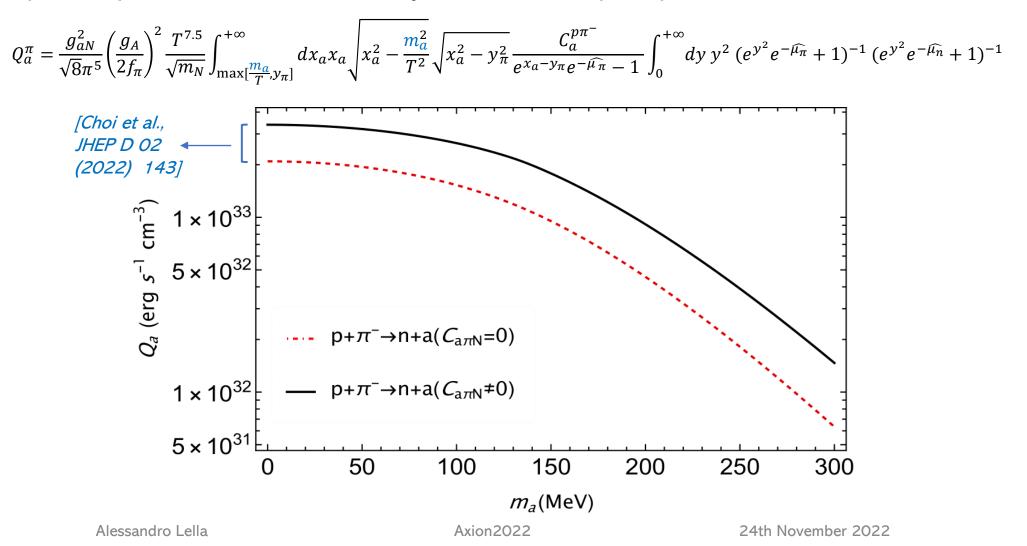
- If the fraction of pions inside the SN core is high enough, pion conversions could become competitive with NN Bremsstrahlung [Carenza et al., Phys. Rev. Lett. 126.7 (2021)].
- In [Fore & Reddy, Phys. Rev. C 101.3 (2020)] it has been proved that

$$\frac{n_{\pi^0}}{n_{\pi^-}} \sim \frac{n_{\pi^+}}{n_{\pi^0}} \sim \frac{n_p}{n_n} = \mathcal{O}(0.1)$$



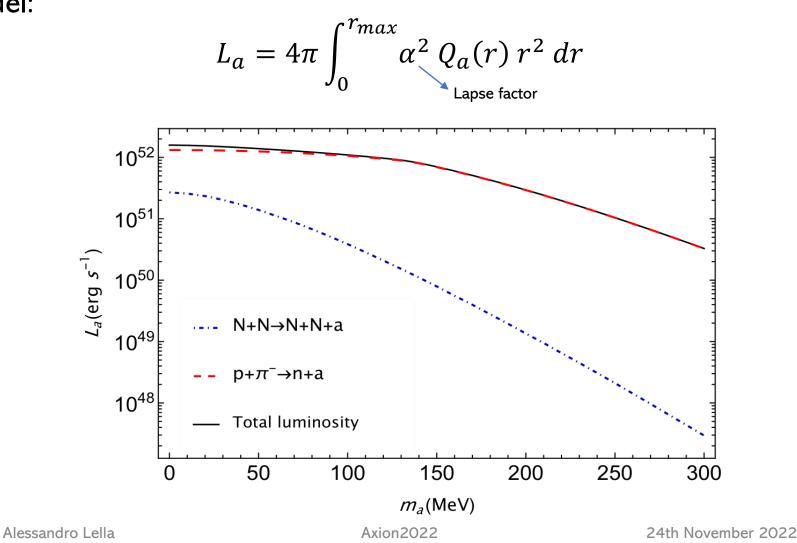
Pionic Compton processes

The complete expression for ALP emissivity via Pionic Compton processes is:



Axion luminosity

The energy emitted per unit time (luminosity) is obtained integrating emissivity over the SN model:

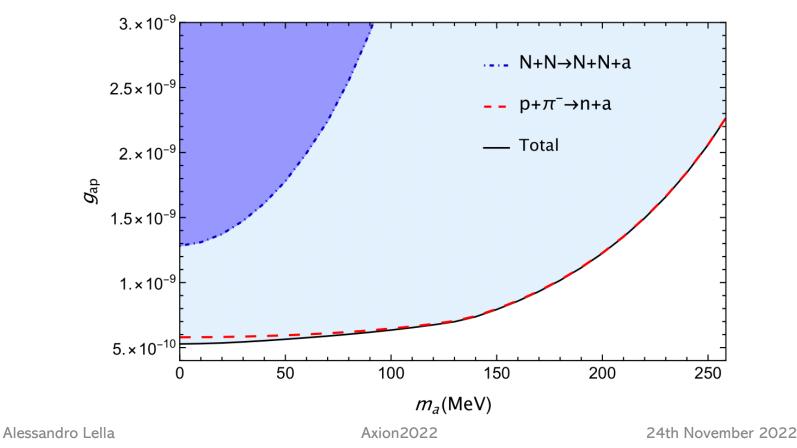


The cooling bound

Assuming that the neutrino burst observed from SN 1987A should not be shortened more than $\sim 1/2$ it is necessary that

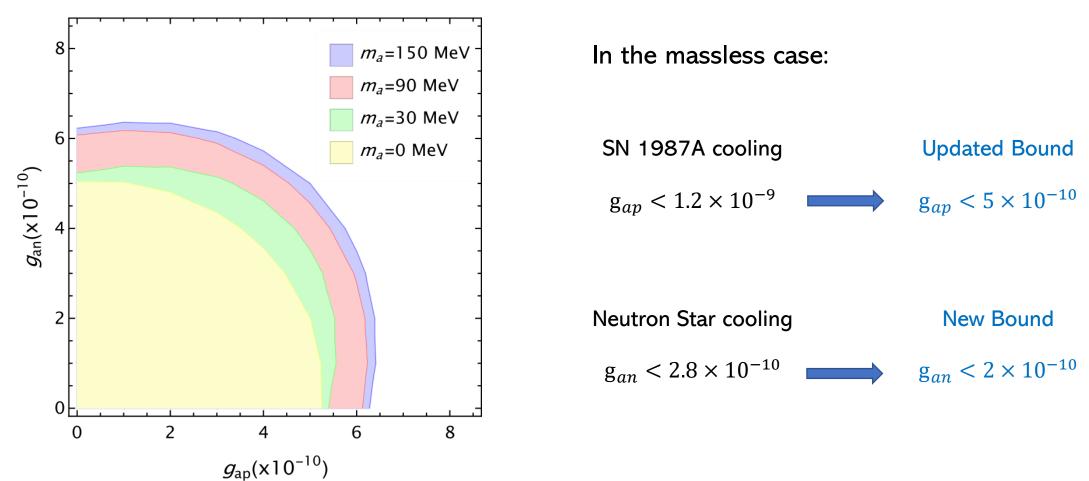
 $L_a(\sim g_a^2) \lesssim L_\nu \approx 3 \times 10^{52} \text{ erg/s}$

at t = 1 S [Raffelt, Phys. Rept. 198 (1990)].



Comparison with previous bounds

Dependence on g_{an} and g_{ap} can be extracted from the following fitting formula:



 $L_a \simeq \epsilon \times \left(g_{an}^2 + b \times g_{ap}^2 + c \times g_{ap}g_{an} + d \times g_{a\pi N}\right) \operatorname{erg/cm^{-3}} \leq 3 \times 10^{52} \operatorname{erg/cm^{-3}}$

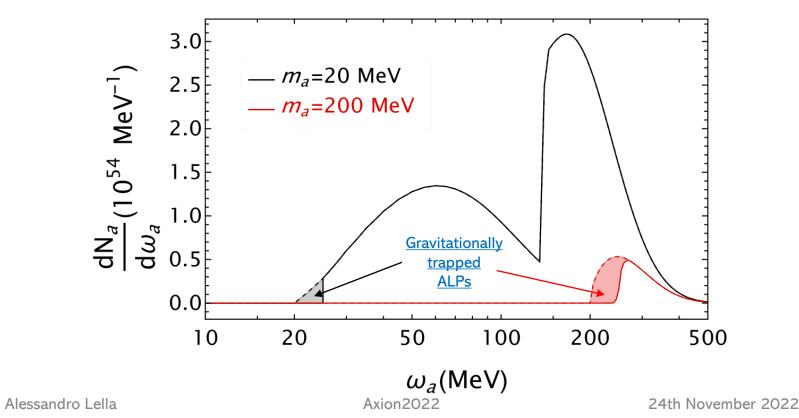
Alessandro Lella

Gravitational trapping

Massive axions experience the strong gravitational effects due to the dense inner core. In order to be emitted they must have energy enough to overcome the gravitational potential:

$$\left(\frac{dN_a}{d\omega_a}\right)_{grav} = \frac{dN_a}{d\omega_a}\Theta\left(\omega_a - \frac{m_a}{\alpha}\right)$$

Where $\alpha = \sqrt{1 - 2M/R}$ is the lapse factor.



Gravitational trapping

 10^{-14}

10-15

10-16

10⁻¹⁷

 10^{-18}

10-19

10-20

10⁻¹³

g_{ay} (GeV⁻¹)

• Let us assume that the trapped axion decay into photons.

 $a \rightarrow \gamma \gamma$

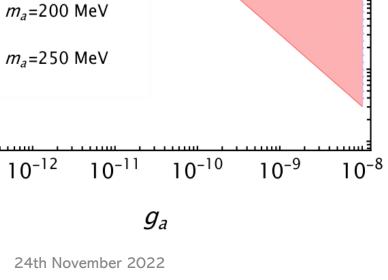
 This would give rise to an additional photon flux from a SN remnant

$$\frac{d\phi_{\gamma}}{dE_{\gamma}} (\sim g_a^2 ; \sim g_{a\gamma}^2) = \frac{1}{4\pi d^2} 2 \left[\frac{dN_a (2E_{\gamma})}{dE_{\gamma}} \right]_{trap} \Gamma_{a\gamma\gamma} e^{-\Gamma_{a\gamma\gamma} t}$$

We can consider the SN remnant Cas A (*d* ≈ 3.4 kpc, t≈ 320 yrs). Since no photon flux has been observed from Cas A [Hannestad & Raffelt, Phys. Rev. Lett. 88 (2002)]:

$$\phi_{E>100 \text{ MeV}} \lesssim 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}$$

Sensitivity of the EGRET experiment



Summary

- Inside the SN core ($T \sim 30 40$ MeV) massive ALPs could be copiously produced by means of Bremsstrahlung and pionic Compton-like processes.
- We extended the computation of the ALP emission rates for these two processes to the case of massive ALPs.
- The energy-loss argument allowed us to constrain g_{aN} in the mass range [0,300]MeV. In particular in the low mass limit we found $g_{ap} \leq 5.2 \times 10^{-10}$, strengthening the previous bounds.
- Using gravitational trapping we also contrain the $g_{a\gamma}\text{-}\,g_a$ ALP parameter space.

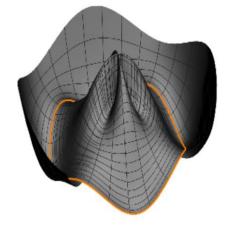
THANK YOU FOR THE ATTENTION

The QCD axion

The QCD axion is a pseudoscalar particle postulated in relation to the Peccei-Quinn (PQ) mechanism to solve the Strong-CP problem in QCD.

PQ mechanism: the introduction of a global symmetry $U(1)_{PQ}$ spontaneously broken at f_a and the Goldstone boson is the axion [Peccei & Quinn, PRL 38 (1977)]

V(Φ)



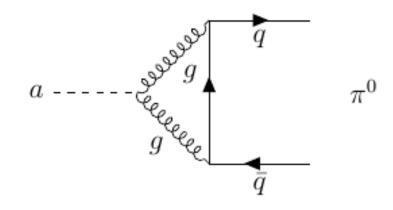
• Axion lagrangian:

$$\mathcal{L}_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a + \frac{\alpha_{s}}{8\pi f_{a}} a \operatorname{Tr} G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{g_{a\psi}}{2 m_{\psi}} \bar{\psi} \gamma_{5} \gamma_{\mu} \psi \partial^{\mu} a - \frac{1}{4} g_{a\gamma} a \tilde{F}^{\mu\nu} F_{\mu\nu}$$

• Axions acquire a small mass as a consequence of their mixing with pions

 $m_a f_a \approx m_\pi f_\pi$

• The coupling constants depends on the energy scale f_a

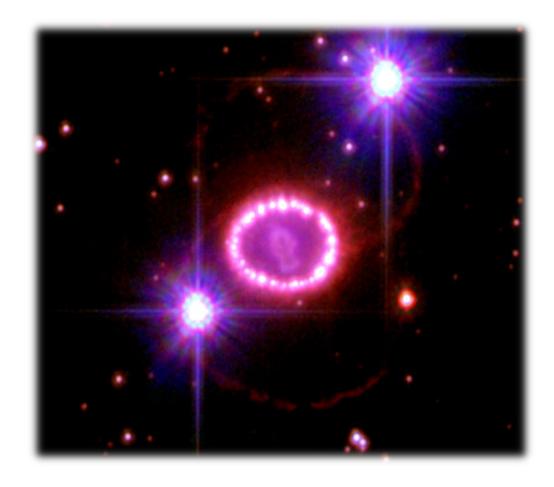


Supernova explosion and Neutrino emission

Core-collapse SN is the terminal phase of a massive star [M $\ge 8 M_{\odot}$].

- An initial gravitational collapse takes place.
- Shock-wave formation and propagation.
- Ejection of the outer layers of the star.
- Neutrino cooling.

About the 99% of the released energy (~ 10^{53} erg) is emitted by ν and $\bar{\nu}$ of all flavours.



Structure functions

$$S_{\sigma} = \frac{\Gamma_{\sigma}}{\omega^2} s\left(\frac{\omega_a}{T}\right)$$

$$s(x) = s_{nn}(x) + s_{pp}(x) + s_{np}(x)$$

$$\begin{split} s_{nn}(x) &= \frac{1}{3} Y_n^2 C_{an}^2 (s_{\mathbf{k}} + s_{\mathbf{l}} + s_{\mathbf{kl}} - 3s_{\mathbf{k} \cdot \mathbf{l}}) \\ s_{pp}(x) &= \frac{1}{3} Y_p^2 C_{ap}^2 (s_{\mathbf{k}} + s_{\mathbf{l}} + s_{\mathbf{kl}} - 3s_{\mathbf{k} \cdot \mathbf{l}}) \\ s_{np}(x) &= \frac{4}{3} Y_n Y_p (C_+^2 + C_-^2) s_{\mathbf{k}} + \frac{4}{3} Y_n Y_p (4C_+^2 + 2C_-^2) s_{\mathbf{l}} + \\ &- \frac{8}{3} Y_n Y_p [(C_+^2 + C_-^2) s_{\mathbf{kl}} - (3C_+^2 - C_-^2) s_{\mathbf{k} \cdot \mathbf{l}}] \,. \end{split}$$

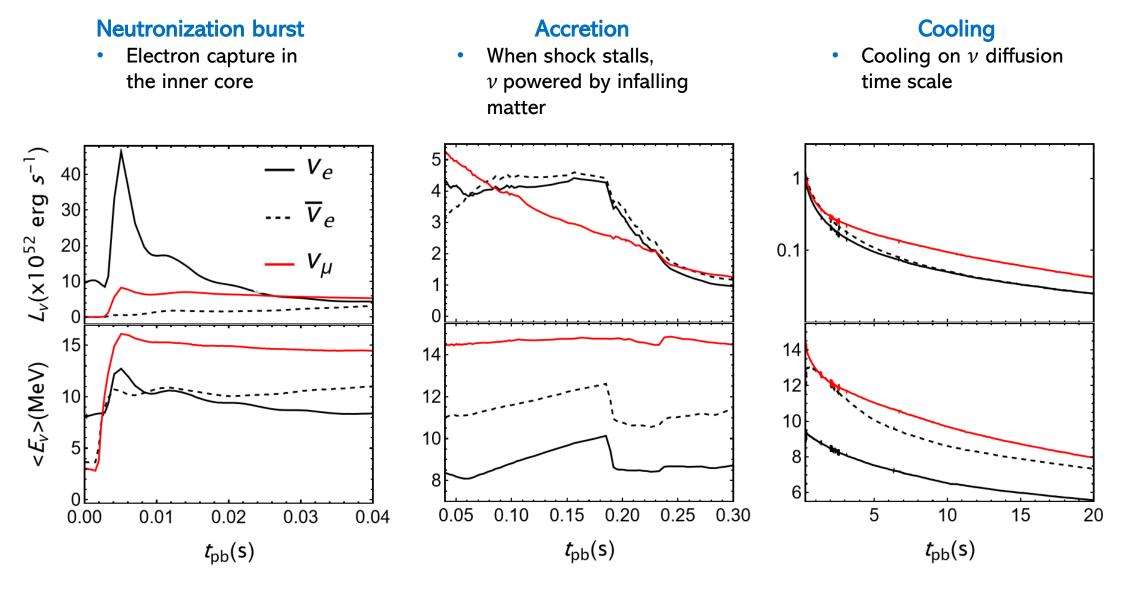
$$s_{\mathbf{k}} = \int \frac{d\cos\delta}{2} \frac{d\phi}{2\pi} \frac{\sqrt{w}dw}{\frac{\sqrt{\pi}}{2}} \frac{dz}{2} du \left[\frac{\rho Y_1}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} \left[\frac{\rho Y_2}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} e^{u - \eta_3} e^{w - \eta_4} \sqrt{u(u - x)} [H_u^+ H_u^- H_v^+ H_v^- F_+^2]_{v = u - x}$$
(3.49)

$$s_{\mathbf{l}} = \int \frac{d\cos\delta}{2} \frac{d\phi}{2\pi} \frac{\sqrt{w}dw}{\frac{\sqrt{\pi}}{2}} \frac{dz}{2} du \left[\frac{\rho Y_1}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} \left[\frac{\rho Y_2}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} e^{u - \eta_3} e^{w - \eta_4} \sqrt{u(u - x)} [H_u^+ H_u^- H_v^+ H_v^- F_-^2]_{v = u - x}$$
(3.50)

$$s_{\mathbf{kl}} = \int \frac{d\cos\delta}{2} \frac{d\phi}{2\pi} \frac{\sqrt{w}dw}{\frac{\sqrt{\pi}}{2}} \frac{dz}{2} du \left[\frac{\rho Y_1}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} \left[\frac{\rho Y_2}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} e^{u - \eta_3} e^{w - \eta_4} \sqrt{u(u - x)} [H_u^+ H_u^- H_v^+ H_v^- F_+ F_-]_{v = u - x}$$
(3.51)

$$s_{\mathbf{k}\cdot\mathbf{l}} = \int \frac{d\cos\delta}{2} \frac{d\phi}{2\pi} \frac{\sqrt{w}dw}{\frac{\sqrt{\pi}}{2}} \frac{dz}{2} du \left[\frac{\rho Y_1}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} \left[\frac{\rho Y_2}{2m_N} \left(\frac{2\pi}{m_N T} \right)^{\frac{3}{2}} \right]^{-1} e^{u-\eta_3} e^{w-\eta_4} \sqrt{u(u-x)} \left[H_u^+ H_u^- H_v^+ H_v^- F_+ F_- \frac{\xi}{3} \right]_{v=u-x}$$
(3.52)

Supernova Neutrinos

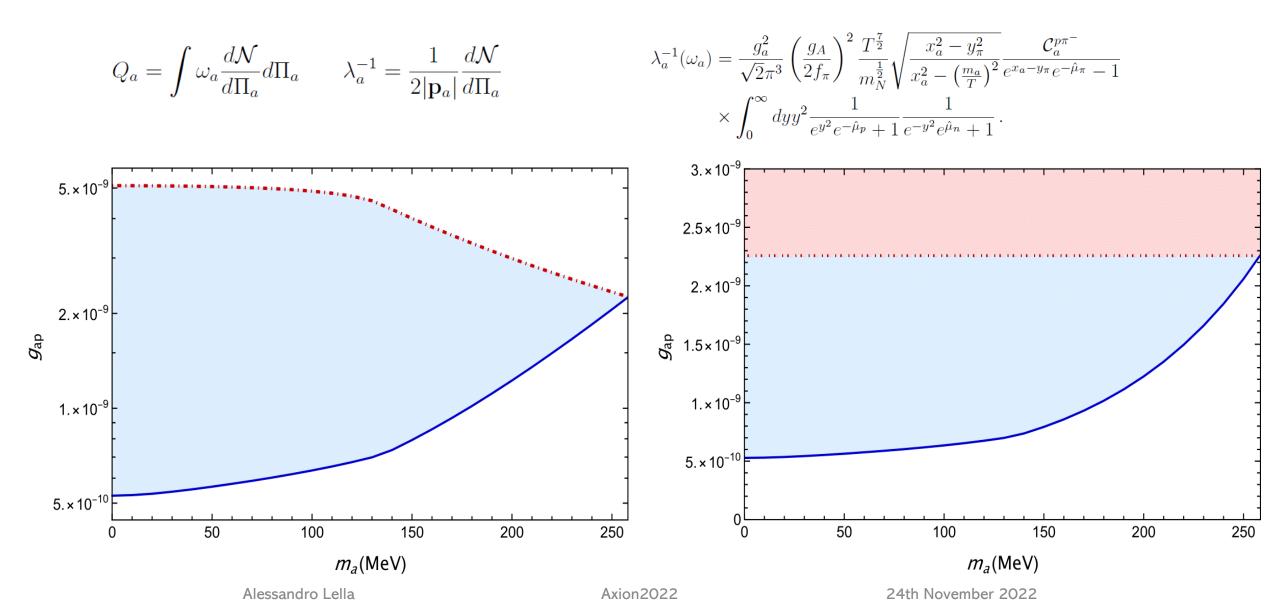


Alessandro Lella

Axion2022

24th November 2022

Estimation of the mean free path



Gravitational effects on axion emissivity

Gravitational effects lead to a shift of the axion energy and time intervals:

$$\omega_a \rightarrow \omega_a' = \alpha \omega_a \qquad dt \rightarrow dt' = \frac{t}{\alpha}$$

So the emissivity becomes:

$$Q'_{\alpha} = \int_{m_a}^{\infty} d\omega'_a \, \omega'_a \frac{dn}{d\omega'_a \, dt'} = \alpha^2 \int_{m'_a}^{\infty} d\omega'_a \, \omega'_a \frac{dn}{d\omega'_a \, dt'}$$

With:

$$m'_a = \frac{m_a}{\alpha} \simeq m_a \left(1 + \frac{M}{R}\right)$$

Axion couplings and contact term

$$\begin{array}{ll} C_{ap} = g_{ap}/g_a \\ C_{an} = g_{an}/g_a \end{array} \qquad \qquad C_{a\pi N} = \frac{C_{ap}-C_{an}}{\sqrt{2}g_A} \end{array}$$

$$\begin{split} \mathcal{A}_{np} &= (C_{+}^{2} + C_{-}^{2})(\frac{\mathbf{k}^{2}}{\mathbf{k}^{2} + m_{\pi}^{2}})^{2} + (4C_{+}^{2} + 2C_{-}^{2})(\frac{\mathbf{l}^{2}}{\mathbf{l}^{2} + m_{\pi}^{2}})^{2} + \\ &- 2[(C_{+}^{2} + C_{-}^{2}) - (3C_{+}^{2} + C_{-}^{2})\frac{\xi}{3}](\frac{\mathbf{k}^{2}}{\mathbf{k}^{2} + m_{\pi}^{2}})(\frac{\mathbf{l}^{2}}{\mathbf{l}^{2} + m_{\pi}^{2}}) + \\ &+ (3C_{a\pi n}^{2}\frac{\mathbf{k}^{2}\mathbf{p}_{a}^{2}}{(\mathbf{k}^{2} + m_{\pi}^{2})^{2}}) \end{split}$$

Decay lengths



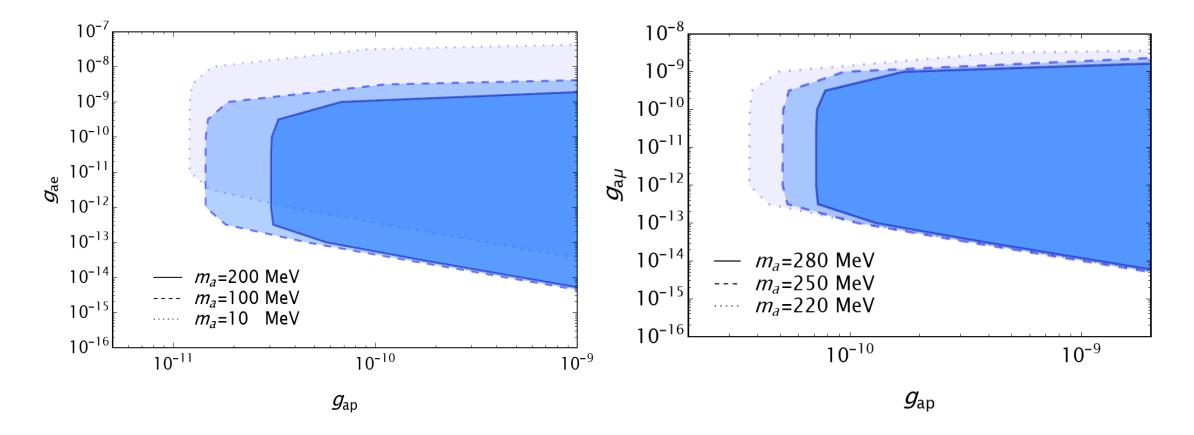
Alessandro Lella

Axion2022

24th November 2022

Energy deposition bound

$$E_{\rm dep} = \int dt \int_0^{R_{\rm PNS}} dr 4\pi r^2 \int_0^\infty d\omega_a \omega_a \frac{dn_a}{d\omega_a dt} \exp\left[-R_{\rm PNS}/\lambda_\gamma\right] \left(1 - \exp\left[R_{\rm env}/\lambda_\gamma\right]\right) < 0.1 \text{B}$$



Alessandro Lella

Axion2022

24th November 2022