

g .00000000000000

 $d\sigma$

HH-+4b and Higgs self-coupling g ullillille Rui Zhang (张瑞) University of Wisconsin-Madison, Wisconsin 高能物理研究所实验物理中心学术报告 31 Oct 2022 600 200 300 700 800 500 400 mнн [GeV]

physicstoday.scitation.org The Higgs boson discovery, 10 years later Authors reflect on the historic achievement a decade ago and examine the current state of particle physics.

п. спану

10th birthday in #Munich. You are welcome to join in! 🎉 mpp.mpg.de/en/higgs-10 #Higgs10 #particlephysics

îl 53

♡ 230

₾

20.02.2023

Q 3

nature.com Higgs Higgs hooray Nature Physics - We celebrate the ten-year anniversary of the discovery of the Higgs boson — a whopping 48 years after its prediction.

Why is the Higgs boson still interesting?

What we've learnt since Higgs discovery?

- All main production modes (ggF, VBF, VH, ttH+tH) established at > 5σ
- Couplings to gauge bosons and 3rd gen. charged fermions all observed
- Couplings to **2nd gen.** charged fermions: 3σ evidence for $H \rightarrow \mu\mu$; first constraints on $H \rightarrow cc$
- Mass measured to ~ 0.1%
- **J^{CP} = 0**⁺⁺ (large number of alternative hypotheses excluded at > 99.9% C.L.)
- Tremendous advances in our understanding of the Higgs boson since its discovery in 2012

... primarily, discovery of the Higgs particle is a direct evidence of the existence of a ubiquitous Higgs field.

.

$$V(\phi) = \frac{1}{2}\mu^2 \phi^2 + \frac{1}{4}\lambda \phi^4$$

When $\mu^2 < 0$ the potential has a minimum at:

$$|\phi|_{\min} = \sqrt{-\frac{\mu^2}{2\lambda}} \equiv \frac{\nu}{\sqrt{2}}, \nu = 246 \text{ GeV}$$

This is one form of the potential, is this the form taken by nature?

- SM cannot be a complete description of nature $V(\phi)$
 - Origin of neutrino masses
 - Origin of mass hierarchy?
 - Origin of baryonic asymmetry?
- Theories explaining (part) above questions require modification of the shape form

Higgs self-coupling

• Direct exploring the potential at each Higgs field value ϕ is not possible.

Processes of Higgs Boson split into two or three can shed light.

Probing the Higgs-self coupling is a key towards pinning down the exact shape of the potential.

R. Zhang

HH production at LHC

R. Zhang

IHEP

Standard Model Total Production Cross Section Measurements

Status: February 2022

Standard Model Total Production Cross Section Measurements

Status: February 2022

IHEP

Standard Model Total Production Cross Section Measurements

Status: February 2022

IHEP

Why is it small?

Destructive interference of the triangle and box amplitude

And even worse ...

- m_{HH} shape differs a lot
 - Remember we want to understand κ_{λ}

• $\kappa_{\lambda} = 2.4 \text{ maximum}$

destructive effect ~ 350 GeV

• Very soft kinematics for large κ_{λ}

HH decay channels

Large branching ratio						
	bb	WW	ττ	ZZ	ΥY	
bb	34 %					
WW	25 %	4.6 %				
ττ	7.3 %	2.7 %	0.39 %			
ZZ	3.1 %	1.1 %	0.33 %	0.069 %		
ΥY	0.26 %	0.10 %	0.028 %	0.012 %	0.0005 %	

- No golden channel
- bbbb:
 - The most abundant final state
 - Challenge from large multi-jet background.
- Combination is fundamental for observation!
- New physics can manifest as deviations in σ_{HH}

Non-resonant HH→4b

Largest rate ~ 1.5K in Run 2 Searching is challenged by the large background events from multi-jet (QCD multi-jet 90–95%, top quarks (5–10%)

Experimental challenges:

- Online trigger algorithms are complex
 - Depends on Level 1 (L1) seed, High level trigger (HLT) tracking, jet reconstruction / calibration, b-tagging, etc
 - Consistency with offline b-tagging
- Flavour tagging is crucial
- Higgs boson reconstruction affected by
 - Jet combinatorics
 - Missing energy from neutrinos in semi-leptonic B decays
 - Jet constituents from Initial/Final state radiation & Pile-up
- Precise model and rejection of multijet bkg are crucial

Trigger

"2b2j" trigger

- 2 b jets (35 GeV) + 2 extra jets (35 GeV)
- Important for low m_{HH} events

"2b1j" trigger

- 2 b jets (55 GeV) + 1 extra jets (100-150 GeV)
- Important for high m_{HH} events

- Analysis operating on trigger turn-on both of Level 1 and High level triggers
- Dedicated calibrations required for both levels

Flavour tagging

- Using DL1r tagger: Deep neural network plus recurrent neural network
 - Allowed for 10% looser b-jet efficiency working points maintaining same background rejection with respect to previous analysis
 - One of the largest sources of improvements for all ATLAS HH analyses!

Event selection — kinematics

m_{H1} [GeV]

Strips ~80 GeV due to X_{Wt} cut

IHEP

Background estimation

• Data[D](x) = $\begin{pmatrix} Data[B](x) \\ Data[A](x) \\ R(x) \end{pmatrix} \times Data[C](x)$

- 2b events can be reweighted to 4b (kinematically similar)
- A neural network is adopted to learn R(x)
 - Found better performance with NNs than with other methods (iterative reweighting, BDTs) specially modelling steeply falling / peaking distributions
 - Construct following loss function

$$\mathcal{L}(R(x)) = \mathbb{E}_{x \sim p_{2b}} \left[\sqrt{R(x)} \right] + \mathbb{E}_{x \sim p_{4b}} \left[\frac{1}{\sqrt{R(x)}} \right]$$

such that $\arg \min_{R} \mathcal{L}(R(x)) = \frac{p_{4b}(x)}{p_{2b}(x)}$

Background estimation performance

Reweighting improves the agreement with 4b events significantly.

Background estimation validation

Comprehensive validations are conducted

Control Data Sample	Definition	Usage
Control Region (CR)	Events with $X_{HH} > 1.6$ and within the circle defined by: $\sqrt{\left(m_{H1} - 1.05 \cdot 124 \text{GeV}\right)^2 + \left(m_{H2} - 1.05 \cdot 117 \text{GeV}\right)^2} = 45 \text{GeV}$	Background estimation (ggF and VBF)
2 <i>b</i>	Remove the ≥ 4 <i>b</i> -tagged central jets selection and require exactly 2 <i>b</i> -tagged central jets plus two additional untagged central jets	Background estimation (ggF and VBF)
3 <i>b</i> 1f	Remove the ≥ 4 <i>b</i> -tagged central jets selection and require exactly 3 <i>b</i> -tagged central jets plus one central jet failing a looser <i>b</i> -tagging requirement	Background estimation valida- tion (ggF and VBF), addi- tional background modeling un- certainty (ggF only)
Reverse $ \Delta \eta_{HH} $	Remove the $ \Delta \eta_{HH} < 1.5$ selection and require $ \Delta \eta_{HH} > 1.5$	Background estimation valida- tion (ggF only)
Shifted region	Shift the center of the SR in the m_{H1} - m_{H2} plane to avoid overlap with the nominal SR	Background estimation valida- tion (ggF only)

- In particular:
 - Reversed $|\Delta \eta_{HH}|$ region to check nuisance parameter pulls
 - 3b1f, one jet fails a looser b-tagging criterion, to check residual of systematics coverage
 - Multiple shifted regions to check higher level behaviours

Categorisation

ggF signal region

Events are categorised in 6 categories in ggF and 2 categories in VBF.

 $|\Delta \eta_{HH}| < 0.5, X_{HH} < 0.95$ $|\Delta \eta_{HH}| < 0.5, X_{HH} > 0.95$ $0.5 < |\Delta \eta_{HH}| < 1.0, X_{HH} < 0.95$ $0.5 < |\Delta \eta_{HH}| < 1.0, X_{HH} > 0.95$ $|\Delta \eta_{HH}| > 1.0, X_{HH} < 0.95$ $|\Delta \eta_{HH}| > 1.0, X_{HH} > 0.95$ VBF signal region $|\Delta \eta_{HH}| < 1.5$ $|\Delta \eta_{HH}| > 1.5$ S 800 ggł Categorisation improves S/B in certain categories, therefore improves sensitivity.

Systematic uncertainties

- The major uncertainties are bkg estimation uncertainty
 - Statistical: 2b statistics + DNN variation under bootstrapped deep ensembles (100 trainings)

- Alternative vs nominal estimate (A vs A')
- 3b1f region non-closure
- Normalisation uncertainty from 2b/4b CR
- Signal MC is affected by standard jet energy scale, jet energy resolution, flavour tagging, luminosity, pileup, modelling, ...

Results

Results compatible with SM

No significant deviations found

```
SM cross-section limit at 5.4 (8.1) \times SM
observed (expected)
```

Constraints on κ_{λ} [-3.9, 11.1] from CL_S limits at 95% CL [-3.5, 11.3] from profile likelihood scan at $2\sigma_{\underline{s}}^{\overline{d}}$

Constraints on K_{2V} [-0.03, 2.11] from CLS limits at 95% CL [0, 2.1] from profile likelihood scan at 2σ

Significant improvements w.r.t 36 fb⁻¹ ggF and previous 127 fb⁻¹ <u>VBF</u> results!

- Signal categorisation
- More precise background estimate
- More performant b-tagging

	Observed Limit	-2σ	- 1σ	Expected Limit	+1 <i>o</i>	+2 σ
$\sigma_{ m ggF}/\sigma_{ m ggF}^{ m SM}$	5.5	4.4	5.9	8.2	12.4	19.6
$\sigma_{ m VBF}/\sigma_{ m VBF}^{ m SM}$	130.5	71.6	96.1	133.4	192.9	279.3
$\sigma_{\rm ggF+VBF}/\sigma_{\rm ggF+VBF}^{\rm SM}$	5.4	4.3	5.8	8.1	12.2	19.1

-0.5

0.0

0.5

10

50

75

10.0

 κ_{λ} (κ_{2V} =1.0, κ_{V} =1.0)

12.5

2.5

0.0

-5.0

25

 κ_{2V} (κ_{λ} =1.0, κ_{V} =1.0)

20

Comparing with CMS 4b results

Obs (Exp)	ATLAS	CMS (resolved)	CMS (boosted)
SM signal strength	5.4	3.9	9.9
	(8.1)	(7.8)	(5.1)
κλ	[-3.5,11.3]	[-2.3, 9.4]	[-9.9,16.9]
	([-5.4,11.4])	([-5.0,12.0])	([-5.1,12.2])
κ2∨	[0, 2.1]	[-0.1, 2.2]	[0.6,1.4]
	([-0.1,2.1])	([-0.4,2.5])	([0.7,1.4])

• A few key differences between ATLAS and CMS (resolved)

• Validation region

• 3b instead of 2b for background estimation

HH combination

- <u>ATLAS-CONF-2021-052</u> <u>ATLAS-CONF-2022-050</u>
- Top 3 HH decay channels are combined to reach the best sensitivity
 - **3x improvement** w.r.t. six channel combination results at 36 fb⁻¹
 - 2x comes from luminosity increase, rest from improved analysis techniques

Probing self-coupling

- HH is ideal to study κ_{λ} , κ_{2V} but not powerful to constrain κ_t , κ_V , κ_b , κ_τ
- Combining HH + H could simultaneously constrain above parameters
 - Higher order corrections are required; HH is sensitive to κ_t through H decays, while single H is sensitive to κ_λ via electro-weak corrections

These corrections affect the **inclusive** cross-sections, Higgs-boson **branching fractions** and differential **distributions**.

Self-coupling constrains

- Run 2 bbyy, bbtt, 4b are combined with Run 2 yy, 4l, tt, WW, bb
 - In addition to κ_{λ} , the coupling modifiers κ_t , κ_V (κ_t , κ_V , κ_b , κ_{τ}) are considered in double (single) Higgs processes
 - The overlap between/within HH and H analyses is negligible or has minor impact on results
 Uncertainties across
 Uncertainties across
 Indext and H analyses is negligible or has minor has minor and the statement of the statement
 - Uncertainties across channels are correlated when relevant
 - Constraints on κλ
 [-0.4, 6.3] if assume other κ=1
 [-1.3, 6.1] if no assumption on other κ

[-2.3, 10.3] in <u>2019 combination</u>

2D contours

• Interesting κ pairs are also probed

Other results

HL-LHC projection

- <u>ATL-PHYS-PUB-2022-001</u> <u>ATL-PHYS-PUB-2021-044</u> <u>ATL-PHYS-PUB-2022-005</u>
- ${\circ}\,$ Full Run 2 ATLAS bbyy and bbtt and their combination projected at HL-LHC
- Probed assumptions on the systematic uncertainties in four scenarios
 - Baseline: halved theoretical uncertainties + scaled Run 2 systematic uncertainties
 - New triggers, increased pile-up level, and detector upgrades effects not considered
- HH observation with baseline or without systematic uncertainties: 3.2σ or 4.6σ
- $\kappa_{\lambda} 1\sigma$ CL interval [0.5, 1.6] (baseline) or [0.6, 1.5] (w/o syst) from -2 Δ ln(L) scans

IHEP

EFT interpretation

ATL-PHYS-PUB-2022-019

- $bb\gamma\gamma$ and $bb\tau\tau$ HEFT interpretation and their combination
- Upper limits are set for the benchmark models and on cgghh and ctthh Wilson coefficients

	$ b\bar{b}$	$\gamma\gamma$	$bar{b} au^{-}$	$^{+}\tau^{-}$	Combi	nation
Wilson coefficient	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
$c_{gghh} \ c_{tthh}$	$\left \begin{array}{c} [-0.4, 0.5]\\ [-0.3, 0.8] \end{array}\right $	[-0.5, 0.7] [-0.4, 0.9]	$\begin{bmatrix} -0.4, 0.4 \\ [-0.3, 0.7] \end{bmatrix}$	[-0.4, 0.4] [-0.2, 0.6]	$\left \begin{array}{c} [-0.3, 0.4] \\ [-0.2, 0.6] \end{array} \right $	[-0.3, 0.3] [-0.2, 0.6]

Summary

- Di-Higgs search and measurement is an important LHC topic to understand the exact form of Higgs potential.
- Various analyses targeting final states have done and are ongoing at ATLAS; a combine of them will give the best sensitivity.
 - Benefit from ATLAS combined performance improvements in Jets, b-tagging, etc.
 - 4b channel being the dominant channel remains challenging and will be crucial to help go beyond to HHH→6b.
- Projection to HL-LHC from current full Run 2 results predicts 3σ at ATLAS, promising to reach 5σ together with CMS.

Backup

Background estimation inputs

ggF	VBF
 log(p_T) of the 2nd leading Higgs boson candidate jet log(p_T) of the 4th leading Higgs boson candidate jet log(ΔR) between the closest two Higgs boson candidate jets log(ΔR) between the other two Higgs boson candidate jets log(ΔR) between the other two Higgs boson candidate jets Average absolute η value of the Higgs boson candidate jets log(p_T) of the di-Higgs system ΔR between the two Higgs boson candidates Δφ between jets in the leading Higgs boson candidate Δφ between jets in the subleading Higgs boson candidate log(X_{Wt}) Number of jets in the event Trigger class index as one-hot encoder 	 Maximum di-jet mass out of the possible pairings of the four Higgs boson candidate jets Minimum di-jet mass out of the possible pairings of the four Higgs boson candidate jets Energy of the leading Higgs boson candidate Energy of the subleading Higgs boson candidate Energy of the subleading Higgs boson candidate Second smallest Δ<i>R</i> between the jets in the leading Higgs boson candidate (out of the three possible pairings for the leading Higgs candidate) Average absolute η value of Higgs boson candidate jets log(X_{Wt}) Trigger class index as one-hot encoder Year index as one-hot encoder (for years inclusive training)

Resonant combined search

4b non-resonant cutflow

	Data	ggF Signal		VBF Signal	
		SM	$\kappa_{\lambda} = 10$	SM	$\kappa_{2V} = 0$
Common preselection					
Preselection	5.70×10^{8}	526.6	7337.7	22.3	626.1
Trigger class	2.49×10^{8}	381.8	5279.1	16.1	405.2
ggF selection					
Fail VBF selection	2.46×10^{8}	376.6	5198.0	13.9	334.4
At least 4 <i>b</i> -tagged central jets	1.89×10^{6}	86.0	1001.7	1.9	65.2
$ \Delta \eta_{HH} < 1.5$	1.03×10^{6}	71.9	850.6	0.9	46.4
$X_{Wt} > 1.5$	7.51×10^{5}	60.4	569.0	0.7	43.1
X_{HH} < 1.6 (ggF signal region)	1.62×10^{4}	29.1	182.7	0.2	23.0
VBF selection					
Pass VBF selection	3.30×10^{6}	5.2	81.1	2.2	70.7
At least 4 <i>b</i> -tagged central jets	2.71×10^{4}	1.1	15.3	0.7	27.6
$X_{Wt} > 1.5$	2.18×10^4	1.0	11.2	0.7	26.5
$X_{HH} < 1.6$	5.02×10^{2}	0.5	3.1	0.3	17.3
$m_{HH} > 400 \text{GeV} \text{ (VBF signal region)}$	3.57×10^{2}	0.4	1.8	0.3	16.4

4b resonant yields table

m(X) [GeV]	Corrected $m(HH)$ range [GeV]	Data	Background model	Spin-0 signal model
260	[250, 321]	18554	18300 ± 110	503 ± 43
500	[464, 536]	2827	2866 ± 22	105.4 ± 5.7
800	[750, 850]	358	366.2 ± 7.3	37.7 ± 1.7
1200	[1079, 1250]	68	52.6 ± 1.7	11.71 ± 0.62

4b non-resonant mass plane

4b non-resonant discriminants

HL-LHC baseline scenario

0.6
1.0
0.5
0.5
1.0
0.0
1.0
1.0
1.0
1.0
0.0
0.5
-

Process	HL-LHC Scale Factor
Signal	
ggF HH	1.18
VBF HH	1.19
Backgrounds	
ggF H	1.13
VBF H	1.13
WH	1.10
ZH	1.12
tt H	1.21
Others	1.18

		Significa	nce $[\sigma]$	Combined signal
Uncertainty scenario	$b\bar{b}\gamma\gamma$	$b\bar{b}\tau^+\tau^-$	Combination	strength precision [%]
No syst. unc.	2.3	4.0	4.6	-23/+23
Baseline	2.2	2.8	3.2	-31/+34
Theoretical unc. halved	1.1	1.7	2.0	-49/+51
Run 2 syst. unc.	1.1	1.5	1.7	-57/+68

R. Zhang

28.02.2023

HL-LHC self-coupling

	Likelihood scan 1σ CI for κ_λ				
Uncertainty configuration	$b \overline{b} \gamma \gamma$	$b\bar{b}\tau^+\tau^-$	Combination		
No syst. unc.	[0.4, 1.8]	[0.5, 1.6]	[0.6, 1.5]		
Baseline	[0.3, 1.9]	$[0.3, 1.9] \cup [5.2, 6.7]$	[0.5, 1.6]		
Theoretical unc. halved	[-0.1, 4.3]	$[0.0, 2.9] \cup [4.2, 7.1]$	[0.2, 2.2]		
Run 2 syst. unc.	[-0.1, 4.3]	[-0.2, 7.3]	[0.1, 2.5]		
	Likelihood scan 2σ CI for κ_λ				
Uncertainty configuration	$b \overline{b} \gamma \gamma$	$b\bar{b}\tau^+\tau^-$	Combination		
No syst. unc.	[-0.1, 4.6]	$[0.1, 2.5] \cup [4.5, 6.5]$	[0.3, 2.1]		
Baseline	[-0.2, 4.6]	[-0.3, 7.4]	[0.0, 2.7]		
Theoretical unc. halved	[-0.8, 5.7]	[-0.8, 8.0]	[-0.4, 5.6]		
Run 2 syst. unc.	[-1.0, 5.8]	[-1.2, 8.3]	[-0.7, 5.7]		

Snowmass new decay mode HH→WWyy, TTYY FTR-21-003

- Analysis using Delphes CMS HL-LHC simulation samples
- First study of HL-LHC projection of HH→WWγγ, ττγγ
- Signal extraction: 1D fit in m_{YY}
- Presence of leptons and photons, DNN helps reducing background

Lu Nan, Higgs Pair 2022

Snowmass new production mode ttHH

- ttHH can provide
 - complimentary constraint on κ_{λ}
 - sensitivity to BSM models such as Minimal Composite Higgs Model (MCHM)
- Expected upper limit σ(ttHH) < 3.14 x SM

g 0000

g 0000

CMS-PAS-FTR-21-010

e/μ

IHFP

HL-LHC HH prospect with Snowmass updates

summary of YR18 results and Snowmass updates

channels	ATLAS	CMS
bbbb	0.61σ	0.95σ
bbтт	<mark>2.8σ</mark> (2.1σ)	1.4σ
bbyy	<mark>2.2σ</mark> (2.0σ)	<mark>2.16σ</mark> (1.8σ)
bbVV(llvv)	-	0.56σ
bbZZ(IIII)	-	0.37σ
WWγγ + ττγγ	-	0.22σ

• Expected upper limit σ (ttHH) < 3.14 xSM

- Naively combining latest projections from ATLAS and CMS (sum in quadrature individual results): 4.6 σ at HL-LHC wrt YR18 result 4.0 σ
- New analysis techniques, inclusion of boosted Higgs signatures, trigger improvements are expected. Promising to reach 5.0σ discovery at HL-LHC.

Lu Nan, Higgs Pair 2022

HEFT benchmark definitions

 A cluster analysis is used to define groups of different HEFT models according to their impact on the shape of the m_{HH} distribution

Benchmark model	c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
SM	1	1	0	0	0
BM 1	3.94	0.94	1/2	1/3	-1/3
BM 2	6.84	0.61	0.0	-1/3	1/3
BM 3	2.21	1.05	1/2	1/2	-1/3
BM 4	2.79	0.61	-1/2	1/6	1/3
BM 5	3.95	1.17	1/6	-1/2	-1/3
BM 6	5.68	0.83	-1/2	1/3	1/3
BM 7	-0.10	0.94	1/6	-1/6	1

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_\lambda < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

2D contours

• Interesting κ pairs are also probed

