SCATTERING THEORY – THE PARTIAL WAVE STATIONARY STATES

Zhiguang Xiao Reference: Taylor, Scattering theory

2022年12月19日

- ❶ 分波散射态、分波散射振幅
 - 分波的 S 矩阵
 - 自由的径向波函数
 - 分波散射态
- ② 分波的 LIPPMANN-SCHWINGER 方程及分波振幅
- ③ 分波波函数及振幅的性质
- 正则 (REGULAR) 解, JOST 函数及玻恩展开收敛性
- - 单变量解析函数
 - 正则解的解析性质 (关于 p)
 - Jost 函数和分波 S 矩阵元的解析性
- 🜀 束缚态与 LEVINSON 定理
 - 阈 (p = 0) 附近的行为

Section 1

分波散射态、分波散射振幅

• Summary: go to page (15)

THE PARTIAL-WAVE S MATRIX

前面我们考虑两无自旋粒子的散射,相互作用是球对称的,

• 那么 S 是对角的

$$\langle E'l'm'|S|Elm\rangle = \delta(E'-E)\delta_{ll'}\delta_{mm'}\mathbf{s}_l(p), \quad \mathbf{s}_l(p) = e^{2i\delta_l(p)},$$

- $\delta_l(p)$ 相移: 有一个 $n\pi$ 不确定性, $n \in \mathbb{Z}$ (modulo π ambiguity)
- 平面波 |**p**⟩ 可以用 |*Elm*⟩ 展开

$$\langle \mathbf{p}|E, l, m\rangle = (mp)^{-1/2}\delta(E_p - E)Y_l^m(\hat{\mathbf{p}})$$

由此可得

$$f(\mathbf{p}' \leftarrow \mathbf{p}) = \sum_{l} (2l+1) f_l(p) P_l(\hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}),$$
$$f_l(p) = \frac{\mathbf{s}_l - 1}{2ip} = \frac{e^{i\delta_l(p)} \sin \delta_l(p)}{p}, \quad \mathbf{s}_l(p) = e^{2i\delta_l(p)}$$

 $f_l(p)$ 为分波振幅。

微分散射截面 $\frac{46}{10} = |f|^2$, 及总截面 $\sigma = \sum_{l} \sigma_{l}(p)$

像分散射截面
$$\frac{\omega}{\omega} = |J|^2$$
,及尽截面 $\sigma = \sum_l \sigma_l$

$$u_{32}$$
 (8)

Unitary bound

$$\sigma_l(p) = 4\pi (2l+1)|f_l(p)|^2 = 4\pi (2l+1) \frac{\sin^2 \delta_l(p)}{n^2}$$

 $\sigma_l(p) \le \frac{4\pi(2l+1)}{n^2}$

傲分散射截面
$$\frac{\omega_0}{d\Omega}$$
 = $|f|^2$, 及总截面 σ = $\sum_l \sigma_l$

自由的径向波函数

自由的空间波函数 $\langle \mathbf{x} | Elm \rangle = \frac{y(r)}{r} Y_l^m(\hat{x})$

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} + p^2\right] y(r) = 0, \quad p = (2mE)^{1/2}$$

有两个独立解, 有物理意义的解在 $r \to 0$ 时趋于 0。在 $r \to 0$ 的极限下, $l(l+1)/r^2$ 项主导,两个独立解的行为 r^{l+1} , r^{-l} , 物理上可接受的解的行为应该是 r^{l+1} , 解应为 Riccati-Bessel 函数

$$\hat{j}_l(z) \equiv z j_l(z) \equiv \left(\frac{\pi z}{2}\right)^{1/2} J_{l+1/2}(z) = z^{l+1} \sum_{n=0}^{\infty} \frac{(-z^2/2)^n}{n!(2l+2n+1)!!}$$

 j_i : 球贝塞尔函数。在0附近的行为 $\hat{j}_i = \frac{z^{i+1}}{(2l+1)!!} [1 + O(z^2)]$,有内积, $\int_0^\infty dr \hat{j}_i(p'r) \hat{j}_i(pr) = \frac{\pi}{2} \delta(p'-p)$,由此得到归一化的波函数

$$\langle \mathbf{x}|E,l,m\rangle = i^l \left(\frac{2\mathrm{m}}{\pi p}\right)^{1/2} \frac{1}{r} \hat{\jmath}_l(pr) Y_l^m(\hat{\mathbf{x}})$$

Notice: l = 0, $r \to 0$, $\langle \mathbf{x} | E, l, m \rangle \to \text{finite}$. $l \ge 1$, $\langle \mathbf{x} | E, l, m \rangle \to 0$.

另一个解,
$$r \to 0$$
, r^{-l} 行为,Riccati-Neumann 函数 $\hat{n}_l(pr)$

$$\hat{n}_l(z)\equiv zn_l(z)\equiv (-)^l\Big(rac{\pi z}{2}\Big)^{1/2}J_{-l-1/2}(z)$$

方程的一般解为此两个函数的线性叠加。

 $=z^{-l}\sum_{n=0}^{\infty}\frac{(-z^2/2)^n(2l-2n-1)!!}{n!}$

 $\sim z^{-l}(2l-1)!![1+O(z^2)], [z\to 0]$

$$r \to \infty$$
 时, $l(l+1)/r^2 \to 0$, 只有 p^2 主导,方程解为 $e^{\pm ipr}$ 的线性 叠加,趋于 $e^{\pm ipr}$ 的函数为 Riccati-Hankel 函数 $\hat{h}_l^\pm(pr)$

$$\hat{h}_l^{\pm}(z) = \hat{n}_l(z) \pm i\hat{j}_l(z) = e^{\pm i(z - l\pi/2)} [1 + O(z^{-1})]$$

所以,

$$\hat{\jmath}_l(z) = \frac{\hat{h}_l^+(z) - \hat{h}_l^-(z)}{2i} = \sin(z - \frac{1}{2}l\pi) + O(z^{-1}), \quad [z \to \infty, z \in \mathbb{R}]$$

$$\hat{n}_l(z) \to \cos(z - \frac{1}{2}l\pi)$$

Riccati Functions:

$$\hat{\jmath}_l(-z) = (-)^{l+1} \hat{\jmath}_l(z) , \quad \hat{n}_l(-z) = (-)^l \hat{n}_l(z)$$

$$\hat{h}_l^{\pm}(-z) = (-)^l \hat{h}_l^{\mp}(z) , \quad [\hat{h}_l^{\pm}(z)]^* = \hat{h}_l^{\mp}(z^*)$$

平面波用球面波展开:

 $|\mathbf{p}\rangle = \int dE \sum_{l} |E, l, m\rangle\langle E, l, m|\mathbf{p}\rangle = (\mathbf{m}p)^{-1/2} \sum_{l} |E_p, l, m\rangle Y_l^m(\hat{\mathbf{p}})^*,$

 $\langle \mathbf{x} | \mathbf{p} \rangle = \left(\frac{2}{\pi}\right)^{1/2} \frac{1}{pr} \sum_{l \ m} i^l \hat{\jmath}_l(pr) \ Y_l^m(\hat{\mathbf{x}}) \ Y_l^m(\hat{\mathbf{p}})^*$

 $= (2\pi)^{-3/2} \frac{1}{pr} \sum_{\mathbf{r}} (2l+1) i^l \hat{\jmath}_l(pr) P_l(\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})$

分波散射态

我们有了 $|E,l,m\rangle$ 自由的球面波,可以定义有相互作用的散射态的球面波 $|E,l,m+\rangle$

$$|E, l, m+\rangle = \Omega_{+}|E, l, m\rangle, \quad \langle E', l, m+|E, l, m+\rangle = \delta(E-E')\delta_{l'l}\delta_{m'm}$$

- $|E, l, m+\rangle$ 是 H 的本征态: 由 $H\Omega_+ = \Omega_+ H_0$ 可得, $H|E, l, m+\rangle = \Omega_+ H_0 |E, l, m\rangle = E|E, l, m+\rangle$.
- 可以认为 $|E,l,m+\rangle$ 是 $|E,l,m\rangle$ 对应的 t=0 时的散射态。
- L 与 Ω_+ 对易, $|E, l, m+\rangle$ 是 \mathbf{L}^2 , L_3 的本征态, $\mathbf{L}^2|E, l, m+\rangle = l(l+1)|E, l, m+\rangle$, $L_3|E, l, m\rangle = m|E, l, m\rangle$:

$$\langle \mathbf{x}|E,l,m+\rangle = i^l \left(\frac{2\mathbf{m}}{\pi p}\right)^{1/2} \frac{1}{r} \psi_{l,p}^+(r) Y_l^m(\hat{\mathbf{x}})$$

当 V=0 时, $\psi_{l,p}^+(r) \rightarrow \hat{\jmath}_l(pr)$

• Normalization, $\stackrel{,,P}{\boxplus} \langle E', l, m + | E, l, m + \rangle = \delta(E - E') \delta_{l'l} \delta_{m'm}$

$$\int_0^\infty dr \psi_{l,p'}^{+*}(r) \psi_{l,p}^{+}(r) = \frac{\pi}{2} \delta(p'-p)$$

 $\psi_{lp}^+(r)$ 称作归一化的径向波函数。(对 out-态也是类似的)

 $|\mathbf{p}+\rangle$ 可以用 $|E,l,m+\rangle$ 展开:

$$|\mathbf{p}\rangle = (\mathbf{m}p)^{-1/2} \sum_{l,m} |E_p, l, m\rangle Y_l^m(\hat{\mathbf{p}})^*$$
$$\Rightarrow |\mathbf{p}+\rangle = (\mathbf{m}p)^{-1/2} \sum_{l,m} |E_p, l, m+\rangle Y_l^m(\hat{\mathbf{p}})^*$$

坐标空间, 利用 $P_l(\hat{\mathbf{x}}\cdot\hat{\mathbf{p}}) = \frac{4\pi}{2l+1}\sum_m Y_l^{m*}(\hat{\mathbf{x}})Y_l^m(\hat{\mathbf{p}})$

$$\langle \mathbf{x} | \mathbf{p} + \rangle = (2\pi)^{-3/2} \frac{1}{pr} \sum_{l} (2l+1)i^{l} \psi_{l,p}^{+}(r) P_{l}(\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})$$

 ψ_{lp}^{+} 满足薛定谔方程: 边界条件 $\psi_{l,p}(0) = 0$ (后面省略上指标 +)

$$\left[rac{d^2}{dr^2} - rac{l(l+1)}{r^2} - U(r) + p^2
ight] \psi_{l,p}(r) = 0, \quad U(r) \equiv 2 \text{m } V(r)$$

同时满足归一化条件:

$$\int_{0}^{\infty} dr \psi_{l,p'}^{+*}(r) \psi_{l,p}^{+}(r) = \frac{\pi}{2} \delta(p'-p)$$

$$\langle \mathbf{x} | \mathbf{p} + \rangle = (2\pi)^{-3/2} \frac{1}{pr} \sum_{l} (2l+1) i^{l} \psi_{l,p}(r) P_{l}(\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})$$

 $r \to \infty$ 时, 我们可以得到散射振幅 $f(p\hat{\mathbf{x}} \leftarrow \mathbf{p})$ 的分波展开

$$\langle \mathbf{x} | \mathbf{p} + \rangle \xrightarrow{r \to \infty} (2\pi)^{-3/2} \left[e^{i\mathbf{p} \cdot \mathbf{x}} + f(p\hat{\mathbf{x}} \leftarrow \mathbf{p}) \frac{1}{r} e^{ipr} \right]$$

$$= (2\pi)^{-3/2} \frac{1}{pr} \sum_{l,m} (2l+1) [i^l \hat{\jmath}_l(pr) + pf_l(p) e^{ipr}] P_l(\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})$$

$$\Rightarrow \psi_{l,p}(r) \xrightarrow{r \to \infty} \hat{\jmath}_l(pr) + pf_l(p) e^{i(pr-l\pi/2)}$$

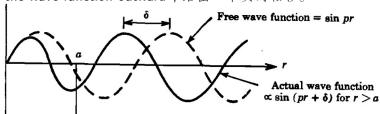
$$\xrightarrow{r \to \infty} \hat{\jmath}_l(pr) + pf_l(p)\hat{h}_l^+(pr)$$
$$\xrightarrow{r \to \infty} e^{i\delta_l(p)} \sin[pr - \frac{l\pi}{2} + \delta_l(p)]$$

 $\hat{\jmath}_l(pr)$ 对应渐近的自由的入射态的 l 分波波函数, $pf_l\hat{h}_l^+$ 对应的散射后的渐近的自由的出射波 l 分波。 (利用 $\hat{\jmath}(pr) \to \sin(pr - \frac{1}{2}l\pi)$, $pf_l = e^{i\delta_l}\sin\delta_l$, $\hat{h}_l^+(pr) \to e^{i(pr - l\pi/2)}$)

$$\psi_{l,p}(r) \xrightarrow{r \to \infty} e^{i\delta_l(p)} \sin[pr - \frac{l\pi}{2} + \delta_l(p)]$$

对比自由的分波波函数 $\hat{\jmath}_l(pr) \to \sin(pr - \frac{1}{2}l\pi)$, 振幅的模相差一个位相 $\delta_l(p)$, 所以称 $\delta_l(p)$ 为相移。我们可以从径向薛定谔方程及边界条件的解得到散射振幅和相移.

例: 对于方势阱, 吸引势, 阱内 V < 0, 动能比外面大, 所以阱内的位相变化的比阱外的快, 位相比自由平面波超前, "pull the wave function inward", 给出一个正的相移。反之, 排斥势, "push the wave function outward", 给出一个负的相移。



我们可以脱离三维讨论,只考虑单个分波的径向方程,

• 由 $\hat{j} = (\hat{h}^+ - \hat{h}^-)/2i$, $pf_l = \frac{1}{2i}(\mathbf{s}_l - 1)$, 无穷远渐近条件

$$\psi_{l,p} \rightarrow \frac{i}{2}[\hat{h}_l^- - \mathbf{s}_l(p)\hat{h}_l^+(pr)]$$

- 第一项可以看成是内行波,第二项可以看成是散射之后的外 行波。
- 由于没有粒子产生湮灭,所以 $|\mathbf{s}|=1$, $\mathbf{s}=e^{2i\delta_l}$ 只是纯相位。

SUMMARY

• 无自旋分波散射态径向波函数: (pg. 10)

$$\langle \mathbf{x}|E,l,m+\rangle = i^l \left(\frac{2\mathbf{m}}{\pi p}\right)^{1/2} \frac{1}{r} \psi_{l,p}^+(r) Y_l^m(\hat{\mathbf{x}}),$$

$$\langle \mathbf{x}|\mathbf{p}+\rangle = (2\pi)^{-3/2} \frac{1}{pr} \sum_l (2l+1) i^l \psi_{l,p}(r) P_l(\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})$$

$$\int_0^\infty dr \psi_{l,p'}^{+*}(r) \psi_{l,p}^+(r) = \frac{\pi}{2} \delta(p'-p)$$

• 与分波散射态波函数及相移关系 (pg. 12)

$$\psi_{l,p}^{+}(r) \xrightarrow{r \to \infty} \hat{j}_{l}(pr) + pf_{l}(p)\hat{h}_{l}^{+}(pr)$$
$$\xrightarrow{r \to \infty} e^{i\delta_{l}(p)} \sin[pr - \frac{l\pi}{2} + \delta_{l}(p)]$$

● 与分波 s_l 关系 (pg. 13)

$$\psi_{l,p}^{+} \xrightarrow{r \to \infty} \frac{i}{2} [\hat{h}_{l}^{-} - \mathbf{s}_{l}(p)\hat{h}_{l}^{+}(pr)]$$

Section 2

分波的 LIPPMANN-SCHWINGER 方程及分波振幅

• Summary: go to page (22)

分波的 LIPPMANN-SCHWINGER 方程

我们可以将径向薛定谔方程 + 边界条件化为 $\psi_{l,p}(r)$ 的积分方程。 由 $|\mathbf{p}\pm\rangle = (\mathbf{m}p)^{-1/2} \sum_{l,m} |E_p, l, m\pm\rangle Y_l^m(\hat{\mathbf{p}})^*$

$$|\mathbf{p}\pm\rangle = |\mathbf{p}\rangle + G_0(E_p \pm i\epsilon) V|\mathbf{p}\pm\rangle$$

$$\Rightarrow |E_p, l, m\pm\rangle = |E_p, l, m\rangle + G_0(E_p \pm i\epsilon) V|E_p, l, m\pm\rangle$$

$$\langle \mathbf{x}|E, l, m\pm\rangle = \langle \mathbf{x}|E, l, m\rangle + \int d^3x' G_0(\mathbf{x}, \mathbf{x}') V(\mathbf{x}') \langle \mathbf{x}'|E, l, m\pm\rangle$$

定义
$$U(r) = 2 \text{m} V(r), r_{>} = \max\{r, r'\}, r_{>} = \min\{r, r'\}$$
 利用

$$\langle \mathbf{x}|E,l,m\pm\rangle = i^l \left(\frac{2\mathrm{m}}{\pi p}\right)^{1/2} \frac{1}{r} \psi_{lp}^{\pm}(r) Y_l^m(\hat{\mathbf{x}})$$

$$\psi_{lp}^{+}(r) = \hat{\jmath}_{l}(pr) + \left(\frac{1}{p}\right) \int dr' \, \hat{h}_{l}^{+}(pr_{>}) \hat{\jmath}_{l}(pr_{<}) \, U(r') \psi_{lp}^{+}(r'),$$

$$= \hat{\jmath}_{l}(pr) + \int dr' \, G_{l,p}^{0}(r,r') \, U(r') \psi_{lp}^{+}(r'), \quad G_{l,p}^{0}(r,r') = -\frac{\hat{h}_{l}^{+}(pr_{>}) \hat{\jmath}_{l}(pr_{<})}{p}$$

分波的 Lippmann-Schwinger 方程可以简写成算符形式:

 $\psi_{l,p} = \hat{\jmath}_l + G_{l,p}^0 U \psi_{l,p}$

可以有迭代的级数解

$$y_{ij} = \hat{y}_i + G^0 U \hat{y}_i + (G^0 U)^2 \hat{y}_i +$$

$$\psi_{l,p} = \hat{j}_l + G_{l,p}^0 U \hat{j}_l + (G_{l,p}^0 U)^2 \hat{j}_l + \dots$$

利用

以用
$$\langle \mathbf{x} | \mathbf{p} + \rangle = \left(\frac{2}{\pi}\right)^{1/2} \frac{1}{pr} \sum_{l} i^{l} \psi_{l,p}(r) Y_{l}^{m}(\hat{\mathbf{x}}) Y_{l}^{m*}(\hat{\mathbf{p}})$$

可以得到分波的振幅

$$f(\mathbf{p}' \leftarrow \mathbf{p}) = \sum_{l} (2l+1) f_{l}(p) P_{l}(\hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}) = -(2\pi)^{2} m \langle \mathbf{p}' | V | \mathbf{p} + \rangle,$$

$$= -(2\pi)^{2} m \int d^{3}x \langle \mathbf{p}' | \mathbf{x} \rangle \langle \mathbf{x} | \mathbf{p} + \rangle V(r)$$

$$= -(8\pi) \frac{m}{p^{2}} \int dr \sum_{l,m} Y_{l}^{m}(\hat{\mathbf{p}}') Y_{l}^{m*}(\hat{\mathbf{p}}) \hat{\jmath}_{l}(p'r) \psi_{lp}^{+}(r) V(r)$$

$$= -\frac{1}{p^{2}} \sum_{l} \int dr (2l+1) P_{l}(\hat{\mathbf{p}} \cdot \hat{\mathbf{p}}') \hat{\jmath}_{l}(p'r) \psi_{lp}^{+}(r) U(r)$$

得

$$f_l(p) = -\frac{1}{n^2} \int_0^\infty dr \hat{\jmath}_l(pr) \psi_{lp}^+(r) U(r)$$

上式也可以由玻恩级数

分波展开得到。 玻恩近似:

 $f(\mathbf{p}' \leftarrow \mathbf{p}) = -(2\pi)^2 \mathrm{m}(\langle \mathbf{p}' | V | \mathbf{p} \rangle + \langle \mathbf{p}' | V G(E + i\epsilon) V | \mathbf{p} \rangle + \dots)$

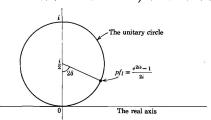
 $f_l(p) = -\frac{1}{n^2} \Big(\int_0^\infty dr \hat{\jmath}_l U \hat{\jmath}_l + \int_0^\infty dr \hat{\jmath}_l U G_{l,p}^0 U \hat{\jmath}_l + \dots \Big)$

利用前面 ψ_{lp} 的迭代解, 可得:

 $f_l(p) = -\frac{1}{n^2} \int_0^\infty dr \hat{\jmath}_l U \hat{\jmath}_l$

说明:

- 玻恩近似是实的。
- 由于幺正性, 严格的振幅 $f_l(p) = \frac{1}{p} e^{i\delta_l} \sin \delta_l$ 是复的。
- 只有在 δ (mod π) 很小的时候, 玻恩近似才成立。



SUMMARY

• $\psi_{l,p}$ 的分波的 Lippmann-Schwinger 方程: (1)

$$\psi_{l,p} = \hat{\jmath}_l + G^0_{l,p} U \psi_{l,p}, \quad G^0_{l,p}(r,r') = -\frac{\hat{h}_l^+(pr_>)\hat{\jmath}_l(pr_<)}{p}$$

迭代的级数解

$$\psi_{l,p} = \hat{\jmath}_l + G_{l,p}^0 U \hat{\jmath}_l + (G_{l,p}^0 U)^2 \hat{\jmath}_l + \dots$$

• 分波振幅 fl 的级数展开: (pg. 19)

$$f_l(p) = -\frac{1}{p^2} \int_0^\infty dr \hat{\jmath}_l(pr) \psi_{lp}^+(r) U(r)$$

= $-\frac{1}{p^2} \Big(\int_0^\infty dr \hat{\jmath}_l U \hat{\jmath}_l + \int_0^\infty dr \hat{\jmath}_l U G_{l,p}^0 U \hat{\jmath}_l + \dots \Big)$

• 第一项为 Born 近似

Section 3

分波波函数及振幅的性质

Summary (go to 31)

分波振幅的性质

分波径向波函数满足方程

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} + p^2 - \lambda U(r)\right] \psi_{l,p}(r) = 0$$

我们引入了一个 λ 参数,代表相互作用强度。假设V(r)除了特殊说明以外满足(实际上大多数只要满足括号中条件即可)

•
$$r \to \infty$$
, $V(r) = O(r^{-3-\epsilon})$, $\epsilon > 0$. $(V(r) = O(r^{-2-\epsilon}))$

•
$$r \to 0$$
, $V(r) = O(r^{-3/2+\epsilon})$. $(V(r) = O(r^{-2+\epsilon}))$

• V(r) 除了在有限点处有有限的跳跃外在 $0 < r < \infty$ 上连续。

若 $\lambda U(r) \ll |l(l+1)/r^2 - p^2|$ 项的话,方程近似自由的径向方程。 $\psi_{l,p}(r) \to \hat{\jmath}_l(pr), pf_l(p) \sim e^{i\delta_l} \sin \delta_l \to 0$ 。

- $\lambda \to 0$ 时, $f_l(p) \to 0$, $\delta_l \to n\pi$, $n \in \mathbb{Z}_{\circ}$
- 给定 $l, E \to \infty$ 时, $pf_l(p) \to 0, \delta_l \to n\pi, n \in \mathbb{Z}_{\circ}$
- 若 $p \to \infty$, 规定 $\delta_l \to 0$, 则没有 $n\pi$ 的不确定性, $\lambda \to 0$ 时, $\delta_l \to 0$ 。
- 给定势和能量, $l \to \infty$, $f_l(p) \to 0$, $\delta \to n\pi$, $n \in \mathbb{Z}$ 。 $l(l+1)/2mr^2$ 离心势越来越强, 粒子穿入势的深度越来越小, 感受到相互作用越小,相移越小。 我们可以估算有明显相移的 l: 势的范围 a, 离心势高度 $l^2/2ma^2$,能量 $E = p^2/2m \ll l^2/2ma^2$,则粒子不容易进入的势的范围, $l \gg pa$ 。

上述条件下,分波振幅的 Born 近似有效。即使是对于完全振幅 $f(\mathbf{p}' \leftarrow \mathbf{p})$ Born 近似不成立时,也存在 l_0 ,当 $l > l_0$ 分波振幅 Born 近似比较好。对于低分波可以用其他方法估算。

分波波函数的低能性质

考虑 $\psi_{lp}(r)$ 满足的 Lippmann-Schwinger 方程

$$\psi_{l,p}(r) = \hat{\jmath}_l(pr) + \int dr' \ G_{l,p}^0(r,r') U(r') \psi_{lp}^+(r'),$$

$$G_{l,p}^0(r,r') = -\frac{\hat{h}_l^+(pr_>)\hat{\jmath}_l(pr_<)}{p} \xrightarrow{p \to 0} -\frac{(r_<)^{l+1}(r_>)^{-l}}{2l+1}$$

p 很小时, $G_{l,p}^0$ 与 p 无关。由 Lippmann-Schwinger 方程, $\psi_{l,p}$ 与 $\hat{\jmath}_l(pr)$ 在 $p\to 0$ 时对 p 依赖关系相同, p^{l+1} .

分波散射振幅的低能性质

$$f_l(p) = -\frac{1}{p^2} \int_0^\infty dr \hat{\jmath}_l(pr) U(r) \psi_{l,p}(r)$$

若在 r > a, U(r) = 0 那么 $p \to 0$ 时, $\hat{\jmath}_l$ 和 $\psi_{l,p}(r)$ 都可用 $p \to 0$ 时的行为来替代, 我们得到

$$f_l(p) \xrightarrow{p \to 0} -a_l p^{2l}, \quad e^{i\delta_l(p)} \sin \delta_l(p) \to -p^{2l+1} a_l$$
 (2)

 a_l 称作散射长度 (scattering length), 只有在 l=0 时候才具有长度量刚。

- 如果势延伸到无穷远,我们后面会看到,如果 V(r) 比 $1/r^n$ $\forall n$ 下降的都更快,上面结论仍然成立。
- 如果 $V(r) \sim 1/r^{\nu}$, 则上面只有在 $l \geq (\nu 3)/2$ 时成立。
- 后面我们会看到在某些条件下, $a_l \to \infty$ 。

假设 (2) 成立, $p \to 0$ 时

•
$$l = 0, s \not a, f_0 \rightarrow -a_0 \neq 0$$

•
$$l \neq 0$$
. $f_l \rightarrow 0$

•
$$f(\mathbf{p}' \leftarrow \mathbf{p}) = \sum (2l+1)f_l(p)P_l(\cos\theta) \rightarrow -a_0$$

- $\lim_{p\to 0} d\sigma/d\Omega \to a_0^2$.
 - $f_l = \frac{1}{p} e^{i\delta_l} \sin \delta_l \sim -a_l p^{2l}$, $\delta_l \to n\pi a_l p^{2l+1}$, $a_l \in \mathbb{R}_{\circ}$
 - 如果约定 $p \to \infty$, $\delta_l \to 0$, 那么 δ_l 没有 $n\pi$ 的不确定性, 在 $p \to 0$ 时, δ_l 则不一定趋于 0。
 - 我们后面会讲到在满足我们上面 V(r) 条件时,有 Levinson定理, $\delta_l(0)-\delta_l(\infty)=n_l\pi$, n_l 是角动量为 l 的束缚态的个数, $\delta_l(0)=n_l\pi$ 。
 - 有一个例外是当 s-波散射长度 $a_0 = \infty$ 时, $\delta_l(0) = (n_0 + \frac{1}{2})\pi$ 。

作业: 计算球方势阱 $(2ma^2V_0)^{1/2} = 4.8$ 时, l = 0 有两个束缚态, l = 1.2 各一个束缚时的波函数以及散射振幅, 验证如下性质

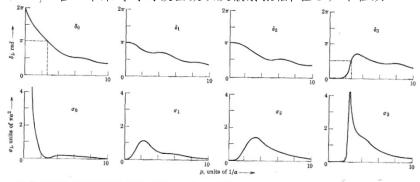


FIGURE 11.3. Phase shifts $\delta_l(p)$ and partial cross sections $\sigma_l(p)$ for a square well of depth V_0 given by $(2ma^2V_0)^{1/2}=4.8$.

- $\delta_0(0) = 2\pi$, $\delta_1(0) = \delta_2(0) = \pi$, 其他分波 $\delta_l(0) = 0$ 。分波散射截面 $\sigma_0(0) = 0$ 。
- ② 当 l 变大, $p \to 0$ 时, $\delta_l \to n\pi a_l p^{2l+1}$,越来越平缓。 $0 \le pa \lesssim 1$, σ_0 给出 90% 的散射截面的贡献。 $1 \lesssim pa \lesssim 2$ 时, $\sigma_0 + \sigma_1 + \sigma_2$ 主要贡献。
- **3** 在 pa = 10 时, 所有的相移小于 60 度, pa = 50, 小于 15 度。

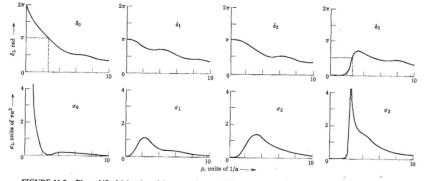


FIGURE 11.3. Phase shifts $\delta_l(p)$ and partial cross sections $\sigma_l(p)$ for a square well of depth V_0 given by $(2ma^2V_0)^{1/2} = 4.8$.

- **⑤** 某些情况下此现象发生在所有其他 l>0 的截面可以忽略的时候,此时在此能量处几乎没有散射现象,这叫做 Ramsauer-Townsend 效应。
- **⑤** 在 pa = 2.6, l = 3 的相移很快的通过 $\pi/2$, σ_3 有一个很尖锐的峰。这是一个共振态现象,势几乎能够束缚住一个态,但还没有完全束缚住。

SUMMARY

- $\psi_{l,p}(r)$: $\lambda \to 0$, or $E \to \infty$, or $l \to \infty$ 时 $\sin \delta_l \to 0$, $\delta \to n\pi$, 玻恩近似成立。(pg.25)
- $\psi_{l,p}(r) \xrightarrow{p \to 0} p^{l+1}$. (pg. 26)
- V(r) 满足一定条件时, $f_l(p) \xrightarrow{p \to 0} -a_l p^{2l}$, a_l 散射长度。 $e^{i\delta_l(p)} \sin \delta_l(p) \to -p^{2l+1} a_l$. (pg. 27)
- 例子: 球方势阱。(pg. 29)

Section 4

正则 (REGULAR) 解, JOST 函数及玻恩展开 收敛性

Summary (go to pg. 48)

正则 (REGULAR) 解:

我们定义一个新的解 $\phi_{lp}(r) \propto \psi_{l,p}(r)$, 只有归一化不同。

- 归一化的 $\psi_{l,p}(r)$, $\int_0^\infty dr \psi_{l,p'}(r)^* \psi_{l,p}(r) = \frac{\pi}{2} \delta(p'-p)_\circ$ 边条件是 $\psi_{l,p}(0) = 0$; 在 $r \to \infty$ 时, $\psi_{l,p} \to \hat{\jmath}_l + p f_l \hat{h}_l^+$ 。
- 我们定义 ϕ_l 的边条件, 定义在一点 $r \rightarrow 0$ 处, 包括值和导数

$$\phi_{l,p}(r) \xrightarrow{r \to 0} \hat{\jmath}_l(pr)$$

● 显然,正则解是实的: 边界条件和方程都是实的。 Go to (page (37))

Variable Phase Method *

为简单起见,我们只考虑 s 波。我们先引入 $V_{\rho}(r)$,

$$V_{\rho} = \begin{cases} V(r), & r \leq \rho \\ 0, & r > \rho \end{cases}$$

- 势 V(r) 的 s 波的 regular 解记为 $\phi(r)$, 相移 δ ,
- $V_{\rho}(r)$ 的记为 $\phi_{\rho}(r)$, $\delta(\rho)$ 。
- 在 $\rho = 0$, 没有势了, 约定 $\delta(0) = 0$ 。
- $\mathbb{L} \operatorname{Mim}_{\rho \to \infty} \delta(\rho) = \delta_{\circ}$
- $\forall \rho$, $\phi(r)$ 和 $\phi_{\rho}(r)$ 在 r=0 有同样的边界条件,满足同样的 微分方程,

$$\phi(r) = \phi_{\rho}(r), \quad [0 \le r \le \rho]$$

对比: 归一化的 $\psi_{l,p}$ 则没有此性质。

• $r > \rho$, 两个解则有区别: $\phi_{\rho}(r)$ 满足自由 (此时 l = 0) 的径 向方程

$$\phi_{\rho}(r) = \alpha(\rho)\sin[pr + \delta(\rho)], \quad [r \ge \rho]$$

由在ρ处的连续性:

$$\phi(\rho) = \alpha(\rho)\sin[p\rho + \delta(\rho)]$$

• 由导数 ϕ' 的连续性,

$$\phi'(\rho) = p\alpha(\rho)\cos[p\rho + \delta(\rho)]$$

• 上两式对任意 $r = \rho$ 处都成立, 可以给所有的 ρ 都换成 r, 带入定态径向方程. 消掉 α

$$\delta'(r) = -\frac{1}{n}U(r)\sin^2[pr + \delta(r)]$$

我们得到了 s-波相移方程。

- 由此方程, 利用 $\delta(r=0)=0$ 边界条件: 若当 $r\to\infty$, $V(r)=O(r^{-1-\epsilon})$, 上式积分有限, $\delta(r\to\infty)$ 有限, 是所期望的相移。
- $\delta(r)$ 的方程是非线性的。

$$\delta'(r) = -\frac{1}{p}U(r)\sin^2[pr + \delta(r)]$$

- 由于右边的符号只取决于 U(r) 的符号: 吸引势 $V(r) \le 0$, 给出正的相移; 排斥势 V(r) > 0, 给出负的相移。
- 如果两个势 $V_1(r) \geq V_2(r)$, 对所有 r, 那么 $\delta_1(r) \leq \delta_2(r)$, $\Rightarrow \delta_1 < \delta_2$ 。
- $V \rightarrow \lambda V$.

$$\delta = -\frac{\lambda}{p} \int_{0}^{\infty} dr U(r) \sin^{2}[pr + \delta(r)]$$

假设 $V(r) \sim 1/r^{1-\epsilon}$,

$$|\delta| \le \left|\frac{\lambda}{n}\right| \int_{0}^{\infty} dr |U(r)| \Rightarrow \delta \to 0, [\text{as } \lambda \to 0, \text{ or } p \to \infty]$$

• 此方法直接讨论 δ , 没有 $n\pi$ 的不确定性。当 $\lambda \to 0$ 或 $p \to \infty$. $\delta \to 0$ 。

此方法可以推广到任意 1-分波。

正则解波函数的迭代解

正则波函数由于边界条件定义在 r=0, 径向方程可以化为如下积分方程

$$\phi_{l,p} = \hat{\jmath}_l(pr) + \lambda \int_0^r dr' g_{l,p}(r,r') U(r') \phi_{l,p}(r')$$

$$g_{l,p}(r,r') = \frac{1}{p} [\hat{\jmath}_l(pr) \hat{n}_l(pr') - \hat{n}_l(pr) \hat{\jmath}_l(pr')]$$
(3)

注意: 积分上限是 r, 即 Green 函数在 r' > r 时为 0。

定理:

积分方程 (8) 对任意
$$\lambda$$
 都可以迭代求解,如下级数解收敛
$$\phi(r) = \sum_{0}^{\infty} \lambda^{n} \phi^{(n)}(r), \quad \phi^{(0)} = \hat{\jmath}_{l}(pr),$$

$$\phi^{(n)}(r) = \int_{0}^{r} dr' g(r, r') U(r') \phi^{(n-1)}(r')$$

$$= \int_{0}^{r} dr_{n} \int_{0}^{r_{n}} dr_{n-1} \cdots \int_{0}^{r_{2}} dr_{1} g(r, r_{n}) U(r_{n}) g(r_{n}, r_{n-1}) \cdots U(r_{1}) \hat{\jmath}_{l}(pr_{1})$$

证明跳计 (go to page 12)

证明: 我们仅以 l=0 分波为例, 其他分波类似, 需要用到 Riccati-Bessel 函数的性质。 $j_0(pr)=\sin(pr)$, $G_{0,p}(r,r')=p^{-1}\sin p(r-r')$ 。首先证明积分有限

$$\phi^{(n)}(r) = \frac{1}{p^n} \int_0^r dr_n \int_0^{r_n} dr_{n-1} \cdots \int_0^{r_2} dr_1 \sin p(r-r_n) U(r_n) \sin p(r_n-r_{n-1}) \cdots$$

由于积分上限有限,积分发散只有可能是由于被积函数的奇点,U的奇点 0 点, 在 0 点附近

$$|\sin pr_1| \le pr_1, \quad |\sin p(r_2 - r_1)| \le pr_2, \quad \dots |\sin p(r - r_n)| \le pr$$
(4)

$$|\phi^{(n)}(r)| \le pr \int_0^r dr_n \int_0^{r_n} dr_{n-1} \cdots \int_0^{r_2} dr_1 |U(r_n)r_n \cdots U(r_1)r_1|$$

只要在 $r \to 0$ 时, $V \sim O(r^{-2+\epsilon})$, $\phi^{(n)}$ 积分有限。

下面证明级数 $\sum \lambda^n \phi^{(n)}$ 收敛。由于积分区域

$$0 \le r_1 \le r_2 \le \dots \le r_n \le r$$

$$|\phi^{(n)}(r)| \leq pr \int_{0}^{r} dr_{n} \int_{0}^{r_{n}} dr_{n-1} \cdots \int_{0}^{r_{2}} dr_{1} |U(r_{n})r_{n} \cdots U(r_{1})r_{1}|$$

$$= \frac{1}{n!} pr \int_{0}^{r} dr_{n} \int_{0}^{r} dr_{n-1} \cdots \int_{0}^{r} dr_{1} \prod_{i} |U(r_{i})r_{i}|$$

$$= \frac{1}{n!} pr \left(\int_{0}^{r} dr_{i} |U(r_{i})r_{i}| \right)^{n}$$

$$\leq \frac{1}{n!} pr\alpha^{n}, \quad \alpha = \int_{0}^{\infty} dr |U(r)r|$$

所以级数收敛, 而且是一致收敛 (在有限的区域内),
$$e^{\lambda\alpha}$$
 与 p,r

 $|\phi(r)| \le \Big|\sum_{n=0}^{\infty} \lambda^n \phi^{(n)}\Big| \le pr \sum_{n=0}^{\infty} \frac{|\lambda \alpha|^n}{n!} = pre^{|\lambda \alpha|}$

(5)

无关。

下面来看此级数解 $\phi(r) = \sum \lambda^n \phi^{(n)}$ 确实是积分方程的解 (l=0)

 $\phi^{(n)}(r) = \frac{1}{n^n} \int_0^r dr_n \int_0^{r_n} dr_{n-1} \cdots \int_0^{r_2} dr_1 \sin p(r-r_n) U(r_n) \sin p(r_n-r_{n-1}) \cdots$

$$\phi(r) = \sin pr + \frac{\lambda}{r} \int_{-r}^{r} dr' \sin(p(r-r')) U(r') \phi(r')$$

$$\phi(r) = \sin pr + \frac{\lambda}{p} \int_0^r dr' \sin(p(r - r')) U(r') \phi(r')$$

$$\phi(r) = \sin pr + \frac{1}{p} \int_0^{\infty} dr' \sin(p(r-r')) U(r') \phi(r')$$

可以很容易看出,

 $\lambda^{n+1}\phi^{(n+1)} = \frac{\lambda}{n} \int_{0}^{r} dr' \sin(p(r-r')) U(r') \lambda^{n} \phi^{(n)}(r')$

积分方程右边第二项给出级数 λ^n , n>1 项, 第一项给出 λ^0 项。

前面的 bound (4,5) 对于 pr 很大时过于保守, 我们可以利用

$$|\sin x| \le \frac{\beta x}{1+x}, \quad [x \ge 0, \beta > 0]$$

 $|\phi(r)| \le \frac{\beta pr}{1 + nr} e^{\lambda \alpha}$

 β 不重要的常数。

$$|\sin p(r-r_n)| \le \frac{\beta pr}{1+pr}, \quad |\phi^{(n)}(r)| \le \frac{\beta pr}{1+pr} \frac{\alpha^n}{n!}$$

$$|\sin p(r-r_n)| \le \frac{\beta pr}{1+pr}, \quad |\phi^{(n)}(r)| \le \frac{\beta pr}{1+pr} \frac{\alpha^n}{n!}$$

JOST FUNCTION

由 $\phi_{l,p}(r)$ 的级数解,我们要得到散射振幅。首先要看 $\phi_{l,p}(r)$ 在 $r \to \infty$ 的性质。由于 $\phi_{l,p}$ 是实的,

$$\phi_{l,p} \xrightarrow{r \to \infty} \frac{i}{2} [f_l(p)\hat{h}_l^-(pr) - f_l^*(p)\hat{h}_l^+(pr)] \sim \frac{i}{2} [f_l(p)e^{-i(pr-l\pi/2)} - c.c.]$$

 $f_l(p)$ 称为 Jost 函数。而由于 $\phi_{l,p}(r) \propto \psi_{l,p}(r)$, 且

$$\psi_{l,p}(r) \xrightarrow{r \to \infty} \frac{i}{2} [\hat{h}_l^-(pr) - \mathbf{s}_l(p)\hat{h}_l^+(pr)]$$

我们得到,

$$\mathbf{s}_{l}(p) = \frac{f_{l}^{*}(p)}{f_{l}(p)}, \quad \phi_{l,p}(r) = f_{l}(p)\psi_{l,p}(r)$$

上式可以看到

- Jost 函数就是 $\phi_{l,p}(r)/\psi_{l,p}(r)$ 。
- 很容易看出 $|\mathbf{s}_l| = 1$, 幺正性。
- $\mathbf{s}_l = e^{2i\delta_l} \Rightarrow \mathbf{f}_l(p) = |\mathbf{f}_l(p)| e^{-i\delta_l(p)}$

下面由 $\phi_{l,p}(r)$ 得到 Jost 函数,由积分方程 (8) $\phi_{l,p} = \hat{\jmath}_l(pr) + \lambda \int_0^r dr' g_{l,p}(r,r') U(r') \phi_{l,p}(r')$ $g_{l,p}(r,r') = \frac{1}{n} [\hat{\jmath}_l(pr)\hat{n}_l(pr') - \hat{n}_l(pr)\hat{\jmath}_l(pr')],$ 由 $\hat{j} = \frac{i}{2}(\hat{h}^- - \hat{h}^+), \hat{n} = \frac{1}{2}(\hat{h}^- + \hat{h}^+),$ 得到 $r \to \infty$, 所以, $f_l(p) = 1 + \frac{\lambda}{n} \int_0^\infty dr' \hat{h}_l^+(pr') U(r') \phi_{l,p}(r')$ 可以验证 $f_l(p)$ 积分是收敛的,例如,对于 l=0,

$$\phi_{l,p} \to \frac{i}{2} \Big\{ \Big[1 + \frac{\lambda}{p} \int_{0}^{\infty} dr' \hat{h}_{l}^{+}(pr') U(r') \phi_{l,p}(r') \Big] \hat{h}_{l}^{-}(pr) - \Big[\dots \Big]^{*} \hat{h}_{l}^{+}(pr) \Big\}$$
所以,
$$f_{l}(p) = 1 + \frac{\lambda}{p} \int_{0}^{\infty} dr' \hat{h}_{l}^{+}(pr') U(r') \phi_{l,p}(r') \qquad (6)$$
可以验证 $f_{l}(p)$ 积分是收敛的,例如,对于 $l = 0$,
$$f_{0}(p) = 1 + \frac{\lambda}{p} \int_{0}^{\infty} dr' e^{+ipr'} U(r') \phi_{0,p}(r')$$

$$|f_{0}(p) - 1| \leq \beta e^{|\lambda\alpha|} \Big| \frac{\lambda}{p} \Big| \int_{0}^{\infty} dr' U(r') \frac{pr'}{1 + pr'} \qquad (7)$$
由此我们能够得到当 $\lambda \to 0$ 或 $p \to \infty$ 时, $f_{l}(p) \to 1$ 。

由 $\phi_{l,p}(r)$ 的级数展开 $\phi = \sum_{n} \lambda^{n} \phi^{(n)}$ 代入到 (9), 我们可以得到

田
$$\phi_{l,p}(r)$$
 的级数展开 $\phi = \sum_{n} \lambda^{n} \phi^{(n)}$ 代入到 (9),我们可以得到 Jost 函数的展开

Jost 函数的展开
$$f_l(p) = 1 + \sum_{n=1}^{\infty} \lambda^n f_l^{(n)}(p), \quad f_l^{(n)} = \frac{1}{p} \int_0^{\infty} \hat{h}^+ U \phi^{(n-1)}$$

可以证明对任何 λ 此级数收敛。

一个定理

一个级数 $g(\lambda) = \sum_{n=0}^{\infty} \lambda^n g^{(n)}$ 如果对任何复 λ 都收敛, 当且仅当 $g(\lambda)$ 在任何 λ 处解析 (entire 整函数)。

- $\phi_{l,p}(r)$ 和 $f_l(p)$ 作为级数对任意 λ 都收敛,不管 λ 是实的还是复的,所以 $\phi_{l,p}(r)$ 和 $f_l(p)$ 都是关于 λ 的整函数 (entire)。
- 或者说,因为 ϕ 和f选的比较好是关于 λ 的整函数,所以他们的级数展开收敛。

我们可以来考虑对应的归一化的 $\psi_{l,p}(r)$, $\mathbf{s}_l(p)$ 关于 λ 的级数展开的性质。由

$$\psi_{l,p} = \frac{\phi_{l,p}(r)}{f_l(p)}, \quad \mathbf{s}_l(p) = \frac{f_l^*(p)}{f_l(p)}$$

- 在 $f_l(p)$ 不为零处 $\psi_{l,p}(r)$ 和 $\mathbf{s}_l(p)$ 都是关于 λ 解析的。
- $\lambda = 0$ 时, $f_l(p) = 1$, 所以至少在 $\lambda = 0$ 附近, $\psi_{l,p}(r)$ 和 $\mathbf{s}_l(p)$ 是关于 λ 解析的。
- 所以, 在 $\lambda = 0$ 附近 $\psi_{l,p}(r)$ 和 $\mathbf{s}_l(p)$ 可以展开成关于 λ 的级数, 且级数收敛。即对于足够小的 λ , 玻恩级数收敛。

当 $\lambda \neq 0$, Jost 函数可以有零点。 $\psi_{l,p}(r)$ 和 $\mathbf{s}_l(p)$ 可以有极点。

- circle of convergence theorem,
 - 在 $|\lambda| < \bar{\lambda}$ 圆内, $\psi_{l,p}(r)$ 和 $\mathbf{s}_l(p)$ 的玻恩级数是收敛的。 • 在收敛圆外, $\psi_{l,n}(r)$ 和 $\mathbf{s}_{l}(p)$ 的玻恩级数发散。
- 实际上玻恩级数在 $\lambda > \bar{\lambda}$ 时发散是因为在 $|\lambda| = \bar{\lambda}$ 收敛圆
- 上,存在复的 λ_0 ,玻恩级数发散。
- 真实的 V 对应 $\lambda = 1$, 玻恩级数是否收敛取决于是否 $\overline{\lambda} > 1$ • 对于足够高的 p, 分波 ψ_{ln} , $\mathbf{s}_l(p)$ 的玻恩级数 $(\lambda = 1)$ 收敛: 由 (7), 当 $p \to \infty$ 时, $f_l(p) \to 1$, 而且是在 $\lambda < \lambda_0$ 区域内 $(∀\lambda_0 < ∞)$ 一致收敛到 1。所以存在 \bar{p} , 在 λ 的单位圆内, $f_l(p) \neq 0_\circ$

Summary

- 正则解: (pg. 33)
 - (1) 实的,满足边界条件:值和导数

$$\phi_{l,p}(r) \xrightarrow{r \to 0} \hat{\jmath}_l(pr)$$

- (2) Variable phase method. (pg. 34)
- (3) 迭代解对所有 λ 收敛, 是关于 λ 的整函数. (pg. 37, 45)
- Jost 函数: (pg. 42)
 - $\phi_{l,p} \xrightarrow{r \to \infty} \frac{i}{2} [\mathbf{f}_l(p)\hat{h}_l^-(pr) \mathbf{f}_l^*(p)\hat{h}_l^+(pr)]$
 - $\mathbf{s}_{l}(p) = \frac{f_{l}^{*}(p)}{f_{l}(p)}, \quad \phi_{l,p}(r) = f_{l}(p)\psi_{l,p}(r), \ f_{l}(p) = |f_{l}(p)|e^{-i\delta_{l}(p)}$
 - 由 ϕ_{lp} 得到 $f_l(p)$ 的积分表示, $\lambda \to 0$, $p \to \infty$ 时, $f_l(p) \to 1$. (pg.43)
 - 对λ的级数展开收敛,是λ的整函数。(pg.44 45)
- ψ_{ln} , $s_l(p)$: (pg.47)
 - (1) 在 $\lambda = 0$ 附近, 对于足够小的 λ , 玻恩级数收敛。
 - (2) 在 $\lambda = 1$, 对于足够高的 p, 玻恩级数收敛。

Section 5

正则解、JOST 函数、 s_l 的解析性质 (关于 p)

Summary (go to page (62))

Analytic function of a complex variable

复函数 f(z) 在区域 R 上解析, 如果在 R 上任一点都可微。 Cauchy 定理: $f(z) = \frac{1}{2\pi i} \oint ds \frac{f(s')}{s'-s}$

- 解析函数都无穷可微。
- 在整个 C 上解析的函数称为整函数 (entire function)。
- 在解析区域内可以级数展开。
- 除了某些极点之外解析, $\oint dz f(z) = \sum$ residuals of poles
- 两解析函数在某段线上相等: 如果 $f_1(z)$ 在一线段上定义, $f_2(z)$ 在一个包含此线段的区域 R 解析,且在线段上 $f_1(s) = f_2(z)$,则 $f_2(z)$ 是 $f_1(z)$ 在 R 上的唯一的解析延拓。
- f(z) 在 R 区域解析, f*(z) 在 R* 上并不解析, 但是 [f(z*)]*
 在 R* 上解析。
- Schwartz 反射原理: 若 f(z) 在一个包含实轴上一线段的区域 内解析,则 $f(z) = f(z^*)$ 。

Go to page (52)

两个定理:

级数求和:

$$f(z) = \sum_{n} f_n(z)$$

若 $f_n(z)$ 在区域 R 上解析, 且级数在 R 上一致收敛, 则 f(z) 在 R 上解析。

积分:

$$f(z) = \int_{z}^{b} dr \, g(z, r)$$

若 $\forall r \in (a,b)$, g(z,r) 在 R 解析, 且 g(z,r) 在 $R \times (a,b)$ 上连续, 则 f(z) 在 R 上解析。

第二个定理推广: a=0, g(z,r=0) 函数发散, 或者 $b=\infty$, 或者 $r=r_0\in(a,b)$ 处 $g(z,r_0)$ 发散这两种情形, 若可以证明在端点和 r_0 处积分一致收敛,则上面结论仍成立。

正则解的解析性质

正则解 $\phi_{l,p}$ 满足积分方程

$$\phi_{l,p} = \hat{\jmath}_l(pr) + \lambda \int_0^r dr' g_{l,p}(r,r') U(r') \phi_{l,p}(r')$$

$$g_{l,p}(r,r') = \frac{1}{p} [\hat{\jmath}_l(pr) \hat{n}_l(pr') - \hat{n}_l(pr) \hat{\jmath}_l(pr')]$$
(8)

 $z \to 0$ 时, $\hat{\jmath}(z) \to z^{l+1}$, $\hat{n}(z) \to z^{-l}$: 格林函数关于 p 解析。

定理:

对于任意的 p (实的或复的), 上面积分方程 (8) 的迭代解 $\phi_{l,p}(r)$ (page 37) 是关于 p 的整函数。

两种看法:

- $\phi_{l,p}$ 是对任何复 p 方程的解,关于 p 解析,回到物理区 $p \ge 0$, ϕ_{lp} 回到物理解。
- $\phi_{l,p}$ 从物理区 $p \ge 0$ 解析延拓到复平面上,给出复 p 的解。证明跳过 (Go to page(54))

证明与前面讨论关于 λ 解析性类似: 对应 l=0 分波:

 $\phi^{(n)}(r) = \frac{1}{n^n} \int_0^r dr_n \int_0^{r_n} dr_{n-1} \cdots \int_0^{r_2} dr_1 \sin p(r-r_n) U(r_n) \sin p(r_n-r_{n-1})$

• 对干一般的 1

利用 $|\sin(pr)| \leq \beta \frac{pr}{1+nr}$,

$$f^r$$

 $|\phi^{(n)}| \leq \beta \left(\frac{|pr|}{1+|nr|}\right) e^{|\operatorname{Im} pr|} \frac{\alpha^n}{n!}, \quad \alpha = \int_0^r dr |U(pr)r|$

在p有限区域内,级数一致收敛(给定r,收敛与p无关)。

 $|\phi_{l,p}| \le \gamma_l \left(\frac{|pr|}{1+|nr|}\right)^{l+1} e^{|\operatorname{Im} pr|}$

 γ_l 是常数。对于 $z \to 0$, $|pr|^{l+1}$ 对应 $\hat{\jmath}(z) \sim z^{l+1}$ 的行为。当

 $\operatorname{Im} z \to \infty$, $e^{|\operatorname{Im} pr|}$ 对应 $\hat{\jmath}(z) \to \sin(z - \frac{1}{2}l\pi)$ 的行为。

 $\phi^{(0)} = \hat{\eta}(pr)$ 解析,利用递推关系和前页定理, $\phi^{(n)} = \frac{1}{n} \int_0^r dr' \sin(p(r-r')) \phi^{(n-1)}, \phi^{(n)} \notin \mathcal{F} p \text{ mff.}$

$$\hat{y}(-nr) = (-1)^{l+1} \hat{y}(nr) \qquad \hat{y}(-nr) = (-1)^{l} \hat{y}(nr)$$

得到

$$\hat{\jmath}_l(-pr) = (-1)^{l+1} \hat{\jmath}_l(pr), \quad \hat{n}_l(-pr) = (-1)^l \hat{n}_l(pr)$$

 $q_{l-n}(r, r') = q_{l,n}(r, r')$

 $\phi_{l-n}(r) = (-1)^{l+1}\phi_{l,n}(r)$

$$\hat{\jmath}_l(-pr) = (-1)^{l+1}\hat{\jmath}_l(pr), \quad \hat{n}_l(-pr) = (-1)^l\hat{n}_l(pr)$$

$$\hat{\jmath}_l(-pr)$$
 =

所以,由积分方程(8)

$$\hat{\imath}_{l}(-n)$$

$$\hat{a}_{i}(-n)$$

JOST 函数的解析性

由

$$f_l(p) = 1 + \frac{\lambda}{p} \int_0^\infty dr' \hat{h}_l^+(pr') U(r') \phi_{l,p}(r')$$
 (9)

该式定义了f到复平面的解析延拓。p复数时,

$$|\phi_{l,p}(r)| \le \left(\frac{\beta|pr|}{1+|pr|}\right)^{l+1} e^{|\operatorname{Im}pr|}$$
$$|\hat{h}_l^+| \le \left(\frac{\beta|pr|}{1+|pr|}\right)^{-l} e^{\operatorname{Im}pr}$$

所以

$$|f_l(p) - 1| \le \frac{\operatorname{const}}{|p|} \int_0^\infty dr |U(r)| \frac{\beta |pr|}{1 + |pr|} e^{(|\operatorname{Im} p| - \operatorname{Im} p)r}$$

- 若 Imp > 0, 积分收敛, 所以在上半平面解析。
- 下半平面则依赖于势的行为。
- 截断势,对于r > a, U(r) = 0,则f 在整个复平面上解析
- 对于 $V \propto e^{-\mu r}$, f 在 $\text{Im} p > -\mu/2$ 解析。

对于p为实数,由

$$\phi_{l,-p} = (-1)^{l+1} \phi_{l,p}(r),$$
$$\hat{h}_l^+(-pr) = (-1)^l h_l^{+*}(pr)$$

得

$$f_l(-p) = [f_l(p)]^*$$

解析延拓的话:

$$f_l(-p) = [f_l(p^*)]^*$$

若 p 纯虚数的话, $f_l(-p) = [f_l(-p)]^*$,实的, $f_l(p)$ 关于虚轴对称 点互为复共轭。

JOST 函数和 s_l 矩阵的解析性

对于 p 由实数解析延拓到复平面

$$\mathbf{s}_{l}(p) = \frac{f_{l}(p)^{*}}{f_{l}(p)} = \frac{f_{l}(p^{*})^{*}}{f_{l}(p)} = \frac{f_{l}(-p)}{f_{l}(p)}$$

后两式, 分母对于 $Imp \ge 0$ 解析, 分子对于 $Imp \le 0$ 解析。

- 对于截断势, r > a, V(r) = 0, 则 \mathbf{s}_l 亚纯 (除了极点之外解析)。
- 若 $V \sim O(e^{-\mu r})$, $\mathbf{s}_l(p)$ 在 $-\mu/2 < \mathrm{Im} p < \mu/2$ 内亚纯。

若在 Rer > 0 时 V(r) 解析,且在此半平面上任意射线 $\rho e^{i\theta}$ 也满足我们对势的要求时,我们称之为解析势。由此,对 r 的积分路径可以变形到复平面上

$$f_l(p) = 1 + \frac{1}{p} \int_0^{\infty e^{i\theta}} dr \hat{h}^+ U \phi$$

仍然利用 $|\phi_{l,p}(r)| \le \left(\frac{\beta|pr|}{1+|pr|}\right)^{l+1} e^{|\mathrm{Im}pr|}, |\hat{h}_l^+| \le \left(\frac{\beta|pr|}{1+|pr|}\right)^{-l} e^{\mathrm{Im}(pr)}$

$$|f_l(p) - 1| \le \frac{\operatorname{const}}{|p|} \int_0^\infty dr |U(re^{i\theta})| \frac{\beta |pr|}{1 + |pr|} e^{(|\operatorname{Im}(pe^{i\theta})| - \operatorname{Im}(pe^{i\theta}))r}$$

相当于对 p 解析区域转过 $-\theta$ 角, 当 θ 取遍 $-\pi/2 < \theta < \pi/2$ 区域, p 的解析区域向下延拓到除负虚轴以外区域:

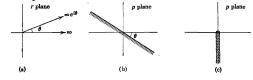
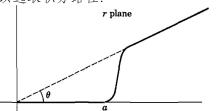
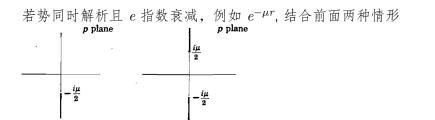


FIGURE 12.5. (a) The original integral for $f_1(p)$ runs from 0 to ∞ ; that of (12.12) runs from 0 to $\infty e^{i\theta}$. (b) (12.12) is analytic in $\{Im(pe^{i\theta})>0\}$, the half plane above the sloping line shown. (c) The union of all such regions with $-\pi/2 < \theta < \pi/2$ is the whole plane cut along the negative imaginary axis.

其实不一定要求 $\mathrm{Re}r>0$ 内完全解析,例如 r>a 解析,我们可以选取积分路径:





- $E V \sim \gamma e^{-\mu r}/r, f_l(p)$ $E p = -i\mu/2, -i\mu, \dots$ 有割线
- $\neq V \sim \gamma e^{-\mu r}$, $f_l(p)$ $\neq p = -i\mu/2, -i\mu, \dots$ 有极点。
- s_l 在 (b) 图区域内亚纯。

(a)

两点说明:

• 对于满足我们的要求的势, fi 在上半平面解析。要解析延拓 到下半平面,需要一些额外的要求。

• $f_1(p)$ 在下半平面的解析性物理上并不是很重要,在负虚轴

上面的性质对于势的长程性质很敏感。 例如: $e^{-\mu r}/r$ 势,负虚轴上会有割线,但是如果在 r > a 截

断,则在整个复平面上解析。而当a很大时,这两个势物理 上是不能区分的。

SUMMARY

- 正则解: 对于任意的 p (实的或复的), 正则解的积分方程 (8) 的迭代解 $\phi_{l,p}(r)$ (page 37) 是关于 p 的整函数。满足 $\phi_{l,-p}(r) = (-1)^{l+1}\phi_{l,p}(r)$. (pg. 52, 54)
- Jost 函数: $f_l(-p) = [f_l(p^*)]^*$ 。在上半平面 (Imp > 0) 解析。下半平面则依赖于势的行为。(pg.55)
 - 截断势,对于r > a, U(r) = 0,则f在整个复平面上解析
 - $\stackrel{\cdot}{H}$ $V \sim O(e^{-\mu r})$, $f_l(p)$ $\stackrel{\cdot}{H}$ $Im p > -\mu/2$ 内解析。
 - 解析势, f 在除 Imp < 0 解析。(pg.58)
 - 对于 $V \propto \gamma e^{-\mu r}$, f 在除 $\text{Im} p < -\mu/2$ 解析。(pg. 60)
- $\mathbf{s}_l(p) : \mathbf{s}_l(p) = \frac{f_l(p)^*}{f_l(p)} = \frac{f_l(p^*)^*}{f_l(p)} = \frac{f_l(-p)}{f_l(p)}$, (pg.57)
 - 对于截断势, r > a, V(r) = 0, 则 \mathbf{s}_l 亚纯 (除了极点之外解析)。
 - 若 $V \sim O(e^{-\mu r})$, $\mathbf{s}_l(p)$ 在 $-\mu/2 < \text{Im} p < \mu/2$ 内亚纯。
 - 若 $V \propto \gamma e^{-\mu r}$, $\mathbf{s}_l(p)$ 在除 $\mathrm{Im} p < -\mu/2$, $\mathrm{Im} p > \mu/2$ 外区域亚纯。(pg. 60)

Section 6

束缚态与 LEVINSON 定理

Summary (go to page (80))

束缚态

由在 $p, r \in \mathbb{R}$, 上渐近行为:

$$\phi_{l,p} \to \frac{i}{2} [f_l(p) \hat{h}_l^-(pr) - f_l(-p) \hat{h}_l^+(pr)]$$

p 解析延拓到上半平面时, 我们假设上式仍然成立,

• 假设,某种势使得在 \bar{p} 处, $(\text{Im}\bar{p}>0)$, $f_l(\bar{p})=0$,

$$\phi_{l,p} \to -\frac{i}{2} f_l(-\bar{p}) \hat{h}_l^+(\bar{p}r) \to -\frac{i}{2} f_l(-\bar{p}) e^{i(pr-l\pi/2)}$$

当 Im p > 0, $r \to \infty$, \hat{h}_l^+ 指数下降。

- 此时, $\phi_{l,\bar{p}}$ 是可归一化的波函数,满足 $\phi_{l,\bar{p}}(r=0)=0$,对应 Schrödinger 方程的束缚态的解。
- 由于 H 是厄米算符,只有实的本征值 $E=p^2/2$ m,所以 \bar{p} 只能是纯虚数 $\bar{p}=i\alpha, E=-\alpha^2/2$ m.
- 反过来, H 有束缚态, $E = -\alpha^2/2$ m, 角动量 l, 则在 $p = i\alpha$, 解 $\phi_{l,p}$ 必然指数衰减, $f(i\alpha)$ 为零。
- 若 f(-p) 在 $-p = -\bar{p}$ 处也解析 (且不为零),由 $\mathbf{s}_l(p) = f(-p)/f(p)$, \bar{p} 为 $\mathbf{s}_l(p)$ 的极点。

现在,我们对束缚态作为 $\mathbf{s}_l(p)$ 的极点的理解: $\mathbf{s}_l(p)$ 是在波函数 ϕ 中的 outgoing 和 incoming 波的系数即 Jost 函数的比。当 $\mathrm{Im} p > 0$, outgoing 波在 $r \to \infty$ 指数下降,而 incoming 的上升。由于束缚态的 ϕ 只是下降的,outgoing 不为零 incoming 为零,所以 $\mathbf{s}_l(p)$ 无穷大。

(go to (68))

更严格一点: 定义径向方程的解 $\chi_{l,p}^{\pm}(r)$,对应纯的 outgoing 和 incoming 解

$$\chi_{l,p}^{\pm}(r) \xrightarrow{r \to \infty} \hat{h}_l^{\pm}(pr)$$

一般来说 $\chi_{l,p}^{\pm}(r)$ 在 r=0 处不为零, 并不 $\propto \phi_{l,p}$ 。满足积分方程

$$\chi_{l,p}^{\pm} = \hat{h}_{l}^{\pm}(pr) - \int_{r}^{\infty} dr' g_{l,p}(r,r') U(r') \chi_{l,p}^{\pm}(r')$$

- 注意: 积分是从 $r \to \infty$ 。可以迭代求解。
- 可以证明 $\chi_{l,p}^+(r)$ 在 $\mathrm{Im}p \geq 0$ 时存在, 是径向方程的解, 且关于 r 连续, 且在 $\mathrm{Im}p > 0$ 关于 p 解析。
- 对于 $\chi_{l,p}^-(r)$ 则在 $\mathrm{Im} p \leq 0$ 时存在且关于 r 连续,且在 $\mathrm{Im} p < 0$ 关于 p 解析。
- 对于 $p \in \mathbb{R}$,

$$\phi_{l,p}(r) = \frac{i}{2} (f_l(p) \chi_{l,p}^-(r) - f_l(-p) \chi_{l,p}^+(r))$$

Wronskian 朗斯基行列式 两个函数 $\alpha(r)$, $\beta(r)$,

$$W(\alpha, \beta) = \alpha(r)\beta'(r) - \alpha'(r)\beta(r) = \det\begin{pmatrix} \alpha & \beta \\ \alpha' & \beta' \end{pmatrix}$$

- 若两个函数线性相关,则 $W(\alpha,\beta) = 0$. ● 如果两个函数 $\alpha(r)$, $\beta(r)$ 满足径向方程,则
- $\frac{dW(\alpha,\beta)}{dr} = \alpha(r)\beta''(r) \alpha''(r)\beta(r) = 0.$
- $W(j_l(pr), \hat{n}(pr)) = -p, \ W(\chi_{l,p}^+, \chi_{l,p}^-) = -2ip.$
- $W(\chi^+, \phi) = pf_I(p)$, \mathbb{P}

$$f_l(p) = \frac{1}{n} W(\chi^+, \phi)$$

• 当 $f_l(\bar{p}) = 0$, $\text{Im}\bar{p} > 0$, 则 $W(\chi^+, \phi) = 0$, $\phi_{l,\bar{p}} = \lambda \chi_{l,\bar{p}}^+(r)$, $\chi_{l,p}^+(r)$ 随 r 指数衰减,平方可积,所以是束缚态解, $E = -\alpha^2/2m_\circ$

束缚态对应 f_i(r) 的一阶极点。

• 宋缚念对应
$$f_l(r)$$
 的一所依点。

$$\frac{d\mathbf{f}_l}{dp}(\bar{p}) = \int_0^\infty dr \chi_{l,\bar{p}}^+(r) \phi_{l,\bar{p}}(r) = \lambda \int_0^\infty dr (\chi_{l,\bar{p}}^+)^2 > 0$$

• f_l 的零点处,分波振幅 f_l 的留数 $\Gamma = (-1)^{l+1}\gamma^2$, γ 是由归

一化的束缚态波函数在无穷远处渐近形式定义

 $n(r) \xrightarrow{r \to \infty} \gamma e^{-\alpha r}$, $\not\equiv E = -\alpha^2/2m_{\circ}$

LEVINSON 定理

两个定理:

- 1. Jost 函数不能在实轴上有零点,除非在 p=0 处。
- 2. $p \to \infty$, in $\mathrm{Im} p > 0$ plane, $f_l \to 1$.

证明简要说明:

- 1. $p \in \mathbb{R}$, 若 $f_l(p) = 0$, 则 $f_l^*(p) = 0$, $\phi_{lp}(r)$ 恒为零, 而由
- $\phi \xrightarrow{r \to 0} j_l(pr) \to \frac{(pr)^{l+1}}{(2l+1)!!}$, 除非 p = 0, ϕ 不能恒为 0.
- 2. 前一章的结果可以推广到复平面。
- 3. 一个推论: 对于确定的 l, $f_l(p)$ 在 Imp > 0 平面只有有限的零点,即有有限个束缚态。(对于 p = 0 点需特殊考虑)
- ($\exists p_0 > 0$, s.t. $|p| > p_0$, $f_l(p)$ 无零点。再由解析函数性质,有限区域的解析函数不可能有有限多的零点。)

LEVINSON 定理

对于球对称势 (满足我们要求的), 相移除了下面的例外情形外满足

$$\delta_l(0) - \delta_l(\infty) = n_l \pi$$

 n_l 是束缚态的个数。

一个例外情况是, l=0 且 $f_0(0)=0$ 时,

$$\delta_l(0) - \delta_l(\infty) = (n_0 + \frac{1}{2})\pi$$

证明简要说明 $(p \neq 0)$: 主要是考虑上半平面圈积分,

$$I = \oint d \ln f_l(p) = \oint dp \frac{\dot{f}_l(p)}{f_l(p)} = 2\pi i n_l,$$

又由在 $p \in \mathbb{R}$, (p > 0), $\ln f_l(p) = \ln |f_l(p)| - i\delta_l(p)$, $f_l(-p) = f_l^*(p)$, $\ln f_l(-p) = \ln |f_l(p)| + i\delta_l(p)$

$$I = \oint d \ln f_l(p) = -2i \int_0^\infty d\delta(p) = 2i [\delta(0) - \delta(\infty)]$$

闽 (p=0) 附近的行为

分波振幅:

$$f_{l}(p) = \frac{\mathbf{s}_{l}(p) - 1}{2ip} = \frac{f_{l}(-p) - f_{l}(p)}{2ipf_{l}(p)} = \frac{-1}{p^{2}f_{l}(p)} \int_{0}^{\infty} dr \hat{\jmath}_{l}(pr) U(r) \phi_{l,p}(r)$$
$$= -\frac{1}{r^{2}} \int_{0}^{\infty} dr \hat{\jmath}_{l}(pr) U(r) \psi_{l,p}(r), \quad \psi_{l,p}(r) = \phi_{l,p}(r) / f_{l}(p)$$

利用 $|\hat{\jmath}_l(pr)|, |\phi_{l,p}(r)| \leq \operatorname{const}\left(\frac{pr}{1+pr}\right)^{l+1}$, 若 $f_l(0) \neq 0$, 在 p = 0 邻域

$$|f_l(p)| \le \frac{\text{const}}{f_l(0)} \frac{1}{p^2} \int_0^\infty dr |U(r)| \left(\frac{pr}{1+pr}\right)^{2l+2}$$

对于 e 指数压低的势, 分母 $(1+pr)^{2l+2} \to 1$ 可以忽略, $f_l(p)$ 在 零点处解析, $f_l(p) = O(p^{2l})$, $p \to 0$,

$$f_l(p) = -a_l p^{2l} + b_l p^{2l+1} + \dots$$

 a_l 有限的 (也有可能是 0) 常数, 散射长度 scattering length.

$$V(r) = O(\frac{1}{r^{\prime}}), (r \to \infty), \text{ tail }$$

$$V(r) = O(\frac{1}{r^{\nu}}), (r \to \infty), \text{ tail}$$

• 当
$$l < (\nu - 3)/2$$
 时,积分中分母 $1 + pr \rightarrow 1$ 上面积分收敛,

•
$$4 < (\nu - 3)/2$$
 H. $2 < (\nu - 3)/2$

 $V(r) = O(\frac{1}{r^{\nu}}), (r \to \infty), \text{ tail } \mathbb{Z}$

 $f_l(p) = O(p^{2l}), \quad [p \to 0, l < (\nu - 3)/2]$

 $f_l(p) = O(p^{\nu-3}), \quad [p \to 0, l > (\nu - 3)/2]$

• 若 $l > (\nu - 3)/2$, 分母 (1 + pr) 需保留, 积分后

在 p=0 处解析行为未知,不一定能级数展开。

闽 (p=0) 附近的行为

下面考虑在 p=0 处解析可以进行展开的情形, 主要是 e 指数压低的势。引入分波振幅的 K 矩阵表示:

$$\mathbf{s}_l(p) = \frac{1 + ik_l(p)}{1 - ik_l(p)}$$

其中 p > 0, $k_l(p)$ 实的。 $\mathbf{s}_l(p)$ 自动幺正。

• 可以反解出

$$k_l(p) = i \frac{1 - \mathbf{s}_l(p)}{1 + \mathbf{s}_l(p)} = \tan \delta_l(p)$$

除 $\mathbf{s}_l(p) = -1$ 的点以外, $k_l(p)$ 在 $\mathbf{s}_l(p)$ 解析的点处解析, 特别的在 p = 0 处解析。

- 解析延拓至 -p, p > 0, 由 $\mathbf{s}_l(p) = f_l(-p)/f_l(p)$, $\mathbf{s}_l(-p) = 1/\mathbf{s}_l(p)$, $k_l(-p) = -k_l(p)$, 奇函数。
- $p \to 0$, $\exists \delta_l(p) \to -a_l p^{2l+1}$, $k_l = \tan \delta_l$, $k_l(p) \xrightarrow{p \to 0} -a_l p^{2l+1}$.
- k_l/p^{2l+1} 关于 p 偶函数:

$$\frac{p^{2l+1}}{k_l(p)} = p^{2l+1} \cot \delta_l(p) = -\frac{1}{a_l} + \frac{r_l}{2}p^2 + O(p^4)$$

Effective range expansion:

$$\frac{p^{2l+1}}{k_l(p)} = p^{2l+1} \cot \delta_l(p) = -\frac{1}{a_l} + \frac{r_l}{2}p^2 + O(p^4)$$

对于 l=0, r_0 近似的可以看成势的有效的力程。只取前两项则称之为有效力程近似 Effective range approximation。n-p 散射中到 10MeV 以下,Effective range approximation 近似的比较好。

Remarks:

对于 $1/r^{\nu}$ tail 型势, \mathbf{s}_l , $f_l(p)$, $k_l(p)$ 一般在 p=0 含有支点, 将不能关于 p^2 进行的 effective range expansion, 例如 $1/r^4$ tail,

$$p \cot \delta_0(p) = \frac{-1}{a_0} + bp + cp^2 \ln p + O(p^2)$$

$f_l(p)$ 在闽处的零点

p=0 时, 径向方程:

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - U(r)\right]y(r) = 0,$$

$$r \to 0$$
 和 $r \to \infty$, $\frac{l(l+1)}{r^2}$ 主导

- $r \to 0$, $y(r) \sim r^{l+1}$
- $r \to \infty$, $y(r) \sim 1/r^l$.
- 对于 $l=0, r\to\infty, y\sim 1/r^0,$ 不可归一, 不是束缚态。
- 对于 *l* > 0, 则可以是束缚态。

只有可能对特殊的势满足。

是否一个 p=0 处的束缚态解对应约一个 $f_l(p)$ 的零点?

• 选择解的形式: (自由时候两个独立解 r^{l+1} , 和 r^{-l}) $r \to 0$,

$$\tilde{j}_l(r) \equiv \frac{\hat{j}_l(pr)}{n^{l+1}} \rightarrow \frac{r^{l+1}}{(2l+1)!!}, \quad \tilde{n}_l(r) \equiv p^l \hat{n}_l(pr) \sim \frac{1}{r^l},$$

• 有相互作用时,

$$(r \to 0), \quad \tilde{\phi}_{l,p}(r) \equiv \frac{\phi_{l,p}(r)}{p^{l+1}} \sim r^{l+1},$$

 $(r \to \infty), \quad \tilde{\chi}_{l,p}^{+}(r) \equiv p^{l} \chi_{l,p}^{+} \sim 1/r^{l}, \quad \tilde{\chi}_{l,p}^{-}(r) \equiv \chi_{l,p}^{-}/p^{l+1} \sim r^{l+1}$

$$f_l(p) = \frac{1}{p} W(\chi_{lp}^+, \phi_{lp}) = W(\tilde{\chi}_{lp}^+, \tilde{\phi}_{lp})$$

• 只有特殊的势下, 当 $\tilde{\chi}_{l,p=0}^+ \sim \tilde{\phi}_{l,0}$ 时, $f_l(0) = 0$, 当 l > 0 时, $\tilde{\phi}_{l,p}$ 确实是束缚态。 l = 0, 不可归一化。

下面看 $f_l(p)$ 在 0 点附近的如何趋于 0 的。考虑 e 指数衰减势, p=0 处解析,可以在积分内级数展开 $f_l(p)=1+\frac{\lambda}{p}\int_0^\infty dr' \hat{h}_l^+(pr')\,U(r')\phi_{l,p}(r')$

$$=1 + \frac{1}{p} \int_{0}^{\infty} dr' \hat{n}_{l}^{+}(pr') U(r') \phi_{l,p}(r') + i \frac{1}{p} \int_{0}^{\infty} dr' \hat{j}_{l}^{+}(pr') U(r') \phi_{l,p}(r')$$

$$\stackrel{p \to 0}{\longrightarrow} \int_{0}^{\infty} dr' \hat{n}_{l}^{+}(pr') U(r') \phi_{l,p}(r') + i \frac{1}{p} \int_{0}^{\infty} dr' \hat{j}_{l}^{+}(pr') U(r') \phi_{l,p}(r')$$

 $\xrightarrow{p\to 0}$ 1 + $[\alpha_l + \beta_l p^2 + O(p^4)]$ + $i[\gamma_l p^{2l+1} + O(p^{2l+3})]$ 注意到 $\hat{\jmath}_l(r)$, $\hat{n}_l(r)$, $\phi_{l,p}(r)$ 是实的,所以 α_l , β_l , γ_l 都是实的。其中用到

注意到 $j_l(r)$, $n_l(r)$, $\phi_{l,p}(r)$ 定头的,所以 α_l , β_l , γ_l 都定头的。其中用到 $\hat{j}_l(pr) \sim (pr)^{l+1} (\sum_{n=0}^{n} \alpha_n p^{2n}), \hat{n}_l(pr) \sim 1/(pr)^l (\sum_{n=0}^{n} \alpha_n p^{2n}),$

$$\hat{\jmath}_{l}(pr) \sim (pr)^{l+1} (\sum_{n=0} \alpha_{n} p^{2n}), \hat{n}_{l}(pr) \sim 1/(pr)^{l} (\sum_{n=0} \alpha_{n} p^{2n}),$$
 $\phi_{lp}(r) \sim (pr)^{l+1}, \ p \to 0. \ \text{Alm } f_{l}(p=0) = 0, \ \alpha_{l} = -1:$

$$f_{l}(p) = [\beta_{l} p^{2} + O(p^{4})] + i[\gamma_{l} p^{2l+1} + O(p^{2l+3})]$$

所以 $l = 0 \quad f_0(p) = i\gamma_l p + O(p^2),$

l > 0 $f_l(p) = \beta p^2 + O(p^3 \text{ or } p^4)$

l=0 是单根, 而 l>0 是二重根。

继续 Levinson 定理:

$$I = \oint d\ln f_l(p) = \oint dp \frac{\dot{f}_l(p)}{f_l(p)} = 2\pi i n_l(\operatorname{Im} p > 0),$$

积分的环路变为: p plane

$$p$$
 plane Γ_{ϵ}

$$I = -2i \int_{0}^{\infty} d\delta(p) = 2i[\delta(0) - \delta(\infty)] + \lim_{\epsilon \to 0} \int_{\Gamma} dp \frac{\dot{f}_{l}(p)}{f_{l}(p)}$$

$$=2i[\delta(0) - \delta(\infty)] + \begin{cases} -\pi i & [l=0] \\ -2\pi i & [l>0] \end{cases}$$

$$\pi = 0$$
 不是東埔本 $l > 0$ $\pi = 0$ 是東埔本 $t > 0$

$$l=0, p=0$$
 不是束缚态, $l>0, p=0$ 是束缚态:
$$\delta(0)-\delta(\infty) = \begin{cases} (n_0 + \frac{1}{2})\pi & [l=0]\\ n_l\pi & [l>0] \end{cases}$$

分波振幅 f_l 在 $f_l(p=0)=0$ 时的阈处的行为。

$$f_l(p) = \frac{\mathbf{s}_l(p) - 1}{2ip} = \frac{f_l(-p) - f_l(p)}{2ipf_l(p)} = \frac{-1}{p^2 f_l(p)} \int_0^\infty dr \hat{\jmath}_l(pr) U(r) \phi_{l,p}(r)$$

- 当 $f_l(0) \neq 0$ 时,我们前面得到 $f_l(p) = -a_l p^{2l} + O(p^{2l+1})$.
- l=0, 当 $f_0(0)=0$ 时, $f_0(p)\sim i\gamma p$, $j_0(pr)\sim p$, $\phi_{l,p}\sim p$, 所以

$$f_0(p) = i \frac{a_0}{p} + O(1), \quad a_0 \in \mathbb{R}$$

也可由 Levinson 定理: 此时, $\delta_0(0) = \pi/2 \pmod{\pi}$, $f_0(p) = \frac{1}{p} \exp(i\delta_0) \sin \delta_0 \rightarrow i\infty$, 截面 $\sigma_0 = 4\pi |f_0|^2 \rightarrow \infty$.

• l > 0, $f_l(p) \sim p^2$

$$f_l(p) = a_l p^{2l-2} + O(p^{2l-1})$$

与前面相比幂次减少两次。

SUMMARY

- 束缚态: $f_l(p)$ 的一阶零点, $\mathbf{s}_l(p)$ 的一阶极点。(page 64)
- Jost 函数两个性质 (page 69)
 1. Jost 函数不能在实轴上有零点, 除非在 p = 0 处。
- 2. $p \to \infty$, in $\mathrm{Im} p > 0$ plane, $f_l \to 1$.

 Levinson 定理: (page 70) 球对称情形,

$$\delta_l(0) - \delta_l(\infty) = n_l \pi$$

 n_l 是束缚态的个数。 一个例外情况是,l=0 且 $f_0(0)=0$ 时,

$$\delta_l(0) - \delta_l(\infty) = (n_0 + \frac{1}{2})\pi$$

- \mathbf{s}_l 的 K 矩阵参数化 (pg.73): $\mathbf{s}_l(p) = \frac{1+ik_l(p)}{1-ik_l(p)}$, $k_l(p)$ 实的, $k_l(p) = \tan \delta_l(p)$ 。
- $p \in \mathbb{R}$, $\mathbf{s}_l(-p) = 1/\mathbf{s}_l(p)_{\circ}$

对 $r \to \infty$ e 指数压低的势 • 阈附近行为: $f_i(0) \neq 0$ 时 (pg.71),

$$f_l(p) = -a_l p^{2l} + b_l p^{2l+1} + \dots$$
有效力程 effective range 展开 (pg. 74)

$$\frac{p^{2l+1}}{k_l(p)} = p^{2l+1} \cot \delta_l(p) = -\frac{1}{a_l} + \frac{r_l}{2} p^2 + O(p^4)$$
• 若 $f_l(p=0) = 0$ 处解性质: (pg. 75) $l > 0$ 时, 可以归一, 是束缚态:

$$l = 0$$
 时,解不可归一,不是束缚态。
• $f_l(p = 0) = 0$,在 $p = 0$ 展开: (pg.77)

$$l = 0$$
 $f_0(p) = i\gamma_l p + O(p^2),$
 $l > 0$ $f_l(p) = \beta p^2 + O(p^3 \text{ or } p^4)$

• 此时分波振幅
$$f_l$$
 在 $p = 0$ 展开: (pg.79)
$$l = 0, \quad f_0(p) = i\frac{a_0}{p} + O(1), \quad a_0 \in \mathbb{R}$$
 $l > 0, \quad f_l(p) = a_l p^{2l-2} + O(p^{2l-1})$

• 此时分波振幅 f_1 在 p=0 展开: (pg.79)

l=0 时可以看成散射长度发散。