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• The CMS detector

• Introduction to the HCAL energy reconstruction

• Current analytical methods and their disadvantages

• Common ML architectures: DNN, CNN and RNN

• Their applications on HCAL energy reconstruction

• HCAL calibration

• ML performance
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Trigger System and Pileup
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• Two-level trigger system
• Reduce the event rates 

from 40 MHz to ~1kHz
• While keeping most of 

the interesting events
• Level-1 trigger (L1T)

• Custom electronics
• Reduce rate to 100 kHz

• High-level trigger (HLT)
• Processor farm
• Rate reduce to ~1k Hz

pileup (PU)
• The PP interactions in addition to the 

collision of interest
• In-time PU and out-of-time PU

2018
In-time PU



Event Reconstruction

5

• Particle Flow (PF) Algorithm
• Runs on HLT and offline reconstruction
• Synthesizes information from all sub-

detectors and reconstructs particles 
based on their signatures

1. Muon
2. Electron and Photon
3. Charged and Neutral Hadron

• Then PF particles are clustered as jets
• Usually anti-kT algorithm in CMS

• Last global quantities of an event
• e.g. missing transvers momentum 𝑝!"#$$, 

aka MET usually a manifest of neutrinos, 
but may also from BSM :P



HCAL is Important
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CERN news and arXiv:2206.09997 

HCAL is important for:
• L1T (tracker is not involved in L1T)
• Hadrons, especially neutral hadrons
• Lepton identification (H/E) and isolation
• Physics analyses

• e.g. di-jet resonance searches

(Charged) particle resolution is dominated by 
tracker at low energy, calorimeters at high energy

https://home.cern/news/news/physics/cms-lookout-new-physics
https://arxiv.org/abs/2206.09997


HCAL Readout Chain
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HCAL Energy Reconstruction
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• Pulse shape
• Digitized charge as a function of time
• Measured with 1 ns granularity in 

isolated bunches
• 8 time samples/slices (TS) in the buffer

each TS = 25 ns
• Sample of interest (SOI): 75-100 ns

~60% total charge
• SOI+1: ~20% total charge

• First reco algorithm: Method 0
• Used in Run1 (50ns bunch spacing)
• OOT PU almost negligible
• [(SOI) + (SOI+1)] * scale factors

• Pulse fitting algorithms
• In use since Run2 (25 ns bunch spacing)
• 2016-2017: Method 2 (3) offline (HLT)
• from 2018: MAHI both offline and HLT

isolated bunches
i.e. no OOT PU

normal collision



Method 2
• Fit up to 3 pulses (SOI-1, SOI and SOI+1) to 8 TS

• Minimize 𝜒2 using MIGRAD algorithm in Minuit

𝑇𝑆!: net charge of the ith TS. 𝐴! : pulse amplitude. 𝑡" : pulse arrival time

Ped: pedestal noise. i.e. a floating baseline of SiPM and QIE leak current
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Disadvantages:
1. Too slow. Can only run in offline reco
2. Only fit up to 3 pulses

Bad performance at low energy
3. Sometimes fitting unstable

Force to fit only 1 pulse when OOT PU is 
small (energy > 20 GeV)
à a “kink” in the output spectrum

3 pulses is not enough at low energy



MAHI
• Minimization At HCAL, Iteratively (MAHI)

• Fit  8 pulses to 8 TS

• Matrix based minimization with Non-Negative Least Square (NNLS) algorithm

𝐴! : pulse amplitude. 𝑝! : pulse shape. q : net charges of 8TS

∑𝑑 : quadratic sum of uncertainties. ∑𝑝, 𝑖 : pulse shape uncertainty

• ~10 times faster than M2: can be used in HLT
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M2 = 148.18 GeV
Sim = 159.77 GeV

M2 = 37.85 GeV
Sim = 39.27GeV

Disadvantage:
Cannot fit for pulse arrival time
Bad performance at high energy

MAHI bad performance for late arrival pulses (MC sample without PU)



Feedforward Neural Network
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• Perceptron: a single neuron
𝑦 = 𝑓 ∑𝑤#𝑥# + 𝑏
y: output. x: inputs. w: weights. b: a bias term.
f: nonlinear activation function
e.g. Sigmoid, ReLU, etc.

• Dense layer: outputs fully connected as inputs to the
next layer

• Loss function: evaluate the predictions
e.g. Mean Squared Error (MSE) for regression

Loss (MSE) = %
&
∑(y'()* − y+(,+-).

• Training: find weights and bias terms that minimize 
the loss function
e.g. stochastic gradient decent (SGD)

Universal approximation theorem
K. Hornik, M. Stinchcombe, and H. White. 1989

Feedforward Neural Network with as few 
as one hidden layer is able to approximate 
any measurable function

https://www.sciencedirect.com/science/article/abs/pii/0893608089900208


HCAL Reco with DNN
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FACILE
Goal: a lite architecture with performance similar to MAHI, and can run on FPGA for L1 trigger

https://indico.cern.ch/event/1122482/contributions/4716772/attachments/2385197/4076350/facile_update_hcaldpg_feb4.pdf
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Convolutional Neural Network
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Convolutional Neural Network (CNN): use filters (kernels) to extract features

Example: select signal (normal pulse) from common backgrounds (double pulse, delayed pulse, etc)
1. Extract low-level features of rising and falling
2. Extract high-level features: the location and multiplicity of the low-level features
3. A simple perceptron for output. 1: signal, 0: background
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HCAL Reco with CNN
• DLPHIN = Deep Learning Processes for HCAL INtegration

• Architecture evolved from 1D CNN to 2D CNN
• Dim. 1: net charges of 8TS
• Dim. 2: depth à exploit correlations among channels in a tower

• More than 3 times faster than MAHI reco (both on CPU)

• Better performance from upstream to downstream
• channel-level à single particle-level à jet-level

14
channel-level resolution

1D CNN 2D CNN



Recurrent Neural Network
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Recurrent Neural Network (RNN): add a time dimension to better process sequential inputs

• Feedforward: process all inputs 𝑥# at once. 𝑦 = 𝑓 ∑𝑤#𝑥# + 𝑏
• RNN: process 𝑥# in time steps; each time step has a state ℎ/

that is updated recurrently. ℎ/ = 𝑓 𝑤0ℎ/1% + 𝑤2𝑥/
Output 𝑦/ = 𝑓 𝑤3ℎ/

• Example: handwriting recognition, letter “a” vs “d”
• Feedforward: inputs from static image
• RNN: sequential inputs as “strokes”

• A common issue for vanilla RNN: vanishing gradient problem
• Most used solution: Long Short Term Memory (LSTM)

• Add gates to RNN units to control what info is passed through
• Charge inputs of 8TS are also sequential inputs

• Tried LSTM in DLPHIN, only several percent improvement
• Keep the 2D CNN for a lite and fast architecture



DLPHIN performance
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HCAL channel-level resolutions Particle-level (𝜋±) resolutions

HB HE

MAHI DLPHIN

• HCAL channel-level resolutions: 1TeV pion-gun MC. Compare reconstructed energy to simulation energy
DLPHIN has better resolution than both MAHI and M2

• Single particle-level (𝜋±) resolutions: 50GeV pion-gun MC. Match calorimeter jets to generated pions
DLPHIN resolution ~10% better than MAHI



PF hadron calibrations
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• HCAL is an under-compensating calorimeter
• EM component of hadron shower smaller at 

low energy à Low response at low energy
• Need particle-level calibration

• HCAL calibrated with 50 GeV pion (ECAL 
energy negligible) for channel energy

• Then energy dependent calibration on PF 
hadrons

• PF hadron (start showering in ECAL) as an example
E56(( = A E ∗ E(789:;< + B E ∗ E(78=:;< + offset
• Currently the parameters A(E), B(E), etc are 

based on function fitting
• Plan to use ML on this step, expect big 

improvements on some bad fittings
• Downstream tests (e.g. jet resolution) have to be 

after PF calibrations

PF hadron
raw response

response after energy 
dependent calibration

y = [0] + ([1] + 
[2]
$ ) exp(-

$["]
[3] )

&$ / NDF = 7.5



DLPHIN performance
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• PF jet-level resolutions: QCD MC (flat 𝑝!15-3000 GeV). Match PF jets to generator level jets
• PF jet performance dominated by tracker at low energy
• DLPHIN resolution 5% / 10% better than MAHI for HB / HE at high energy



Summary and Outlook
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• Introduced some common ML architectures and the physics behind the design

• For HCAL reco: DLPHIN showed better performance and speed than traditional fitting algos

• Other possible applications of DLPHIN
• A lite version on FPGA for L1T (DLPHIN/FACILE collaboration)

Will bring huge improvements on hadrons and leptons

• ECAL energy reconstruction

Currently also use traditional fitting

• Use in future detectors in CEPC, FCC etc.

Thanks for your attention!



Backup slides
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dijet resonance search
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Also working on an ML approach for dijet pairing



Background functions
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Systematic uncertainties
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dijet resonance search
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Event displays
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Method 2
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Method 3
• Online version of M2, used in 2016 and 2017
• Fit 3 pulses (SOI - 1, SOI and SOI + 1) to only 3 TS
• Drop the arrival time term
• Use constant baseline term
• Fitting à solving linear equation

27

f0, f1 and f2 are the premeasured fractions of the 
pulse template in +0, +1 and +2 TS



MAHI
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Processing time
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↑ ↑
Total CPU time [s] Process name

Processing time profiled with IgProf
CMSSW_12_4_3, 1000 events in 2022C_JetHT data
DLPHIN processing time < 30% of MAHI (both on CPU)

HCAL on CPU used to cost ~15% of total HLT time
DLPHIN on CPU can achieve ~negligible (<5%) of total HLT time, like MAHI on GPU

MAHI on CPU



recHit resolution in HB
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MAHI M2 DLPHIN Normalized resolutions

Resolutions vs simHits with UL 2018 pion-gun sample (realistic PU)
M2 forced to fit 1 pulse for HPD charge > 100 fC (~20 GeV), hence the kink
HB only had 1 depth in Run2. DLPHIN is expected to be even better in Run3



recHit resolution in HE
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MAHI M2 DLPHIN Normalized resolutions

Resolutions vs simHits with UL 2018 pion-gun sample (realistic PU)
M2 forced to fit 1 pulse for SiPM charge > 25k fC (~20 GeV), hence the kink


