## **Review of the last week**



The artificial sample (projection on the  $M_1$ )

- Discussion about prompt + non-prompt combination
  - Using square of the single dimension fraction
  - Using greater lifetime variable out of two
  - Doing 4D fit
- Discussion about whether the parameters should be fixed
  - Mass: width will be fixed/float in different conditions
  - Lifetime: non-prompt shall be fixed, prompt shall be float between SPS/DPS
- An artificial combinatorial background sample has been made

-square of 1D fraction?



- $p+p/_{All} = f^2$
- A fatal assumption:  $J/\psi_1$  and  $J/\psi_2$  are not related to each other



- True value:  ${}^{p+p}/_{All} = {}^{1000}/_{(1000+2+2+200)} = 83\%$
- f acquired from 1D:  $f = \frac{1002}{(1002+202)} = 83\%$ •  $f^2 = 0.83^2 = 69\%$

2

–using the greater lifetime variable?

- Advantage: we can keep the 3D fit and no additional com will be added (P+NP, NP+P, NP+NP will all be non-prompt)
- Issues need to be solved:
  - We have reached an agreement on the  $Sig_{Lxy}$ , but there may be no significant rank between prompt and non-prompt  $J/\psi$ 
    - We may need to change the distinguishment variable
  - Non-prompt lifetime variable (e.g.  $L_{xy}PV$ ) is not certainly larger than the prompt one
    - May regard it as an error
    - 4D fit may help
  - The sorting may change the shape of the distribution
    - We need to redo all the 1D fit
    - We have no idea what will be the shape of the prompt + nonprompt components after the sorting
  - We can not validate this method





#### Prompt + non-prompt components ----4D fit?

- May be the only available method as for now
- Issue need to be considered:
  - The shape of the prompt and non-prompt is similar after the vertex cut, which may cause big uncertainty in the fitting
- We may need to take a step back and do the fit without the vertex cut



## Distribution of the combinatorial background on the lifetime dimension(s)

• Using the sub-range dataset to determine the distribution



## Float the prompt sample shape parameters

- The parameters for the prompt component used to be fixed (by a 8K SPS:4K DPS mixing sample) in the final fitting
- Since slight discrepancies were noticed between SPS and DPS shape, we tried to float the shape parameters between SPS and DPS
- Only tried  $Sig_{Lxy}$
- 1D fit to SPS and DPS:



### Float the prompt sample shape parameters

• Relative error [%]



| ~ | Prompt | Non-<br>prompt |  |  |
|---|--------|----------------|--|--|
| 1 | 6K     | 2K             |  |  |
| 2 | 8K     | 2K             |  |  |
| 3 | 10K    | 2K             |  |  |
| 4 | 12K    | 2K             |  |  |
| 5 | 14K    | 2K             |  |  |
| 6 | 16K    | 2K             |  |  |
| 7 | 20K    | 2K             |  |  |

- Floating the parameters cause a much worse estimation
- A much larger uncertainty can also be noticed in some cases
- Propose to keep it fixed

## Fitting to the artificial sample

• The side band can be noticed in the "narrow" mass windows: directly fit in the narrow windows  $J/\psi_1\mu^+\mu^-$ 



- The shape parameters of mass dimensions are left to float
- The distributions of lifetime dimensions of the combinatorial background are determined by the sub-range dataset

## **Fitting to the artificial sample**







- Fitting quality is still not satisfying
- Estimation:
  - prompt:  $12000 \pm 200$  (compare to 12K)
  - Non-prompt:  $1630 \pm 140$  (compare to 2K)
- Prompt estimation is much better, but the nonprompt one is worse



- Prompt + non-prompt component
  - Square of the 1D fraction is not suitable
  - Too many issues need to be solved if we want to use greater  $c\tau$
  - 4D fit (without the vertex cut) may be available
- Lifetime shape of combinatorial background
  - Propose to determine from by the sub range datasets
- Test the distinguishment with the float prompt parameters
  - Result is worse than fixed parameters
- Continue to fit to the artificial sample
  - Result is better than the last week, but still unsatisfying



-An interesting proposal?



- By using the  $c\tau_1 + c\tau_2$  (or  $c\tau_1 + c\tau_2$ ) we can finish the distinguishment in 1D
- The most significant problem is that we have less idea about how the  $c\tau_1 \pm c\tau_2$  distributes for the prompt non-prompt components

—4D fit using the greater(smaller)  $c\tau$ ?



- With sorted *cτ*, most of the prompt non-prompt combination candidates become non-prompt + prompt
- Although some candidates are still prompt + non-prompt. Thus we may need 4D fit to solve this issue

# Compare between different distinguishment variables

• Average relative error [%] between samples

|            |            |      |                    | w/ ve        | 4                     |                            |            |
|------------|------------|------|--------------------|--------------|-----------------------|----------------------------|------------|
|            | $L_{xy}PV$ | CT   | Sig <sub>Lxy</sub> | $d^{J/\psi}$ | $c\tau \& d^{J/\psi}$ | $Sig_{Lxy}$ & $d^{J/\psi}$ | $L_{xy}PV$ |
| Prompt     | 1.15       | 1.27 | 0.15               | 3.71         | 3.71                  | 7.37                       | 0.41       |
| Non-prompt | 6.82       | 6.54 | 2.07               | 19.6         | 19.6                  | 42.6                       | 4.85       |

|            |      | сτ   | Sig <sub>Lxy</sub> | $d^{J/\psi}$ | cτ & d <sup>J/ψ</sup> |
|------------|------|------|--------------------|--------------|-----------------------|
| Prompt     | 1.04 | 0.13 | 0.35               | 0.60         | 0.42                  |
| Non-prompt | 0.85 | 3.41 | 1.44               | 0.52         | 1.37                  |
|            |      |      |                    |              |                       |

Wide mass windows

1

### About the fitting parameters

#### • Thesis

#### • Our current strategy

|              | JJ<br>(prompt)                    | JJ (non-<br>prompt) | Combi                |              |          | JJ<br>(prompt)            | JJ (non-<br>prompt) | Combi                |
|--------------|-----------------------------------|---------------------|----------------------|--------------|----------|---------------------------|---------------------|----------------------|
| $M_{J/\psi}$ | Mean float<br>Sigma fixed from MC |                     | Fixed from side band | $M_{J/\psi}$ |          | Mean float<br>Sigma float |                     | Fixed from side band |
| Lifetime     | Fixed from<br>MC                  | Float               | Fixed from side band |              | Lifetime | Fixed from<br>MC          | Fixed from<br>MC    | Fixed from side band |
| • 1:         |                                   |                     |                      | I            |          |                           | 2                   |                      |

- Will be float in the overall fitting, but fixed in the binned fitting
- 2:
  - May solve the uncertainty in the MC
  - May cover the prompt + non-prompt component
  - Our previous study was carried out with the fixed parameters
  - With the vertex cut, the shape of prompt and non-prompt components are similar, free the parameters may cause some issues

### **Representative fitting plot in the** distinguishment test



- Prompt: 16000 (12KSPS+4KDPS)
- Non-prompt: 2000
- **Estimation**:
  - prompt:  $16200 \pm 400$
  - Non-prompt:  $1800 \pm 400$

## Artificial sample







• 5K *J*μμ+5K μμJ+2K μμμμ (generated dataset)

3.4 3.5 m(J/Ψ<sub>2</sub>) [GeV]

Data

 $M_{J/\Psi 2}$ 

ţţ.

+ +

3.1

3

3.2

3.3

# Combinatorial background determination in the thesis



 The distributions of lifetime dimensions of the combinatorial background are determined by the sub-range dataset The PDF used in this fitting is a combination of a double gaussian and a 3<sup>rd</sup> order Chebyshev, where the gaussian is fixed by the MC and the Chebyshev is float