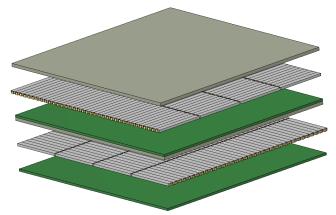
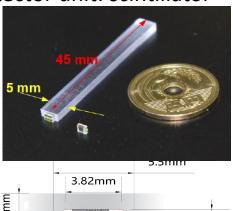


CERN Beamtest of CEPC Calorimeter Prototypes

Yong Liu (IHEP), for the CALICE and CEPC Calorimeter teams Nov. 25, 2022



Recap: scintillator-tungsten ECAL prototype

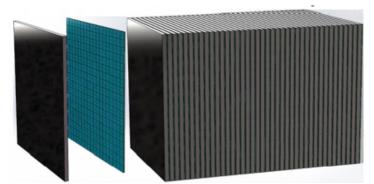

Sampling structure: scintillator strips + tungsten-copper plates

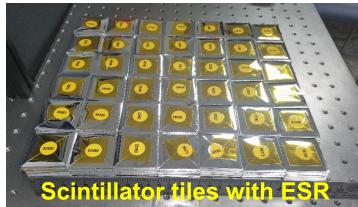
ScW-ECAL prototype


Detector unit: scintillator + SiPM

3.82mm
SiPM
EE
C
Scintillator

One sensitive layer (EBU)


Two EBUs + absorber: integrated with mechanics

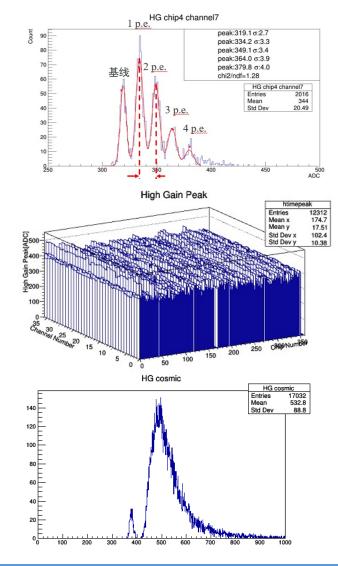


- ScW-ECAL prototype
 - Transverse size $\sim 22 \times 22$ cm², 32 longitudinal layers ($\sim 25X_0$)
 - 6700 readout channels, ~300 kg in weight
 - Developed during 2016 2020
 - Tested with beams at BEPCII-TBF (IHEP) and cosmics at USTC

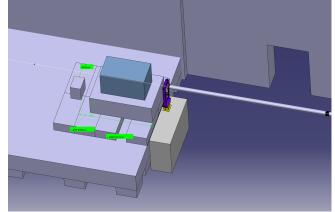
Recap: scintillator-iron HCAL prototype

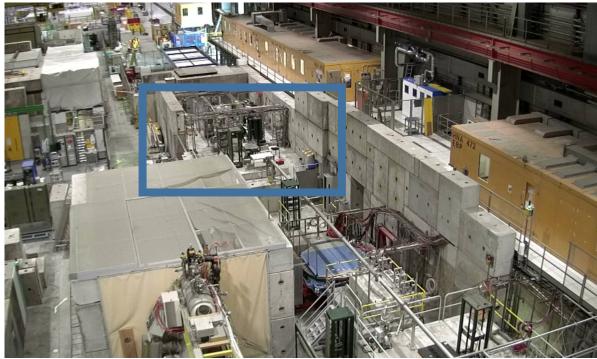
Mechanics Integration

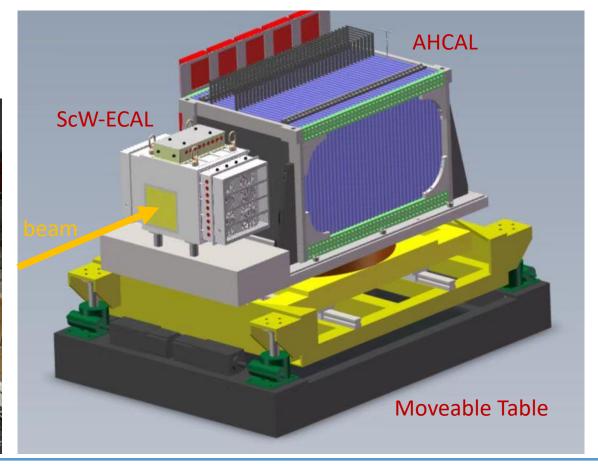
- AHCAL prototype: with "SiPM-on-Tile" design
 - Transverse size 72×72 cm², 40 longitudinal layers ($\sim 4.6 \lambda_I$)
 - 12960 readout channels, ~5 ton in weight
 - Developed during 2018 2022
 - HBU assembly and commissioning (w/ cosmic muons) at USTC



AHCAL: assembly and commissioning (August 2022)

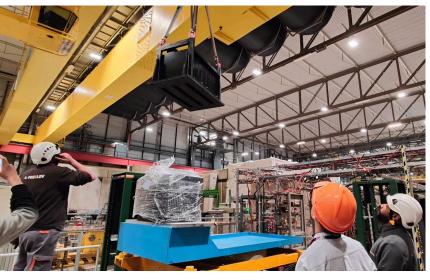

- HBU assembly and commissioning with DAQ at USTC
 - Pedestal runs and calibration
 - LED data for SiPM gain calibration
 - ASIC inter-calibration: High Gain vs. Low Gain
- Cosmic-ray tests: MIP peaks can be seen for most layers
- Joint efforts of USTC, IHEP and SJTU: "rehearsals" for the beamtest





H8 beam area arrangement

Technical discussions with Michael Lazzaroni (CERN)



Transport and preparations at CERN SPS

Calorimeters in flight

Flying AHCAL

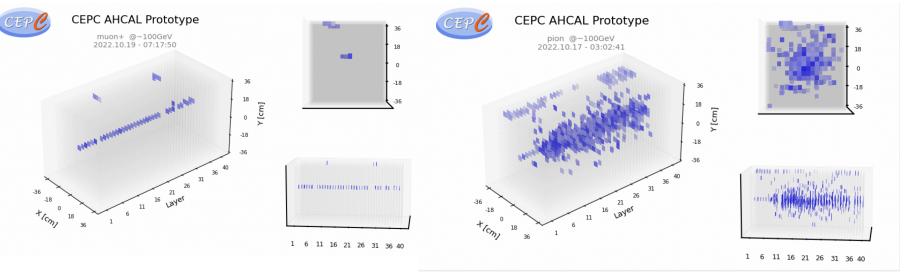
Before cabling

After cabling: parasitic runs

- Successful transportation from China to CERN
 - Transport started from Sep. 15: twists and turns
 - Issues finally solved thanks to the efforts led by Jianbei
- Oct. 14: delivered to the beam area H8C (PPE168)
 - ScW-ECAL and AHCAL prototypes + 1 supporting table
 - Impressions: a few cubic meters and ~10 tons

25.11.22

Unpacking and installations



Parasitic beam test: ScW-ECAL + AHCAL

Muons in ECAL: Hit Maps

Muon MIP track in HCAL

- Motivations: full system commissioning; muons for ECAL and HCAL calibration
- Successful data taking with parasitic beams (Oct. 14-19)
 - Setup: combined ECAL and HCAL, in downstream of LHCb detectors
 - Beams: 160-180 GeV muon+ or pion+
 - MIP tracks and hadronic showers in highly granular calorimeters
 - Thanks to the LHCb team (with muon detectors)

Beam test: motivations and plans

The 1st week as main user (Oct. 19-26): AHCAL prototype alone in H8 beam line

- Muon beam: 160 GeV (1st week); 108 GeV (2nd week)
 - MIP calibration → energy reconstruction
- Positron beam: 10 120 GeV
 - Compact EM showers → high energy density →
 SiPM saturation corrections (essential)
 - EM performance
 - Validation of simulation and digitisers
- Pion beam: 10 120 GeV
 - Major goal: hadronic performance (10-80 GeV),
 e.g. energy linearity and resolution
 - Shower profiles in 3D and time domain
 - Geant4 simulation validation ("Physics Lists")
 - Particle-flow studies: e.g. ArborPFA

AHCAL beam test with muons

Muon beam (~160 GeV)

1 muon track

Yong Liu (liuyong@ihep.ac.cn)

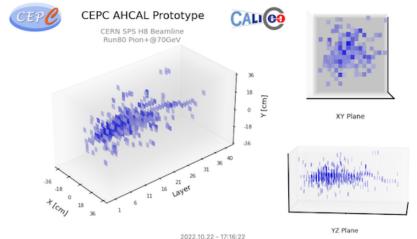
- Wide beam profile: covers AHCAL lateral area $(72 \times 72 \text{ cm}^2)$
- ASIC configuration: threshold scans (all layers)
- SiPM bias voltage tuning (all layers)
- Data sets for MIP calibration

CEPC AHCAL Prototype Run15- Muon 2022.10.20 - 03.32:15 CEPC AHCAL Prototype Run19- Muon @10.0GeV 2022.10.20 - 04.44.24 CEPC AHCAL Prototype Run19- Muon @10.0GeV 2022.10.20 - 04.44.24 XY Plane 1 6 11 16 21 26 31 36 40

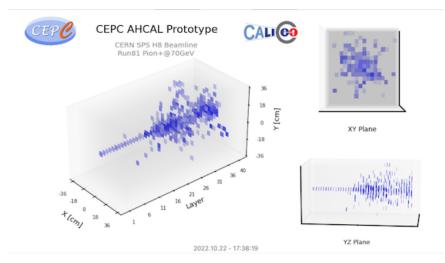
2 muon tracks

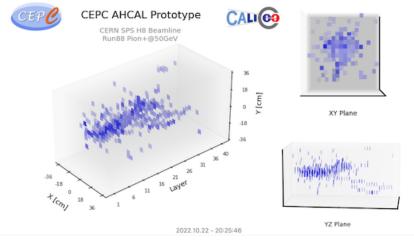
1 muon + 1 pion

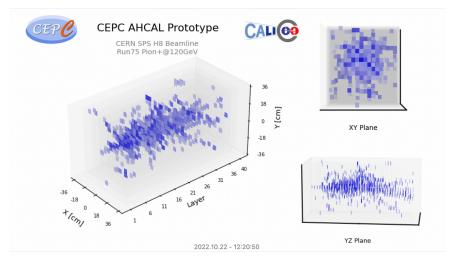
AHCAL pion beam data


- Plans for AHCAL (alone) with pion+ beam
 - 1M events per energy point
 - Accumulate more statistics at one or two low energy point
- Data taking
 - Successfully completed plans
 - SPS running very smoothly and with high beam intensity during Oct. 20 – 26
- Beam purity: issue and solution
 - Contaminations of pion+ beam with protons (energy dependent)
 - 2 Cherenkov counters implemented in DAQ: recorded in data, not part of hardware trigger

AHCAL data list (pion+)


Momentum (GeV)	Number of Events	Total Runs
120	1086169	8
100	1392510	8
90	1118714	8
80	1040225	8
70	1038162	7
60	1074803	9
50	1066431	6
40	1339732	8
30	2108208	10
20	2059772	14
10	675699	5


AHCAL with pion+ beam: event display

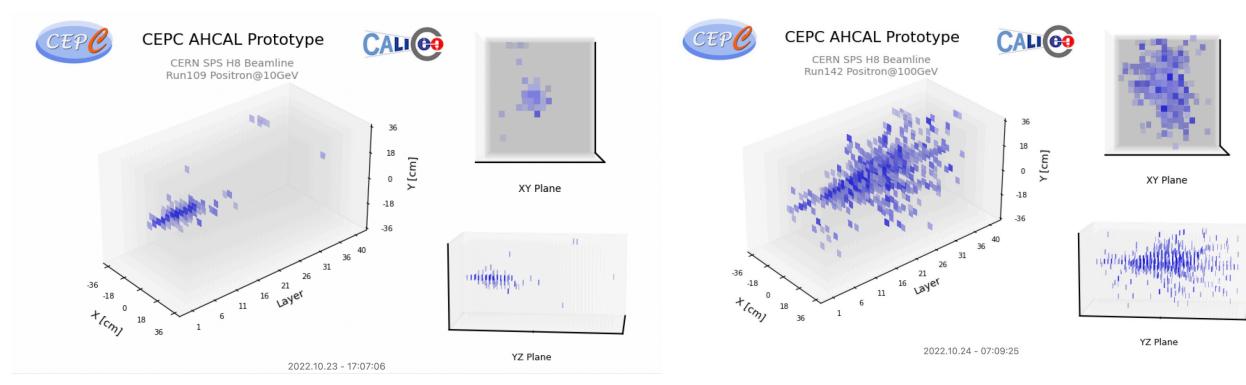

70 GeV pion+ (early showers)

70 GeV pion+ (late showers)

50 GeV pion+

120 GeV pion+

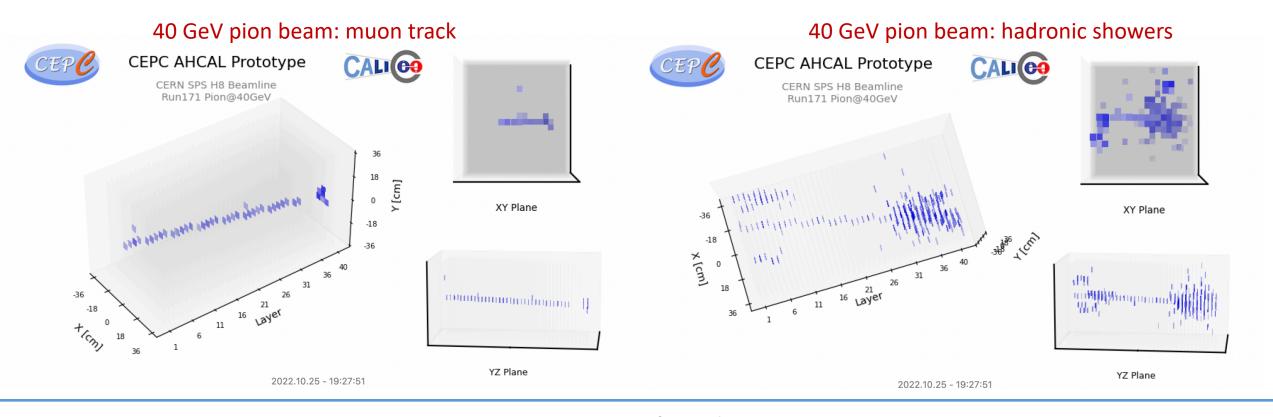
AHCAL positron beam data


- Plan for AHCAL (alone) with e+ beam
 - ~200k events per energy point
- Data taking
 - Successfully completed the plan within half a day (Oct. 24)
 - Thanks to SPS smooth running
- Beam purity: issue and solutions
 - Contaminations of e+ beam with hadrons (energy dependent)
 - 2 Cherenkov counters implemented in DAQ: recorded in data, not part of hardware trigger
 - Shower profiles: EM vs hadronic

AHCAL data list (e+)

Momentum (GeV)	Number of Events	Total Runs
20	337956	2
30	193054	2
40	159087	2
50	220352	2
60	253464	2
70	189186	2
80	429414	3
100	196267	2
120	286107	2

AHCAL with e+ beam: event display


10 GeV positron beam: EM showers

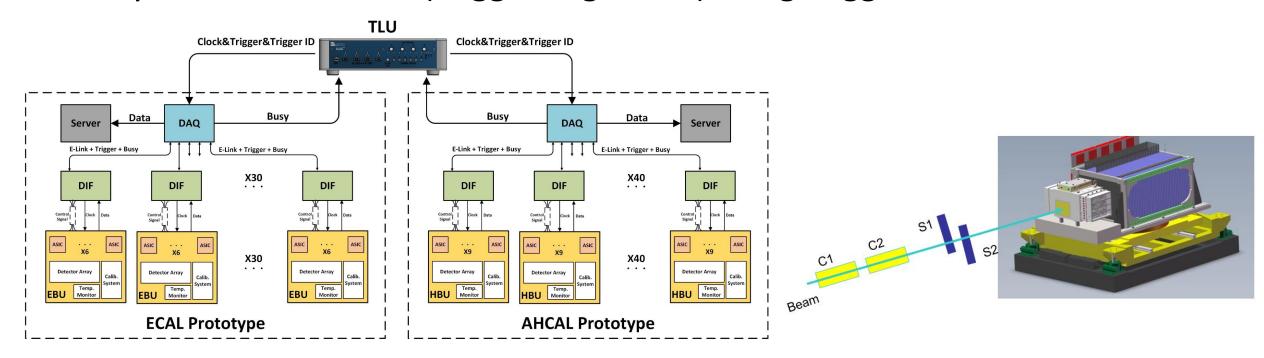
Hadronic showers in 120 GeV positron beam

AHCAL prototype rotated

- AHCAL was rotated at 15° w.r.t the beam incidence
 - To study angular dependences: shower energy and profiles
 - Pi+ beams: 20GeV (273k events), 30GeV (1.11M events), 40 GeV (134k events)

ScW-ECAL and AHCAL: combined beam test

- 120 GeV secondary hadron beam used (180 GeV in the first week)
 - Trying to improve the beam intensity
- Muon beam: wide profiles for MIP calibration
- Positron and pion beams: energy scans



ScW-ECAL and AHCAL: integrated DAQ system

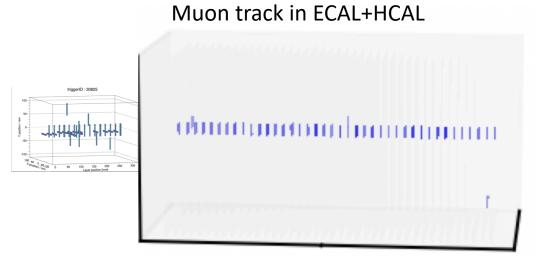
Integration of 2 DAQ systems

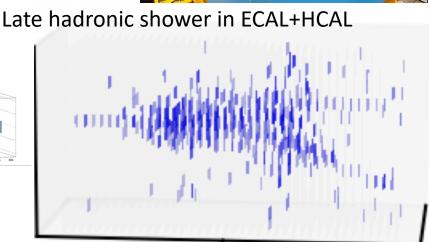
- ECAL DAQ: 30 DIFs and 1 data aggregator board
- HCAL DAQ: 40 DIFs and 1 data aggregator board
- Synchronise via TLU (Trigger Logic Unit) using Trigger ID

Beam test of combined ECAL+HCAL

Obtained all data sets as planned for the combined ECAL+HCAL

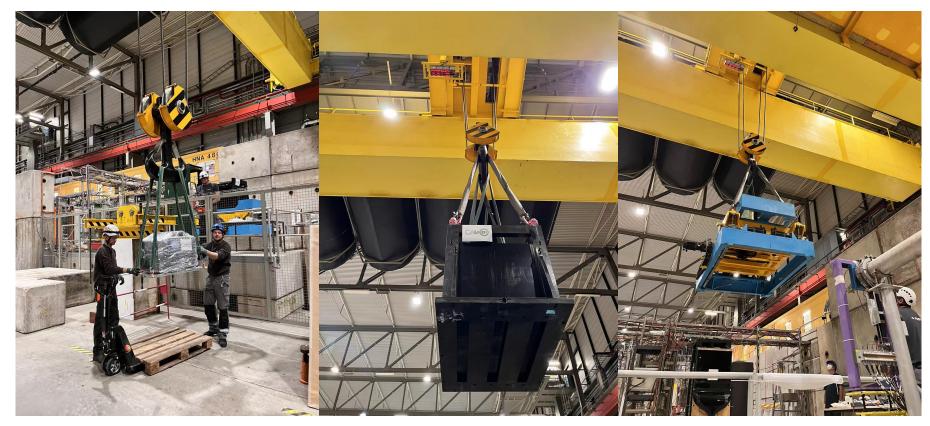
• 2nd main user week: Oct. 27 – Nov. 2


Muon beam: ~108 GeV


Positron beam: 10 – 120 GeV

Pion beam: 10 – 120 GeV

Event-level synchronisation is the key: ongoing efforts



Event display software under development for ECAL and HCAL

Decommissioning and transport

- Successfully moved out of the beam area (Nov. 2)
 - ECAL + HCAL prototypes, support table

Transport and storage at CERN

- Internal transportation and storage at Building 190: completed in Nov. 9
 - Thanks to the CERN EP support and coordinating efforts of CALICE management

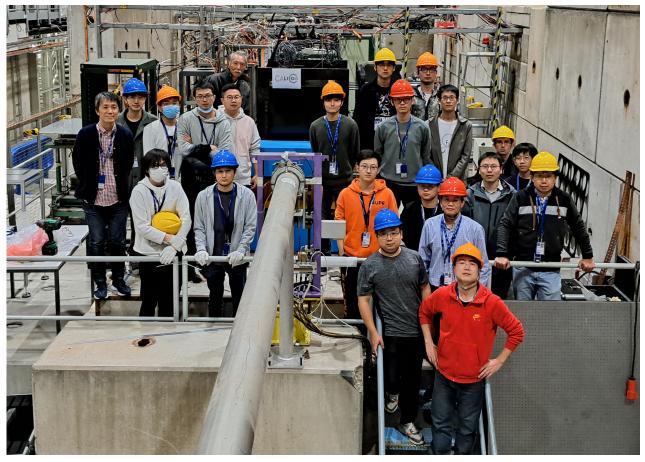
Brief summary of CERN beam test

First experiences with the complicated system of 2 PFA calorimeters

- Successfully completed all the plans, thanks to
 - Strong teamwork, robust detector system and stable SPS beam running
 - Great substantial support from CALICE and CERN

- Full data sets collected for
 - Highly granular calorimeter performance studies
 - Detailed shower studies in 3D space and time domain
 - Validation of Geant4 simulation
 - Particle-flow studies: e.g. ArborPFA

Acknowledgements


- CALICE and CEPC calorimeter teams: strong team work
 - IHEP, SJTU, USTC; U. Shinshu, U. Tokyo; Weizmann
 - With funding support from MOST, NSFC, CAS, etc.
- CALICE collaboration

- Management (Roman and Lucia): coordination with CERN EP for the storage
- Colleagues at other beamlines for sharing experiences and information
- CERN
 - Experimental Areas group: transport, installation, beam tuning
 - HSE Unit: radiation protection support, safety training
 - PS/SPS coordinators: information exchange at weekly users meeting
 - EP department: coordination of platform certificate issue, prototype storage

Group photos

IHEP, SJTU, USTC; U. Shinshu, U. Tokyo

IHEP, SJTU, USTC; Weizmann; U. Shinshu, U. Tokyo

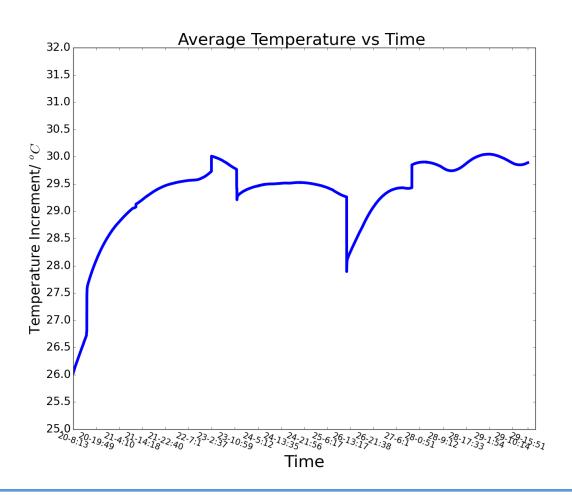
Thank you!

Lessons from this round of beam test

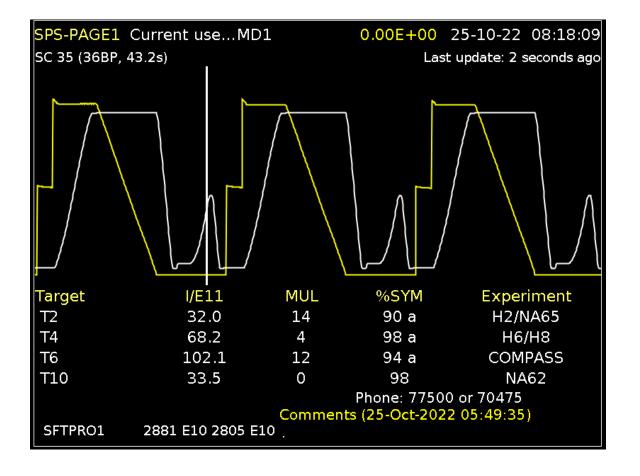
About the SPS beamlines

Yong Liu (liuyong@ihep.ac.cn)

- (Based on discussions with the beam expert)
- H8 provides abundant positive beam particles: mu+, e+, pi+ and p, but in mixture
 - Contaminations: hadrons in e+ beam, and protons in pi+ beam
 - H8 can provide negative beams, but the intensity is significantly lower
- H2/H4 are better options with negative beams
 - Much better beam purity
 - More user-friendly beam instrumentation


Past experiences from CALICE:

- Almost all SPS beamtest campaigns happened at H2 or H4
- Only once at H8 in 2011: AHCAL prototype with tungsten absorber



Other information

AHCAL temperature

SPS: 3 spills per super cycle

