

中國科学院為能物昭為完備 Institute of High Energy Physics Chinese Academy of Sciences

Hyperon Physics at BESIII

WIN2023

Hong-Fei Shen on behalf of BESIII collaboration

Institute of High Energy Physics, Beijing, China

2023-07-04

Outline CONTENTS

Summary and Outlooks

Mystery of matter-antimatter asymmetry

- According to the Big Bang theory:
 - Matter and anti-matter have the same amount
- The observed universe is matter dominant: $(n_B - n_{\bar{B}})/n_{\gamma} \sim 10^{-10}$

New Journal of Physics 14 (2012) 095012

Sakharov three conditions require:

 Baryon number violation
 C and CP violation
 Thermal non-equilibrium

Pisma Zh. Eksp. Teor. Fiz., 1967, 5: 32-35

WIN2023

4

CP violation (CPV)

2023-07-04

Hyperon non-leptonic weak decay

The amplitude of spin-1/2 hyperon B_i decay to a spin-1/2 baryon B_f and π :

$$\mathbf{A} \sim S\sigma_0 + P\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}$$

The decay parameters are defined as:

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

Two complex amplitudes:

$$S = \Sigma^{i} S_{i} e^{i(\xi_{i}^{S} + \delta_{i}^{S})}, \qquad P = \Sigma^{i} P_{i} e^{i(\xi_{i}^{P} + \delta_{i}^{P})}$$

Under CP transformation:

$$\bar{S} = -\Sigma^i S_i e^{i(-\xi_i^S + \delta_i^S)}, \qquad \bar{P} = \Sigma^i P_i e^{i(-\xi_i^P + \delta_i^P)}$$

If CP conserved:
$$S \stackrel{CP}{\Longrightarrow} - S$$

 $P \stackrel{CP}{\Longrightarrow} P$
 $\beta_Y \stackrel{CP}{\Longrightarrow} - \beta_Y$

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

$$\alpha_Y^2 + \beta_Y^2 + \gamma_Y^2 = 1$$

$$\beta_Y = (1 - \alpha_Y^2)^{\frac{1}{2}} sin \phi_Y$$
, $\gamma_Y = (1 - \alpha_Y^2)^{\frac{1}{2}} cos \phi_Y$

Hyperon *CPV* observables

$$A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} \approx -\tan(\delta_P - \delta_S)\tan(\xi_P - \xi_S)$$

$$B_{CP} = \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}} \approx \tan(\xi_P - \xi_S)$$

$$\Delta \phi_{CP} = \frac{\phi + \bar{\phi}}{2} \approx \frac{\alpha}{\sqrt{1 - \alpha^2}} \cos\phi \tan(\xi_P - \xi_S)$$

If the strong phase difference $\delta_P - \delta_S$ is close to 0, A_{CP} will be suppressed, however, B_{CP} and $\Delta \phi_{CP}$ won't suffer from this problem.

 B_{CP} and $\Delta \phi_{CP}$ can be directly determined, if the polarization of the daughter baryon B_f can be measured. This is a big advantage of $\Xi^{0(-)}$ hyperon compared to Λ or Σ^{\pm} hyperon.

Study hyperons at BESIII

With 10 billion J/ψ and 2.7 billion $\psi(3686)$ collected at BESIII.

 $\sim 10^7$ entangled hyperon pairs can be studied.

Front. Phys. 12(5), 121301 (2017)				
Decay mode	B (×10 ⁻³)	$N_B(imes 10^6)$		
$J/\psi ightarrow \Lambda\overline{\Lambda}$	1.89 ± 0.09	~18.9		
$J/\psi ightarrow \Sigma^0 \overline{\Sigma}{}^0$	1.172 ± 0.032	~11.7		
$J/\psi ightarrow \Sigma^+ \overline{\Sigma}^-$	1.07 ± 0.04	~10.7		
$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$	1.17 ± 0.04	~11.7		
$J/\psi ightarrow \Xi^- \overline{\Xi}^+$	0.97 ± 0.08	~9.7		
$\psi(2S)\to \Omega^-\overline{\Omega}{}^+$	0.057 ± 0.003	~0.17		

 $\frac{-1}{\Sigma^{-1}} \frac{dd}{s} \frac{-1/2}{s}$

ud

 $+ \Omega^{-}(sss) \operatorname{spin}{-\frac{3}{2}}$

sd

1/2

 Ξ^0

 $\Sigma^{0}\Lambda$

 Σ^+ \mathbf{I}_3

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda \rightarrow p\pi^-, \ \overline{\Lambda} \rightarrow \overline{p}\pi^+$

• Joint amplitude:

$$M = \frac{ie^2}{q^2} j_\mu \bar{u}(p_1) \left(F_1 \gamma_\mu + \frac{F_2}{2m} p_\nu \sigma^{\nu\mu} \gamma_5 \right) v(p_2)$$

• Differential cross section:

 $\frac{d\sigma \sim 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} + (\alpha_{\psi} + \cos^{2} \theta_{\Lambda}) s_{\Lambda}^{z} s_{\Lambda}^{z}}{\sin^{2} \theta_{\Lambda} s_{\Lambda}^{x} s_{\Lambda}^{x} - \alpha_{\psi} \sin^{2} \theta_{\Lambda} s_{\Lambda}^{y} s_{\Lambda}^{y} + \sqrt{1 - \alpha_{\psi}^{2} \cos\Delta\Phi \sin\theta_{\Lambda} \cos\theta_{\Lambda} (s_{\Lambda}^{x} s_{\Lambda}^{z} + s_{\Lambda}^{z})} s_{\Lambda}^{z} s_{\Lambda}^{x} + \sqrt{1 - \alpha_{\psi}^{2} \sin\Delta\Phi \sin\theta_{\Lambda} \cos\theta_{\Lambda} (s_{\Lambda}^{y} + s_{\Lambda}^{y})} \frac{\text{POLARIZATIONS}}{2}$

- The spin vector of Λ is denoted by s_{Λ}
- Only $\langle s^{y} \rangle$ could be non-zero, if $\sin \Delta \Phi \neq 0$

Nuovo Cim. A 109, 241 (1996) Phys. Rev.185 D 75, 074026 (2007) Nucl. Phys. A190 771, 169 (2006) Phys. Lett. B 772, 16(2017)

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda \rightarrow p\pi^-, \ \overline{\Lambda} \rightarrow \overline{p}\pi^+$

Two works of this channel from BESIII: [1] 1.3 billion: Nature Phys.15(2019)631 [2] 10 billion: Phys. Rev. Lett. 129 (2022) 13, 131801

Par.	BESIII 10 billion [2]	BESIII 1.3 billion [1]
$\overline{lpha_{J/\psi}}$	$0.4748 \pm 0.0022 \pm 0.0031$	$0.461 \pm 0.006 \pm 0.007$
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.0066$	$0.740 \pm 0.010 \pm 0.009$
lpha	$0.7519 \pm 0.0036 \pm 0.0024$	$0.750 \pm 0.009 \pm 0.004$
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0030$	$-0.758 \pm 0.010 \pm 0.007$
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0012$	$0.006 \pm 0.012 \pm 0.007$
$lpha_{ m avg}$	$0.7542 \pm 0.0010 \pm 0.0024$	-

• Most precise values for Λ decay parameter

• Most precise *CP* test in the hyperon sector: $A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -0.0025 \pm 0.0046 \pm 0.0011$

2023-07-04

$e^+e^- \rightarrow J/\psi$ and $\psi(3686) \rightarrow \Sigma^+\overline{\Sigma}^-, \Sigma^+ \rightarrow p\pi^0, \ \overline{\Sigma}^- \rightarrow \overline{p}\pi^0$

Phys. Rev. Lett. 125, 052004 (2020)

$$A_{CP} = \frac{\alpha + \alpha}{\alpha - \bar{\alpha}} = -0.004 \pm 0.037 \pm 0.010$$

• The results with 10 billion J/ψ and 2.7 billion $\psi(3686)$ are undergoing.

Parameter	Measured value
$\alpha_{J/w}$	$-0.508 \pm 0.006 \pm 0.004$
$\Delta \Phi_{J/\psi}$	$-0.270 \pm 0.012 \pm 0.009$
$lpha_{\psi'}$	$0.682 \pm 0.03 \pm 0.011$
$\Delta \Phi_{\psi'}$	$0.379 \pm 0.07 \pm 0.014$
α_0	$-0.998 \pm 0.037 \pm 0.009$
$ar{lpha}_0$	$0.990 \pm 0.037 \pm 0.011$

$e^+e^- \rightarrow J/\psi \rightarrow \Sigma^+\overline{\Sigma}^-, \Sigma^+ \rightarrow p\pi^0, \ \overline{\Sigma}^- \rightarrow \overline{n}\pi^- + c.c.$

• First measurement of the decay parameter $\bar{\alpha}_{-}$ of $\bar{\Sigma}^{-} \rightarrow \bar{n}\pi^{-}$

 First time to probe CP violation in the final neutron state for all hyperon decays

$$e^{+}e^{-} \rightarrow J/\psi \rightarrow \Xi^{-(0)}\overline{\Xi}^{+(0)}, \Xi \rightarrow \Lambda(\rightarrow p\pi^{-})\pi + \overline{\Lambda}(\rightarrow \overline{p}\pi^{+})\pi.$$

$$\mathcal{W}(\vec{\omega}, \vec{\zeta}) = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sum_{\mu'=0}^{3} \sum_{\nu'=0}^{3} a^{\Xi}_{\mu\mu'} a^{\Xi}_{\nu\nu'} a^{\Lambda}_{\mu'0} a^{\Lambda}_{\nu'0} \qquad \text{Developed by two different methods}$$
Feynman diagram:
Phys. Lett. B 772, 16 (2017)
Exactly the same!
Helicity frame:
Phys. Rev. D 99, 056008 (2019)
$$\vec{\omega} = (a_{J/\psi}, \Delta\phi, a_{\Xi}, \overline{a}_{\Xi}, \phi_{\Xi}, \overline{\phi}_{\Xi}, a_{\Lambda}, \overline{a}_{\Lambda}); \qquad \vec{\zeta} = (\theta_{\Xi}, \theta_{\Lambda}, \theta_{\Lambda}, \varphi_{\Lambda}, \phi_{\Lambda}, \theta_{p}, \theta_{\overline{p}}, \varphi_{p}, \varphi_{\overline{p}});$$
The weak phase and strong phase
differences can be directly measured
through these decays!
$$e^{-\frac{\varphi_{\Lambda}}{2}} = \frac{\varphi_{\Lambda}}{\varphi_{\Lambda}} = \frac{\varphi_{\Lambda}}{$$

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + \overline{\Lambda}(\rightarrow \overline{p}\pi^+)\pi^+.$

1.3 billion J/ψ

Parameter	Nature 606 (2022) 64-69	Previous result
a _ψ	0.586±0.012±0.010	0.58±0.04±0.08
$\Delta \Phi$	1.213±0.046±0.016 rad	
a=	-0.376±0.007±0.003	-0.401±0.010
ϕ_{Ξ}	0.011±0.019±0.009rad	-0.042 ± 0.011 ± 0.011
ā _Ξ	0.371±0.007±0.002	-
$\bar{\phi}_{\Xi}$	-0.021±0.019±0.007rac	– 1
av	0.757±0.011±0.008	0.750±0.009±0.004
\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007
$\xi_{P} - \xi_{S}$	(1.2±3.4±0.8)×10 ⁻² rad	
$\delta_{P} - \delta_{S}$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10 ⁻² rad
A ^Ξ _{CP}	(6±13±6)×10 ⁻³	-
$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	_
A ^A _{CP}	(-4±12±9)×10 ⁻³	(-6±12±7)×10 ⁻³
$\langle \phi_{\Xi} \rangle$	0.016±0.014±0.007rad	

The precision of our analysis (73K events) is comparable with the measurement from HyperCP (144M events), which means that the accuracy of a single event is more than 1000 times higher than HyperCP!

First measurement of weak phase difference in Ξ decay.

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^0 \overline{\Xi}{}^0, \Xi^0 \rightarrow \Lambda(\rightarrow p\pi^-)\pi^0 + \overline{\Lambda}(\rightarrow \overline{p}\pi^+)\pi^0.$

10 billion J/ψ

Parameter	arXiv:2305.09218	Previous result
$lpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	0.66 ± 0.06 [34]
$\Delta \Phi(\mathrm{rad})$	$1.168 \pm 0.019 \pm 0.018$	-
α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$	-0.358 ± 0.044 [18]
\bar{lpha}_{Ξ}	$0.3790 \pm 0.0034 \pm 0.0021$	0.363 ± 0.043 [18]
$\phi_{\Xi}(\mathrm{rad})$	$0.0051 \pm 0.0096 \pm 0.0018$	0.03 ± 0.12 [18]
$\bar{\phi}_{\Xi}(\mathrm{rad})$	$-0.0053 \pm 0.0097 \pm 0.0019$	-0.19 ± 0.13 [18]
α_{Λ}	$0.7551 \pm 0.0052 \pm 0.0023$	0.7519 ± 0.0043 [13]
$ar{lpha}_\Lambda$	$-0.7448 \pm 0.0052 \pm 0.0017$	-0.7559 ± 0.0047 [13]
$\xi_P - \xi_S(\mathrm{rad})$	$(0.0 \pm 1.7 \pm 0.2) \times 10^{-2}$	
$\delta_P - \delta_S(\mathrm{rad})$	$(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}$	-
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	$(-0.7 \pm 8.5) \times 10^{-2} [18]$
$\Delta \phi_{CP}^{\Xi}(\mathrm{rad})$	$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$	$(-7.9 \pm 8.3) \times 10^{-2} \ [18]$
A^{Λ}_{CP}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3} [13]$
$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	-
$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	-
$\langle \alpha_{\Lambda} \rangle$	$0.7499 \pm 0.0029 \pm 0.0013$	0.7542 ± 0.0026 [13]

Precisions are improved in more than one order!

First measurement of weak phase difference in Ξ^0 decay and most precise result in any weakly decaying baryon!

Three CP tests.

$e^+e^- \rightarrow \psi(3686) \rightarrow \Omega^-\overline{\Omega}^+, \Omega^- \rightarrow \Lambda(\rightarrow p\pi^-)K^-, \overline{\Omega}^+ \rightarrow \text{anthing +c.c.}$

Phys. Rev. Lett. **126** (2021) 9, 092002

First model-independent determination of the spin of Ω^{-} !

Not only observe vector polarization(r1), but also quadrupole (r6, r7, r8) and octupole (r10, r11) polarizations

Study on hyperon rare decays

The first study of hyperon–nucleon interaction in electron–positron collisions! More results are on the way.

Summary and Outlooks

- Hyperons are important probes to study QCD and *CP* symmetry.
- BESIII has made fruitful achievements in the studies of hyperon decays!
- More interesting studies of hyperon will come soon!

Thank you!