
Charm baryon physics at BESIII

Lei Li (BESIII Collaboration) Renmin University of China

The 29th International Workshop on Weak Interactions and Neutrinos, July 2-8, 2023

Outline

- Introduction
- Charm baryon physics at BESIII
 - \checkmark Λ_c^+ semi-leptonic decays
 - \checkmark Λ_c^+ hadronic decays
- Summary

Λ_c^+ cornerstone of charmed baryon spectroscopy

Quark model picture:

a heavy quark (c) with a unexcited spin-zero diquark (u-d) Heavy Quark Effective Theory predicts that Λ_c may provide more powerful test on internal dynamics than D/D_s


Cornerstone of charmed baryons:

 Λ_c^+ is the lightest charmed baryon, most of charmed baryons will eventually decay to Λ_c^-

Essential input for study the decays of b-flavored hadrons involving Λ_c in final state

Status of Λ_c^+ measurement [PDG2015]:

- poorly understood compared to charm mesons total BF~60%, large uncertainties(>20%)
- Relative measurement
- No neutron mode has been observed yet.

Λ_c^+ Measurements [PDG2015]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T DECAY MODES	Fraction (Γ_i/Γ) Confidence	e level (AB)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hadronic mode	•	0.224
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^-\pi^+$	(6.84 + 0.32) %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[q] (2.13± 0.30) %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.18± 0.27) %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[q] (2.4 ± 0.6) %	25.0%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(3.8 \pm 0.4)\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(4.5 \pm 0.6)\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , , ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3.5 ± 0.4) %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , , ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Hadronic modes with a p : $S = 0$ final states $p f_0(980)$	$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$ $\Delta(1232)K^*(892)$, , ,	18.0%
Hadronic modes with a p : $S = 0$ final states $p \pi^{+} \pi^{-}$	$pK^{-}\pi^{+}\pi^{+}\pi^{-}$	$(1.5 \pm 1.0) \times 10^{-3}$	66.7%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$_{0}K^{-}\pi^{+}\pi^{0}\pi^{0}$		45.4%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p f_0(980)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			36.4%
Hadronic modes with a hyperon: $S = -1$ final states $\Lambda \pi^+$ (1.46 ± 0.13) % 8.9% $\Lambda \pi^+ \pi^0$ (5.0 ± 1.3) % 26.0% $\Lambda \rho^+$ < 6 % CL=95% (3.59 ± 0.28) % 7.8% $\Sigma (1385)^+ \pi^+ \pi^-$, $\Sigma^{*+} \rightarrow$ (1.0 ± 0.5) % 20.0% $\Lambda \pi^+$ $\Sigma (1385)^- \pi^+ \pi^+$, $\Sigma^{*-} \rightarrow$ (7.5 ± 1.4) × 10^{-3} 18.7% $\Lambda \pi^-$			
$\Lambda \pi^{+}$ (1.46 ± 0.13) % 8.9% $\Lambda \pi^{+} \pi^{0}$ (5.0 ± 1.3) % 26.0% $\Lambda \rho^{+}$ < 6 % CL=95% $\Gamma(1385)^{+} \pi^{+} \pi^{-}$ (3.59 ± 0.28) % 7.8% $\Gamma(1385)^{-} \pi^{+} \pi^{+}$ (1.0 ± 0.5) % 20.0% $\Gamma(1385)^{-} \pi^{+} \pi^{+}$ (7.5 ± 1.4) × 10 ⁻³ 18.7%	pK^+K^- non- ϕ	$(4.8 \pm 1.9) \times 10^{-4}$	
$\Lambda_{\pi}^{+} + \pi^{0}$ (5.0 ± 1.3)% 26.0% Λ_{ρ}^{+} (5.0 ± 1.3) % CL=95% $\Lambda_{\pi}^{+} + \pi^{-}$ (3.59 ± 0.28) % 7.8% $\Sigma(1385)^{+} \pi^{+} \pi^{-}$, $\Sigma^{*+} \rightarrow$ (1.0 ± 0.5) % 20.0% Λ_{π}^{+} $\Sigma(1385)^{-} \pi^{+} \pi^{+}$, $\Sigma^{*-} \rightarrow$ (7.5 ± 1.4) × 10 ⁻³ 18.7%		ith a hyperon: $S = -1$ final stat	
$\Lambda \rho^{+}$ < 6 % CL=95% $\Lambda \pi^{+} \pi^{+} \pi^{-}$ (3.59± 0.28)% 7.8% $\Sigma (1385)^{+} \pi^{+} \pi^{-}$, $\Sigma^{*+} \rightarrow$ (1.0 ± 0.5)% 20.0% $\Lambda \pi^{+}$ $\Sigma (1385)^{-} \pi^{+} \pi^{+}$, $\Sigma^{*-} \rightarrow$ (7.5 ± 1.4) × 10 ⁻³ 18.7%			
$\Lambda \pi^{+} \pi^{+} \pi^{-}$ (3.59 ± 0.28) % 7.8% $\Sigma (1385)^{+} \pi^{+} \pi^{-}$, $\Sigma^{*+} \rightarrow$ (1.0 ± 0.5) % 20.0% $\Lambda \pi^{+}$ $\Sigma (1385)^{-} \pi^{+} \pi^{+}$, $\Sigma^{*-} \rightarrow$ (7.5 ± 1.4) × 10 ⁻³ 18.7% $\Lambda \pi^{-}$, , , ,	
$\Sigma(1385)^{+}\pi^{+}\pi^{-}, \Sigma^{*+} \rightarrow (1.0 \pm 0.5)\% $ $\Sigma(1385)^{-}\pi^{+}\pi^{+}, \Sigma^{*-} \rightarrow (7.5 \pm 1.4) \times 10^{-3} $ $\Lambda\pi^{-}$ 18.7%			
$\Sigma(1385)^-\pi^+\pi^+, \Sigma^{*-} \rightarrow (7.5 \pm 1.4) \times 10^{-3}$ 18.7%		,	
$\Lambda \pi^{-}$	$\Lambda \pi^+$, ,	20.0%
HTTP://PDG.LBL.GOV Page 32 Created: 10/6/2015 12		$(7.5 \pm 1.4) \times 10^{-3}$	18.7%
	HTTP://PDG.LBL.GOV	Page 32 Created: 10/	6/2015 12

- ✓ Lots of unknown decay channels
- ✓ Quite large uncertainties(>20%)
- ✓ Most BFs are measured relative to Λ_c^+ → pK- π^+

```
\Lambda \pi^+ \rho^0
                                                     (1.4 \pm 0.6)\%
                                                                                                     42.8%
                                                                                                      80.0%
   \Lambda \pi^+ \pi^+ \pi^- nonresonant
                                                                                    CL=90%
\Lambda \pi^+ \pi^+ \pi^- \pi^0 total
                                                      (2.5 \pm 0.9)\%
                                                                                                     36.0%
                                                                                                      20.8%
   \Lambda \pi^+ \eta
                                                    (2.4 \pm 0.5)\%
      \Sigma(1385)^{+}\eta
                                                                                                      30.2%
                                                     ( 1.16± 0.35) %
                                                                                                      37.5%
   \Lambda \pi^{+} \omega
                                                    (1.6 \pm 0.6)\%
   \Lambda \pi^+ \pi^+ \pi^- \pi^0, no \eta or \omega
                                                                                                      20.3%
\Lambda K + \overline{K}^{0}
                                                     (6.4 \pm 1.3) \times 10^{-3}
   \Xi(1690)^0 K^+, \Xi^{*0} \rightarrow \Lambda \overline{K}^0
                                                                                                      33.3%
                                                     (1.8 \pm 0.6) \times 10^{-3}
                                                                                                      10.0%
                                                     (1.43 \pm 0.14)\%
\Sigma^{+}\pi^{0}
                                                                                                      21.9%
                                                     ( 1.37± 0.30) %
\Sigma^{+}\eta
                                                                                                      33.3%
                                                     (7.5 \pm 2.5) \times 10^{-3}
                                                                                                      10.2%
                                                                                    CL=95%
                                                     (2.3 \pm 0.4)\%
                                                                                                      17.4%
                                                     (2.5 \pm 0.9)\%
                                                                                                      36.0%
                                                      ( 1.13± 0.31) %
                                                                                                      27.4%
   \Sigma^{+}\omega
                                                                                                      27.1%
                                               [q] (3.7 \pm 1.0)\%
\Sigma^+ K^+ K^-
                                                      (3.8 \pm 0.6) \times 10^{-3}
                                                                                                      15.8%
   \Sigma^{+}\phi
                                               [q] (4.3 \pm 0.7) \times 10^{-3}
                                                                                                      16.3%
                                                                                                      26.2%
   \Xi(1690)^0K^+, \Xi^{*0} \rightarrow
                                                     (1.11\pm 0.29) \times 10^{-3}
        \Sigma^+K^-
   \Sigma^+ K^+ K^- nonresonant
=0 K+
                                                     (5.3 \pm 1.3) \times 10^{-3}
                                                                                                      24.5%
\Xi^-K^+\pi^+
                                                     (7.0 \pm 0.8) \times 10^{-3}
                                                                                                       11.4%
   \Xi(1530)^0K^+
                                               [q] (3.5 \pm 1.0) \times 10^{-3}
                                                                                                       28.6%
                  Hadronic modes with a hyperon: S = 0 final states
\Lambda K^{+}
                                                                                                       20.3%
                                                     (6.9 \pm 1.4) \times 10^{-4}
\Lambda K^{+}\pi^{+}\pi^{-}
                                                                        \times 10^{-4} CL=90%
                                                                                                       17.5%
\Sigma^0 K^+
                                                     (5.7 \pm 1.0) \times 10^{-4}
\Sigma^{0}K^{+}\pi^{+}\pi^{-}
                                                                        × 10-4 CL=90%
                                                                                                      30.4%
\Sigma^+ K^+ \pi^-
                                                     (2.3 \pm 0.7) \times 10^{-3}
   \Sigma^{+}K^{*}(892)^{0}
                                                                                                       31.6%
                                               [q] (3.8 \pm 1.2) \times 10^{-3}
\Sigma^-K^+\pi^+
                                                                        \times 10^{-3} CL=90%
```

Semileptonic modes

 $pK^{+}\pi^{-}$

Doubly Cabibbo-suppressed modes

$\Lambda \ell^+ \nu_{\ell}$	[r]	(2.8 ± 0.4) %	47.20/
$\Lambda e^+ \nu_e$		(2.9 ± 0.5) %	17.2%
$\Lambda \mu^+ \nu_{\mu}$		(2.7 ± 0.6) %	22.2%

× 10-4 CL=90%

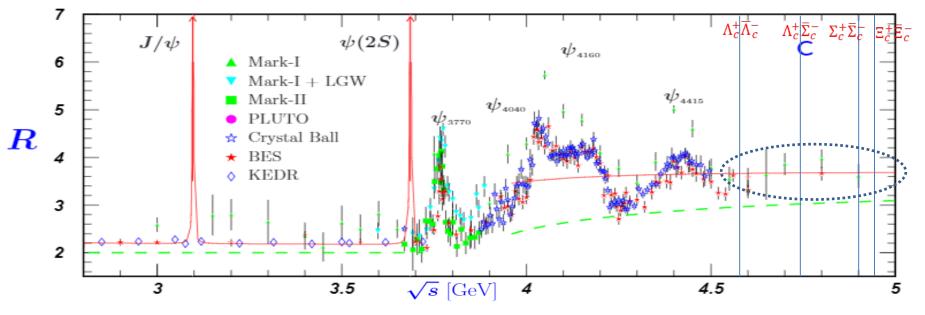
 $\Delta B/B$

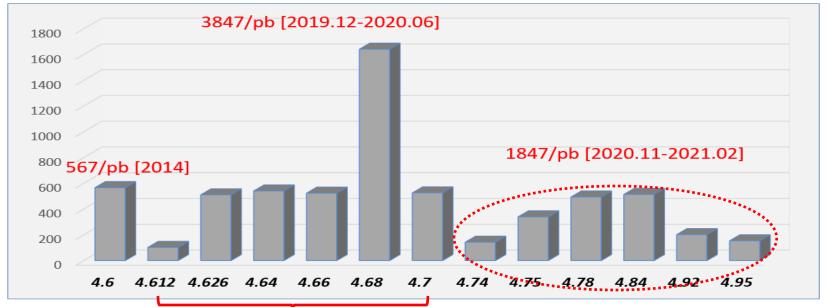
Λ_c^+ Measurements [PDG2022]

衰变分支比测

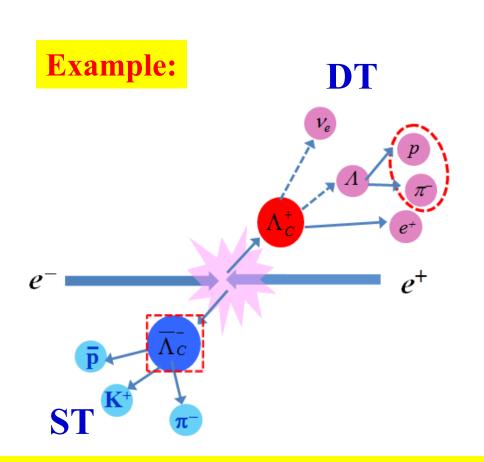
33.3%

Λ_c^+ decay modes	Fraction (Γ_j/Γ) Confi	量精度△B/B
Hadronic modes	with a p or n : $S = -1$ final s	tates
pK_S^0	(1.59± 0.08) %	S=1.1 5.0%
$pK^{-}\pi^{+}$	(6.28 ± 0.32) %	S=1.4 5.1%
$p\overline{K}^*(892)^0$	[r] (1.96 ± 0.27) %	13.8%
$\Delta(1232)^{++}K^{-}$	(1.08 ± 0.25) %	23.1%
$\Lambda(1520)\pi^+$	$[r]$ (2.2 \pm 0.5) %	22.7%
$pK^-\pi^+$ nonresonant	(3.5 ± 0.4) %	11.5%
$pK_S^0\pi^0$	$(1.97 \pm 0.13)\%$	S=1.1 6.6%
$nK_S^0\pi^+$	(1.82 ± 0.25) %	13.7%
$p\overline{K}^{0}\eta$	$(8.3 \pm 1.8) \times 10^{-3}$	21.7%
$pK_S^0\pi^+\pi^-$	(1.60 ± 0.12) %	S=1.1 7.5%
$pK^{-}\pi^{+}\pi^{0}$	(4.46 ± 0.30) %	S=1.5 6.8%
$pK^*(892)^-\pi^+$	[r] (1.4 ± 0.5) %	35.7%
$p(K - \pi^+)_{\text{nonresonant}} \pi^0$	(4.6 ± 0.8) %	17.4%
$\Delta(1232) \overline{K}^*(892)$	seen	
$pK^{-}2\pi^{+}\pi^{-}$	$(1.4 \pm 0.9) \times 10^{-3}$	64.3%
$pK^{-}\pi^{+}2\pi^{0}$	$(1.0 \pm 0.5)\%$	50.0%
Hadronic mod	les with a p : $S = 0$ final state	es
$ ho\pi^0$	< 8 × 10 ⁻⁵	
$p\eta$	$(1.42 \pm 0.12) \times 10^{-3}$	8.4%
$p\omega(782)^{0}$	$(8.3 \pm 1.1) \times 10^{-4}$	13.2%
$p\pi^+\pi^-$	$(4.61 \pm 0.28) \times 10^{-3}$	6.0%
$p f_0(980)$	[r] (3.5 ± 2.3) × 10 ⁻³	65.7%
$p2\pi^{+}2\pi^{-}$	$(2.3 \pm 1.4) \times 10^{-3}$	60.8%
pK+K-	$(1.06 \pm 0.06) \times 10^{-3}$	5.6%
$p\phi$	[r] $(1.06 \pm 0.14) \times 10^{-3}$	13.2%
pK^+K^- non- ϕ	$(5.3 \pm 1.2) \times 10^{-4}$	22.6%
$ ho\phi\pi^0$	$(10 \pm 4) \times 10^{-5}$	40.0%
$ ho K^+ K^- \pi^0$ nonresonant	$< 6.3 \times 10^{-5}$	CL=90%
	Inclusive modes	
e^+ anything	(3.95 ± 0.35) %	8.9%
p anything	$(50 \pm 16) \%$	32.0%
n anything	$(50 \pm 16) \%$	32.0%
Λ anything	$(38.2 + 29 \atop -24)\%$	~7.0%
K^0_S anything	$(9.9 \pm 0.7)\%$	7.1%


Measurements for Λ_c^+ decays are greatly improved, with great efforts from BESIII, LHCb and Belle.


 $(24 \pm 8)\%$

3prongs


			1
	h a hyperon: $S = -1$ final st	ates	
$\Lambda\pi^+$	(1.30± 0.07) %	S=1.1	5.4%
$\Lambda(1670)\pi^+$, $\Lambda(1670) \rightarrow \eta \Lambda$	$(3.5 \pm 0.5) \times 10^{-3}$		14.3%
$\Lambda \pi^+ \pi^0$	$(7.1 \pm 0.4)\%$	S=1.1	5.6%
Λho^+	< 6 %	CL=95%	0.00/
$\Lambda \pi^- 2\pi^+$	(3.64 ± 0.29) %	S=1.4	8.0%
Σ (1385) $^+\pi^+\pi^-$, $\Sigma^{*+} \rightarrow$	$(1.0 \pm 0.5)\%$		50.0%
$\Sigma (1385)^- 2\pi^+$, $\Sigma^{*-} \rightarrow$	$(7.6 \pm 1.4) \times 10^{-3}$		18.4%
$\Lambda \pi^{-}$ $\Lambda \pi^{+} \rho^{0}$	$(1.5 \pm 0.6)\%$		40.0%
Σ (1385) $^+\rho^0$, $\Sigma^{*+} \rightarrow \Lambda\pi^+$	$(5 \pm 4) \times 10^{-3}$		80.0%
$\Lambda\pi^- 2\pi^+$ nonresonant		CL=90%	
$\Lambda\pi^-\pi^02\pi^+$ total	$(2.3 \pm 0.8)\%$		34.8%
$\Lambda\pi^+\eta$	[r] (1.84± 0.26) %		14.1%
Σ (1385) $^+\eta$	[r] (9.1 ± 2.0) × 10 ⁻³		21.9%
$\Lambda \pi^+ \omega$	[r] (1.5 ± 0.5) %		33.3%
$\Lambda\pi^-\pi^02\pi^+$, no η or ω		CL=90%	
$\Lambda K^{+} \overline{K^{0}}$	$(5.7 \pm 1.1) \times 10^{-3}$	S=1.9	19.3%
$\Xi(1690)^0 K^+, \Xi^{*0} \rightarrow \Lambda \overline{K}^0$	$(1.6 \pm 0.5) \times 10^{-3}$		31.2%
$\sum_{n=0}^{\infty} \pi^{+}$	(1.29± 0.07) %	S=1.1	5.4%
$rac{\Sigma^0\pi^+\eta}{\Sigma^+\pi^0}$	$(7.5 \pm 0.8) \times 10^{-3}$		10.7% 8.0%
$\Sigma^+ \eta$	(1.25± 0.10) %		45.4%
$\Sigma^+ \eta'$	$(4.4 \pm 2.0) \times 10^{-3}$ $(1.5 \pm 0.6)\%$		
$\Sigma^{+}\pi^{+}\pi^{-}$	(4.50± 0.25) %	S=1.3	40.0% 5.6%
$\Sigma^{+}\rho^{0}$,	CL=95%	3.070
Σ^{-} $2\pi^{+}$	(1.87± 0.18) %	CL = 30 /0	9.6%
$\sum_{0}^{0} \pi^{+} \pi^{0}$	(3.5 ± 0.4) %		11.4%
$\Sigma^{+}\pi^{0}\pi^{0}$	(1.55± 0.15) %		9.7%
$\Sigma^{0}\pi^{-}2\pi^{+}$	(1.11± 0.30) %		27.0%
$\Sigma^+\pi^+\pi^-\pi^0$	_		
$\Sigma^+\omega$	[r] (1.70± 0.21) %		12.4%
$\Sigma^-\pi^02\pi^+$	(2.1 ± 0.4) %		19.0%
$\Sigma^+ K^+ K^-$	$(3.5 \pm 0.4) \times 10^{-3}$	S=1.1	11.4%
$\Sigma^+\phi$	[r] $(3.9 \pm 0.6) \times 10^{-3}$	S=1.1	15.4%
arXiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	$(1.02\pm 0.25) \times 10^{-3}$		24.5%
$\Sigma^{+}K^{+}K^{-}$ nonresonant	< 8 × 10 ⁻⁴	CL=90%	
$\equiv^0 K^+$	$(5.5 \pm 0.7) \times 10^{-3}$	CL_3070	12.7%
$\Xi^-K^+\pi^+$	$(6.2 \pm 0.6) \times 10^{-3}$	S=1.1	9.7%
$\Xi(1530)^0 K^+$	$(4.3 \pm 0.9) \times 10^{-3}$	S=1.1	20.9%
			20.570
ΛK^+	th a hyperon: $S = 0$ final sta	tes	19.7%
$\Lambda K^{+}\pi^{+}\pi^{-}$	$(6.1 \pm 1.2) \times 10^{-4}$ < 5 $\times 10^{-4}$	CL=90%	13.770
$\Sigma^0 K^+$	$(5.2 \pm 0.8) \times 10^{-4}$	CL=90%	15.4%
$\sum_{k=0}^{\infty} K^{+} \pi^{+} \pi^{-}$		CL=90%	
$\Sigma^+ K^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$	CL _ 5070	28.6%
$\Sigma^{+}K^{*}(892)^{0}$	[r] (3.5 ± 1.0) × 10 ⁻³		28.6%
$\Sigma^- K^+ \pi^+$		CL=90%	
Doubly Cal	bibbo-suppressed modes		
$pK^+\pi^-$	(1.11 ± 0.18) $\times 10^{-4}$		16.2%
•			
	nileptonic modes		11.1% ;
$\Lambda e^+ u_e$	$(3.6 \pm 0.4)\%$		11.1% 5 14.3%
$\Lambda \mu^+ u_{\mu}$	$(3.5 \pm 0.5)\%$		1

Data sets for charm baryon studies at BESIII

DT Technique

✓ Single Tags (ST)

$$M_{\mathrm{BC}} = \sqrt{E_{\mathrm{beam}}^2 - |\overrightarrow{p}_{\bar{\Lambda}_c}|^2}$$

✓ Double Tags (DT)

$$U_{
m miss} = E_{
m miss} - c |\vec{p}_{
m miss}|$$

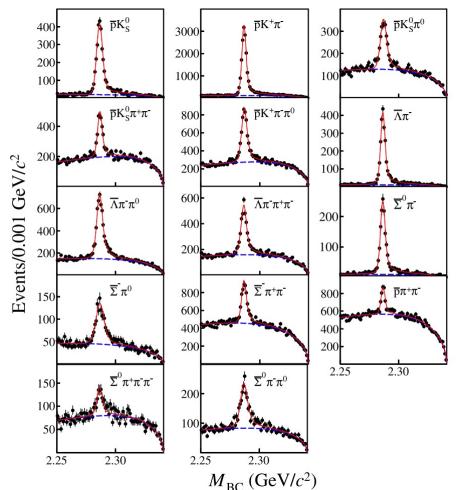
✓Branching Fraction (BF)

$$\mathcal{B}_{\mathrm{SL}} = rac{\mathcal{N}^{\mathrm{semi}}}{\mathcal{N}^{\mathrm{tag}} imes \epsilon}$$

Clean sample of ST charmed baryons can be fully reconstructed by hadronic decays with large BFs. Based on this, one can access to absolute BFs and dynamics in the decays.

/

Reconstruction of Λ_c ST baryons

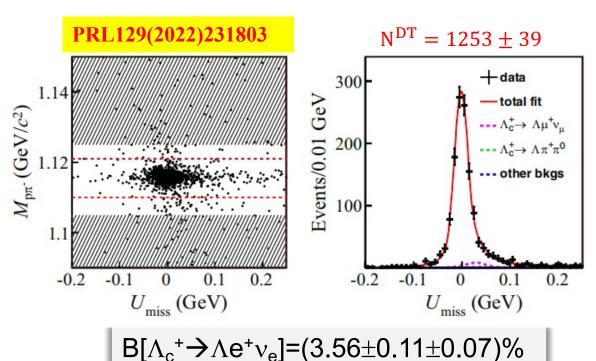

☐ Fourteen ST modes:

$\bar{\Lambda}_c^- \to$	Branching fraction	PDG2022
$ar p ar K^0$	$(3.18 \pm 0.16)\%$	7
$\bar{p}K^+\pi^-$	$(6.28 \pm 0.32)\%$	
$ar p ar K^0 \pi^0$	$(3.94 \pm 0.26)\%$	
$ar p ar K^0 \pi^+ \pi^-$	$(3.20 \pm 0.24)\%$	
$ar{p}K^+\pi^-\pi^0$	$(4.46 \pm 0.30)\%$	
$ar{\Lambda}\pi^-$	$(1.30 \pm 0.07)\%$	
$ar{\Lambda}\pi^-\pi^0$	$(7.10 \pm 0.40)\%$	
$ar{\Lambda}\pi^-\pi^+\pi^-$	$(3.64 \pm 0.29)\%$	~45%
$\bar{\Sigma}^0\pi^-$	$(1.29 \pm 0.07)\%$	
$ar{\Sigma}^-\pi^0$	$(1.25 \pm 0.10)\%$	
$\bar{\Sigma}^-\pi^+\pi^-$	$(4.50 \pm 0.25)\%$	
$ar p^-\pi^+\pi^-$	$(0.46 \pm 0.03)\%$	
$\bar{\Sigma}^0\pi^+\pi^-\pi^-$	$(1.11 \pm 0.30)\%$	
$\bar{\Sigma}^0\pi^-\pi^0$	$(3.50 \pm 0.40)\%$	J

Currently, the total measured BFs for Λ_c decays is roughly 70%.

Reconstruction of Λ_c ST baryons

• The M_{BC} distributions at $\sqrt{s} = 4.68$ GeV.



$\begin{array}{ c c c c c }\hline \text{Mode} & \Delta E \text{ (GeV)} & N_{\text{ST}}\\\hline\hline p\bar{K}^0 & [-0.031,\ 0.033] & 7688 \pm 98\\ \bar{p}K^+\pi^- & [-0.030,\ 0.039] & 45842 \pm 235\\ \bar{p}\bar{K}^0\pi^0 & [-0.049,\ 0.052] & 4448 \pm 109\\ \bar{p}\bar{K}^0\pi^+\pi^- & [-0.048,\ 0.049] & 4962 \pm 110\\ \bar{p}K^+\pi^-\pi^0 & [-0.043,\ 0.051] & 10670 \pm 161\\ \bar{\Lambda}\pi^- & [-0.031,\ 0.034] & 6089 \pm 82\\ \bar{\Lambda}\pi^-\pi^0 & [-0.044,\ 0.057] & 11933 \pm 143\\ \bar{\Lambda}\pi^-\pi^+\pi^- & [-0.043,\ 0.045] & 7163 \pm 122\\ \bar{\Sigma}^0\pi^- & [-0.032,\ 0.040] & 3883 \pm 69\\ \bar{\Sigma}^-\pi^0 & [-0.050,\ 0.060] & 2289 \pm 70\\ \bar{\Sigma}^-\pi^+\pi^- & [-0.043,\ 0.052] & 8206 \pm 161\\ \bar{p}^-\pi^+\pi^- & [-0.040,\ 0.040] & 4199 \pm 139\\ \bar{\Sigma}^0\pi^+\pi^-\pi^- & [-0.030,\ 0.030] & 1290 \pm 64\\ \bar{\Sigma}^0\pi^-\pi^0 & [-0.030,\ 0.032] & 3606 \pm 90\\ \hline \end{array}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mode	$\Delta E \; ({ m GeV})$	$N_{ m ST}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ar p ar K^0$	[-0.031,0.033]	7688 ± 98
$\begin{array}{lllll} \bar{p}\bar{K}^0\pi^+\pi^- & [-0.048,0.049] & 4962\pm110 \\ \bar{p}K^+\pi^-\pi^0 & [-0.043,0.051] & 10670\pm161 \\ \bar{\Lambda}\pi^- & [-0.031,0.034] & 6089\pm82 \\ \bar{\Lambda}\pi^-\pi^0 & [-0.044,0.057] & 11933\pm143 \\ \bar{\Lambda}\pi^-\pi^+\pi^- & [-0.043,0.045] & 7163\pm122 \\ \bar{\Sigma}^0\pi^- & [-0.032,0.040] & 3883\pm69 \\ \bar{\Sigma}^-\pi^0 & [-0.050,0.060] & 2289\pm70 \\ \bar{\Sigma}^-\pi^+\pi^- & [-0.043,0.052] & 8206\pm161 \\ \bar{p}^-\pi^+\pi^- & [-0.040,0.040] & 4199\pm139 \\ \bar{\Sigma}^0\pi^+\pi^-\pi^- & [-0.030,0.030] & 1290\pm64 \\ \end{array}$	$\bar{p}K^+\pi^-$	[-0.030, 0.039]	45842 ± 235
$\begin{array}{llll} \bar{p}K^{+}\pi^{-}\pi^{0} & [-0.043,0.051] 10670 \pm 161 \\ \bar{\Lambda}\pi^{-} & [-0.031,0.034] 6089 \pm 82 \\ \bar{\Lambda}\pi^{-}\pi^{0} & [-0.044,0.057] 11933 \pm 143 \\ \bar{\Lambda}\pi^{-}\pi^{+}\pi^{-} & [-0.043,0.045] 7163 \pm 122 \\ \bar{\Sigma}^{0}\pi^{-} & [-0.032,0.040] 3883 \pm 69 \\ \bar{\Sigma}^{-}\pi^{0} & [-0.050,0.060] 2289 \pm 70 \\ \bar{\Sigma}^{-}\pi^{+}\pi^{-} & [-0.043,0.052] 8206 \pm 161 \\ \bar{p}^{-}\pi^{+}\pi^{-} & [-0.040,0.040] 4199 \pm 139 \\ \bar{\Sigma}^{0}\pi^{+}\pi^{-}\pi^{-} & [-0.030,0.030] 1290 \pm 64 \end{array}$	$ar p ar K^0 \pi^0$	[-0.049,0.052]	4448 ± 109
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ar p ar K^0 \pi^+ \pi^-$	[-0.048, 0.049]	4962 ± 110
$\begin{array}{llll} \bar{\Lambda}\pi^-\pi^0 & [-0.044,0.057] \ 11933 \pm 143 \\ \bar{\Lambda}\pi^-\pi^+\pi^- & [-0.043,0.045] \ 7163 \pm 122 \\ \bar{\Sigma}^0\pi^- & [-0.032,0.040] \ 3883 \pm 69 \\ \bar{\Sigma}^-\pi^0 & [-0.050,0.060] \ 2289 \pm 70 \\ \bar{\Sigma}^-\pi^+\pi^- & [-0.043,0.052] \ 8206 \pm 161 \\ \bar{p}^-\pi^+\pi^- & [-0.040,0.040] \ 4199 \pm 139 \\ \bar{\Sigma}^0\pi^+\pi^-\pi^- & [-0.030,0.030] \ 1290 \pm 64 \end{array}$	$ar{p}K^+\pi^-\pi^0$	[-0.043,0.051]	10670 ± 161
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ar{\Lambda}\pi^-$	[-0.031,0.034]	6089 ± 82
$\begin{array}{llll} \bar{\Sigma}^0\pi^- & [-0.032,0.040] & 3883 \pm 69 \\ \bar{\Sigma}^-\pi^0 & [-0.050,0.060] & 2289 \pm 70 \\ \bar{\Sigma}^-\pi^+\pi^- & [-0.043,0.052] & 8206 \pm 161 \\ \bar{p}^-\pi^+\pi^- & [-0.040,0.040] & 4199 \pm 139 \\ \bar{\Sigma}^0\pi^+\pi^-\pi^- & [-0.030,0.030] & 1290 \pm 64 \end{array}$	$ar{\Lambda}\pi^-\pi^0$	[-0.044,0.057]	11933 ± 143
$\begin{array}{lll} \bar{\Sigma}^-\pi^0 & [-0.050,0.060] & 2289\pm70 \\ \bar{\Sigma}^-\pi^+\pi^- & [-0.043,0.052] & 8206\pm161 \\ \bar{p}^-\pi^+\pi^- & [-0.040,0.040] & 4199\pm139 \\ \bar{\Sigma}^0\pi^+\pi^-\pi^- & [-0.030,0.030] & 1290\pm64 \end{array}$	$ar{\Lambda}\pi^-\pi^+\pi^-$	[-0.043, 0.045]	7163 ± 122
$\begin{array}{lll} \bar{\Sigma}^-\pi^+\pi^- & [-0.043,0.052] & 8206\pm161 \\ \bar{p}^-\pi^+\pi^- & [-0.040,0.040] & 4199\pm139 \\ \bar{\Sigma}^0\pi^+\pi^-\pi^- & [-0.030,0.030] & 1290\pm64 \end{array}$	$\bar{\Sigma}^0\pi^-$	[-0.032,0.040]	3883 ± 69
$ar{p}^-\pi^+\pi^- [-0.040, 0.040] 4199 \pm 139$ $ar{\Sigma}^0\pi^+\pi^-\pi^- [-0.030, 0.030] 1290 \pm 64$	$ar{\Sigma}^-\pi^0$	[-0.050, 0.060]	2289 ± 70
$\bar{\Sigma}^0 \pi^+ \pi^- \pi^- \ [-0.030, \ 0.030] \ 1290 \pm 64$	$ar{\Sigma}^-\pi^+\pi^-$	[-0.043,0.052]	8206 ± 161
, ,	$ar p^-\pi^+\pi^-$	[-0.040, 0.040]	4199 ± 139
$ \bar{\Sigma}^0 \pi^- \pi^0 \qquad [-0.030, 0.032] 3606 \pm 90 $	$\bar{\Sigma}^0\pi^+\pi^-\pi^-$	[-0.030, 0.030]	1290 ± 64
	$\bar{\Sigma}^0\pi^-\pi^0$	[-0.030,0.032]	3606 ± 90

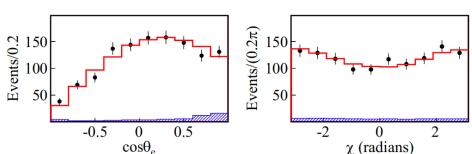
Totally, 122 268±474 ST events are reconstructed with 14 ST modes.

Study of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

- The measurement is done with 4.4/fb data from $\sqrt{s} = 4.6 4.7$ GeV.
- The precision of the BF is improved by threefold, providing necessary inputs for testing various theoretical models.
- The first determination of form factors in $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ decays.

Comparisons between measurement and theoretical predictions.


	$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) \ (\%)$
Constituent quark model (HONR) [9]	4.25 ×
Light-front approach [10]	1.63 ×
Covariant quark model [11]	$2.78 \times$
Relativistic quark model [12]	$3.25 \times$
Non-relativistic quark model [13]	3.84
Light-cone sum rule [14]	3.0 ± 0.3
Lattice QCD [15]	3.80 ± 0.22
SU(3) [16]	3.6 ± 0.4
Light-front constituent quark model [17]	3.36 ± 0.87
MIT bag model [17]	3.48
Light-front quark model [18]	4.04 ± 0.75
This Letter	$3.56 \pm 0.11 \pm 0.07$

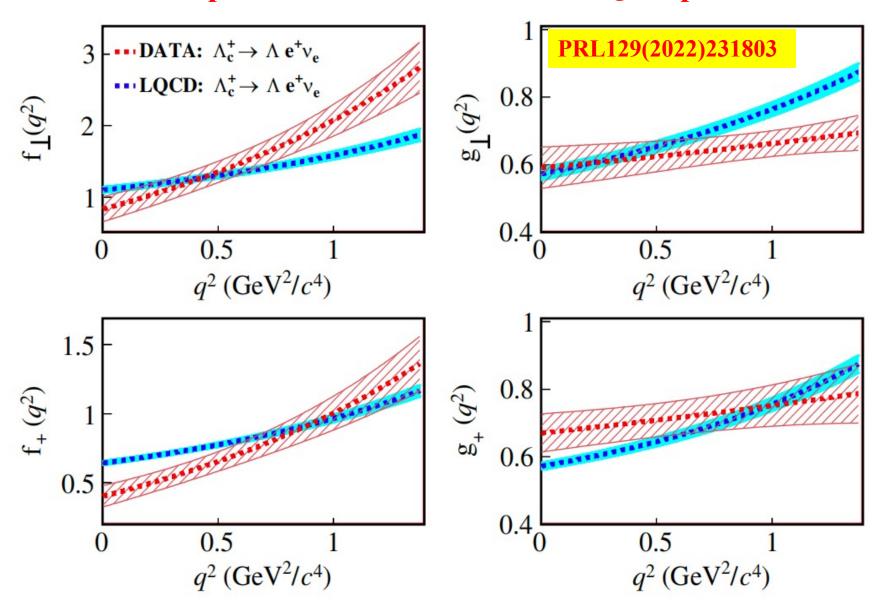

Study of the kinematics in $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ decay:

$$\begin{split} \frac{d^4\Gamma}{dq^2d\cos\theta_e d\cos\theta_p d\chi} &= \frac{G_F^2|V_{cs}|^2}{2(2\pi)^4} \cdot \frac{Pq^2}{24M_{\Lambda_c}^2} \left\{ \frac{3}{8} (1-\cos\theta_e)^2 |H_{\frac{1}{2}1}|^2 (1+\alpha_{\Lambda}\cos\theta_p) + \frac{3}{8} (1+\cos\theta_e)^2 |H_{-\frac{1}{2}-1}|^2 (1-\alpha_{\Lambda}\cos\theta_p) + \frac{3}{4} \sin^2\theta_e [|H_{\frac{1}{2}0}|^2 (1+\alpha_{\Lambda}\cos\theta_p) + |H_{-\frac{1}{2}0}|^2 (1-\alpha_{\Lambda}\cos\theta_p)] + \frac{3}{2\sqrt{2}} \alpha_{\Lambda}\cos\chi\sin\theta_e\sin\theta_p \right\} \end{split}$$

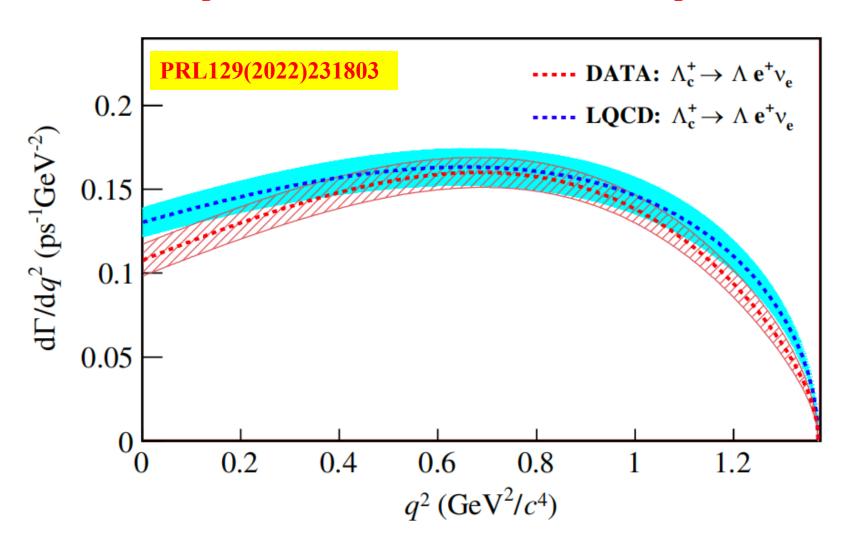
 $\times \left[(1 - \cos \theta_e) H_{-\frac{1}{2}0} H_{\frac{1}{2}1} + (1 + \cos \theta_e) H_{\frac{1}{2}0} H_{-\frac{1}{2}-1} \right]$

PRL129(2022)231803

e \	, p
$W \stackrel{\theta_e}{ } \bigwedge_{c}^{+}$	$egin{pmatrix} egin{pmatrix} eta_p \ ar{\Lambda} \ \end{pmatrix}$
v_e / χ	$\sqrt{\pi}$

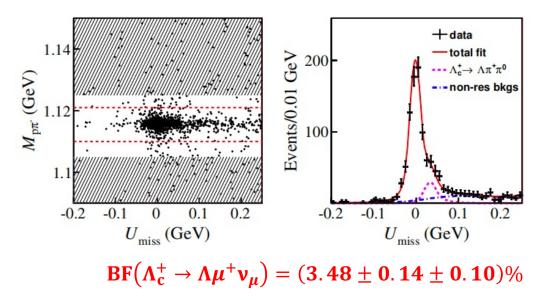

Parameters	$lpha_1^{g_{\perp}}$	$lpha_1^{f_\perp}$	r_{f_+}	$r_{f_{\perp}}$	r_{g_+}
Values	$1.43 \pm 2.09 \pm 0.16$	$-8.15 \pm 1.58 \pm 0.05$	$1.75 \pm 0.32 \pm 0.01$	$3.62 \pm 0.65 \pm 0.02$	$1.13 \pm 0.13 \pm 0.01$
Coefficients	$lpha_1^{g_{\pm}}$	$lpha_1^{f_\perp}$	r_{f_+}	$r_{f_{\perp}}$	r_{g_+}
$a_0^{g_\perp}$	-0.64	0.60	-0.66	-0.83	-0.40
$lpha_1^{\widetilde{g}_{\perp}}$		-0.63	0.62	0.53	-0.33
$lpha_1^{\hat{f}_{\perp}}$			-0.79	-0.67	-0.07
$r_{f_{\pm}}$				0.57	-0.09
$r_{f_{\perp}}$					0.39

$$H_{\frac{1}{2}1}^V = \sqrt{2Q_-} f_{\perp}(q^2), \qquad H_{\frac{1}{2}1}^A = \sqrt{2Q_+} g_{\perp}(q^2),$$


Helicity amplitude:
$$H_{\frac{1}{2}0}^{V} = \sqrt{Q_{-}/q^{2}} f_{+}(q^{2}) (M_{\Lambda_{c}} + M_{\Lambda}),$$

$$H_{\frac{1}{20}}^{A} = \sqrt{Q_{+}/q^{2}}g_{+}(q^{2})(M_{\Lambda_{c}} - M_{\Lambda}),$$

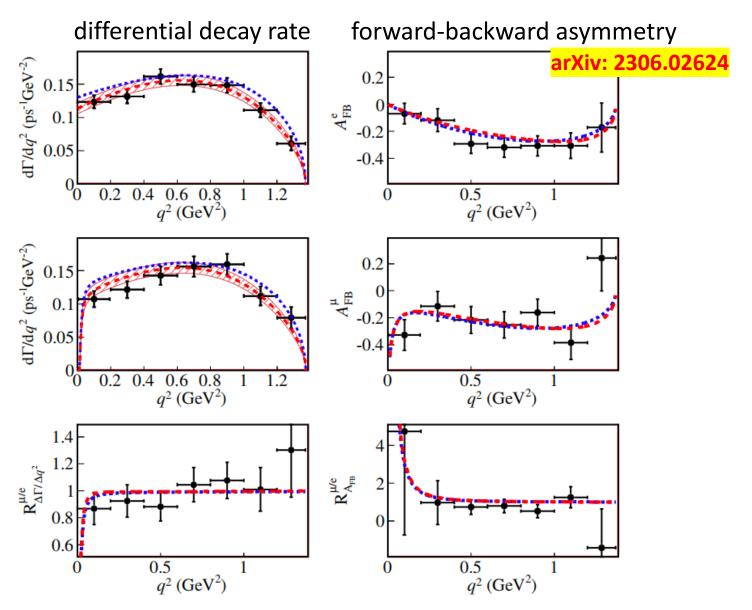
Comparisons between data and LQCD prediction



Comparisons between data and LQCD prediction

Study of $\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu$

The precision of the BF is improved by threefold, providing necessary inputs for testing various theoretical models.


	$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) \ [\%]$
Covariant quark model [20]	2.69
Relativistic quark model [21]	3.14
Constituent quark model (HONR) [47]	4.25
Non-relativistic quark model [48]	3.72
Lattice QCD [30]	3.69 ± 0.22
Light-cone sum rule [49]	3.0 ± 0.3
SU(3) [25]	3.5 ± 0.5
Light-front constituent quark model [27]	3.21 ± 0.85
MIT bag model [27]	3.38
Light-front quark model [22]	3.90 ± 0.73
This work	$3.48 \pm 0.14 \pm 0.10$

• The differential decay rate and forward-backward asymmetry in the lepton system system are measured for the first time, to provide data for the test of the LFU using the charmed baryon SL decays.

$$\Delta\Gamma_{i} = \int_{i} \frac{d\Gamma}{dq^{2}} dq^{2} = \sum_{j=1}^{N_{\text{bins}}} (\epsilon^{-1})_{ij} N_{\text{DT}}^{j} / (\tau_{\Lambda_{c}} \times N^{\text{ST}})$$

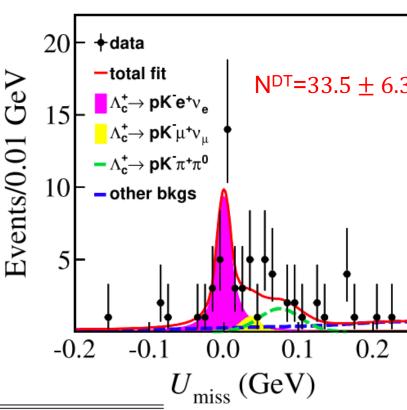
$$A_{\text{FB}}^{\ell}(q^{2}) = \frac{\int_{0}^{1} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell} - \int_{-1}^{0} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}}{\int_{0}^{1} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell} + \int_{-1}^{0} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}} d\cos\theta_{\ell}}$$

Test of LFU with $\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu$ and $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

No clear evidence for the LFU is found in current data size.

Observation of $\Lambda_c^+ \rightarrow pK^-e^+\nu_e$

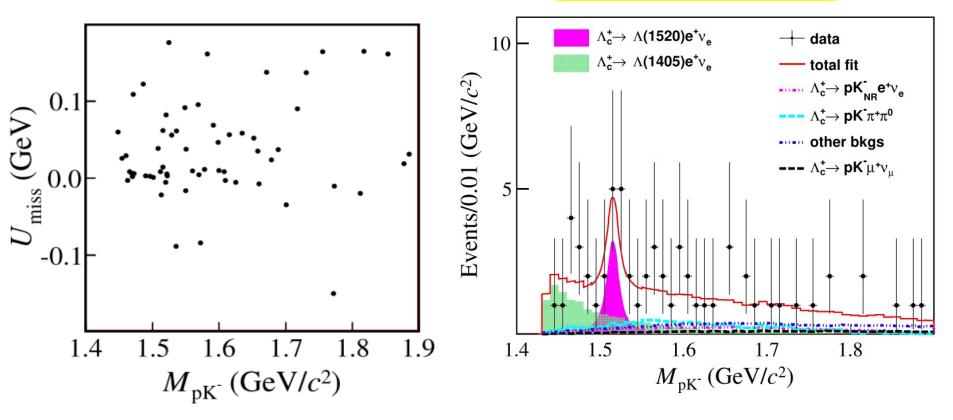
☐ The new observed SL decay mode:


$$BF(\Lambda_c^+ \to pK^-e^+\nu_e) = (0.88 \pm 0.15 \pm 0.07) \times 10^{-3}$$

Significance: 8.2σ

☐ This work provide a clear confirmation that the SL Λ_c^+ decays are not saturated by the $\Lambda \ell^+ \nu_\ell$ final state.

■ Study of pK⁻ mass spectrum can be used to understand the nature of excited Λ^* states.


Phys. Rev. D 106, 112010 (2023)

	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e)$	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1405)e^+\nu_e)$
Constituent quark model [8]	1.01	3.04
Molecular state [9]	•••	0.02
Nonrelativistic quark model [10]	0.60	2.43
Lattice QCD [12,13]	0.512 ± 0.082	
Measurement	$1.02 \pm 0.52 \pm 0.11$	$\frac{0.42 \pm 0.19 \pm 0.04}{\mathcal{B}(\Lambda(1405) \to pK^{-})}$

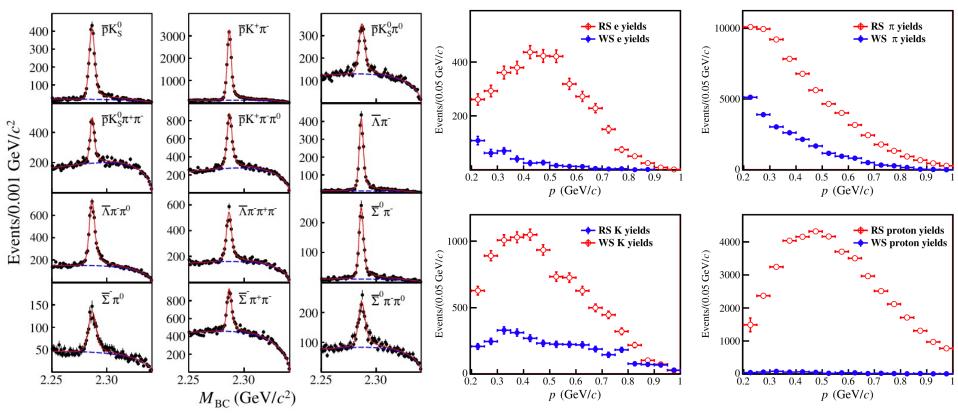
Evidence of $\Lambda_c^+ \rightarrow \Lambda^* (\rightarrow pK^-)e^+\nu_e$

Phys. Rev. D 106, 112010 (2023)

$$BF(\Lambda_c^+ \to \Lambda(1520)[\to pK^-]e^+\nu_e) = (0.23 \pm 0.12 \pm 0.02) \times 10^{-3}$$

Significance: 3.3σ

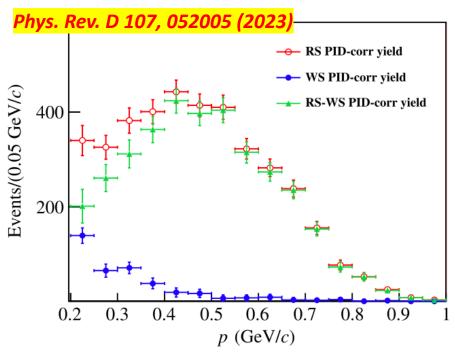
BF(
$$\Lambda_c^+ \to \Lambda(1405)[\to pK^-]e^+\nu_e$$
) = $(0.42 \pm 0.19 \pm 0.04) \times 10^{-3}$

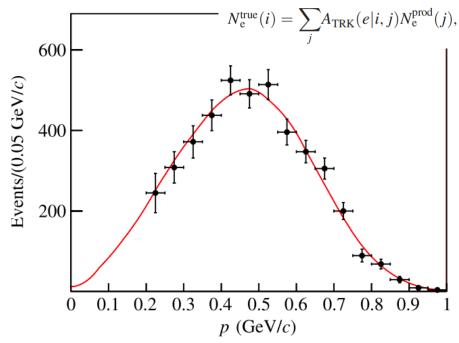

Significance: 3.2σ

Inclusive SL decay $\Lambda_c^+ \rightarrow e^+ X$

12 STs are used in this analysis

Phys. Rev. D 107, 052005 (2023)




$$N^{ST} = 115437 \pm 446$$

✓ Unfolding method to obtain true signal yields. The matrix can be obtained using selected control samples.

$$\begin{bmatrix} N_e^{\text{obs}} \\ N_\pi^{\text{obs}} \\ N_K^{\text{obs}} \\ N_p^{\text{obs}} \end{bmatrix} = \begin{bmatrix} P_{e \to e} & P_{\pi \to e} & P_{K \to e} & P_{p \to e} \\ P_{e \to \pi} & P_{\pi \to \pi} & P_{K \to \pi} & P_{p \to \pi} \\ P_{e \to K} & P_{\pi \to K} & P_{K \to K} & P_{p \to K} \\ P_{e \to p} & P_{\pi \to p} & P_{K \to p} & P_{p \to p} \end{bmatrix} \begin{bmatrix} N_e^{\text{true}} \\ N_\pi^{\text{true}} \\ N_K^{\text{true}} \\ N_p^{\text{true}} \end{bmatrix}_3$$

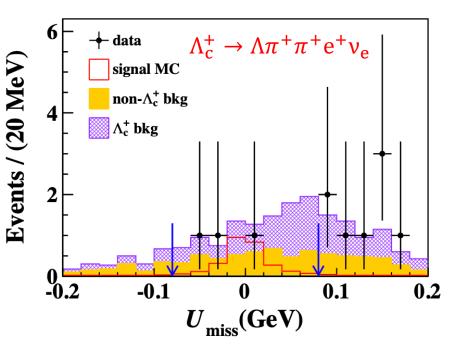
Inclusive SL decay $\Lambda_c^+ \rightarrow e^+X$

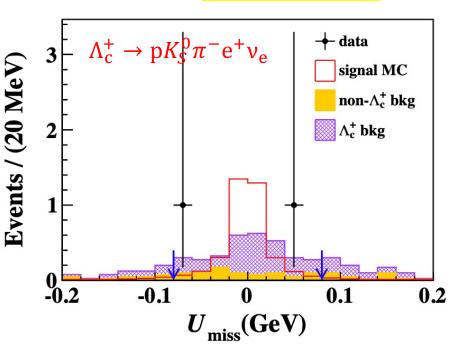
Correction (see text)	RS yields	WS yields
Observed yields	3706 ± 71	394 ± 31
PID unfolding yields	3865 ± 80	376 ± 33
WS subtraction	3489 ± 87	
Tracking unfolding yields	4333 ± 107	
Extrapolation	4692 ± 117	

$$BF(\Lambda_c^+ \to Xe^+\nu_e) = (4.06 \pm 0.10 \pm 0.09)\%$$

The precision is improved by threefold.

$$\frac{\Gamma(\Lambda_c^+ \to Xe^+\nu_e)}{\Gamma(D_s^+ \to Xe^+\nu_e)} = 1.28 \pm 0.05$$


BF(
$$\Lambda_c^+ \to Xe^+\nu_e$$
) = $(4.06 \pm 0.10 \pm 0.09)\%$
BF($\Lambda_c^+ \to \Lambda e^+\nu_e$) = $(3.56 \pm 0.11 \pm 0.07)\%$
BF($\Lambda_c^+ \to pK^-e^+\nu_e$) = $(0.88 \pm 0.15 \pm 0.07) \times 10^{-3}$


Unknown decay: 0.5%

Search for $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \rightarrow p K_s^0 \pi^- e^+ \nu_e$

Searches for SL decay modes using 4.5/fb data

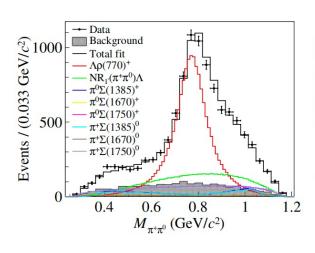
arXiv: 2302.07529

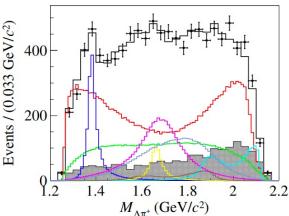
$$BF(\Lambda_c^+ \to \Lambda \pi^+ \pi^+ e^+ \nu_e) < 3.9 \times 10^{-4}$$

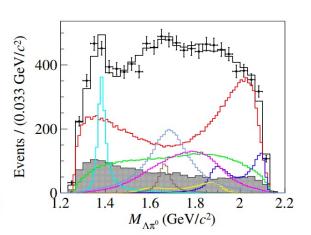
$$BF(\Lambda_c^+ \to \Lambda \pi^+ \pi^+ e^+ \nu_e) < 3.9 \times 10^{-4}$$
 $BF(\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e) < 3.3 \times 10^{-4}$

Decay mode	$N^{ m obs}$	$arepsilon^{ ext{sig}}\left(\% ight)$	$N_{ m bkg1}^{ m SB}$	$N_{ m bkg2}^{ m MC} \pm \sigma_{ m bkg2}^{ m MC}$	$N^{ m DT}$
$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$	3	9.69 ± 0.03	9	4.8 ± 0.4	2.9
$\Lambda_c^+ \to p K_{\rm S}^0 \pi^- e^+ \nu_e$	2	13.58 ± 0.02	0	2.2 ± 0.3	3.8

The BFs are set at 90% C.L. for the two decays.


Upper limits at 90% C.L.


Amplitude analysis of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$


- First amplitude analysis of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$. The analysis will provide important inputs to improve the theoretical calculations for decays of $\Lambda_c^+ \rightarrow \Lambda \rho (770)^+$ and $\Lambda_c^+ \rightarrow \Sigma$ (1385) π .
- The single tag method is applied to select $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$ events.
- The signal region is defined within $2.282 < M_{BC} < 2.292$ JHEP12 (2022) GeV/c². The signal purity is ~80%. Events / (2.3 MeV/c²)

$$M_{BC} = \sqrt{E_{beam}^2 - |\vec{p}_{ST}|^2}$$

Projections of the fit results:

2.28

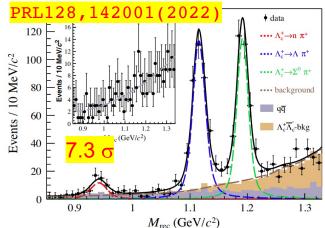
 $M_{\rm BC}({\rm GeV}/c^2)$

2.26

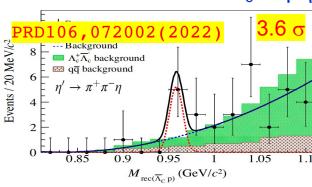
4.682 GeV

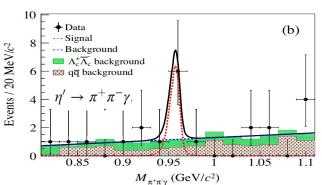
2.32

Numerical results of the BFs and decay asymmetry parameters.

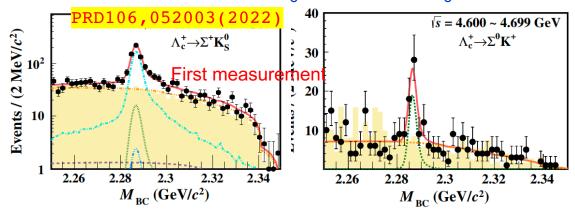

	Result	-
$\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda \rho (770)^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)}$	$(57.2 \pm 4.2 \pm 4.9)\%$	
$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0) \cdot \mathcal{B}(\Sigma(1385)^+ \to \Lambda \pi^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)}$	$(7.18 \pm 0.60 \pm 0.64)\%$	$BF(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)$
$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+) \cdot \mathcal{B}(\Sigma(1385)^0 \to \Lambda \pi^0)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)}$	$(7.92 \pm 0.72 \pm 0.80)\%$	$= (7.1 \pm 0.4)\%$
$\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	$(4.06 \pm 0.30 \pm 0.35 \pm 0.23) \times 10^{-2}$	
$\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	$ (5.86 \pm 0.49 \pm 0.52 \pm 0.35) \times 10^{-3} $	
$\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	$6.47 \pm 0.59 \pm 0.66 \pm 0.38 \times 10^{-3}$	
$lpha_{\Lambda ho(770)^+}$	$-0.763 \pm 0.053 \pm 0.045$	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.917 \pm 0.069 \pm 0.056$	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.789 \pm 0.098 \pm 0.056$	

The comparisons among measurements, theoretical calculations.

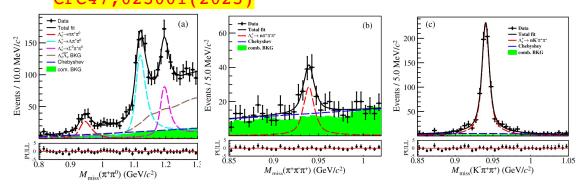

	Theoretical calculation		This work	PDG
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	4.0 [14, 15]	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.070	—
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.4}_{-0.1}$	-0.917 ± 0.089		
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91^{+0.45}_{-0.10}$ [17]		-0.79 ± 0.11	


Study of singly cabibbo-suppressed decays

• Observation of $\Lambda_c^+ \rightarrow n\pi^+$



• Measurement of $\Lambda_c^+ \rightarrow p\eta$



• Measurement of $\Lambda_c^+ \rightarrow \Sigma^0 K^+$ and $\Lambda_c^+ \rightarrow \Sigma^+ K^0$

Measurements of $\Lambda_c^+ \rightarrow n\pi^+\pi^0$, $n\pi^+\pi^+\pi^-$ and $nK^-\pi^+\pi^+$

BESIII results:
$$\begin{bmatrix} \mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{\rm stat} \pm 0.4_{\rm syst}) \times 10^{-4} \\ \mathcal{B}(\Lambda_c^+ \to n\eta') = (5.62^{+2.46}_{-2.04} \pm 0.26) \times 10^{-4} \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) = (4.7 \pm 0.9_{\rm stat} \pm 0.3_{\rm syst}) \times 10^{-4} \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0) = (4.8 \pm 1.4_{\rm stat} \pm 0.4_{\rm syst}) \times 10^{-4} \\ \mathcal{B}(\Lambda_c^+ \to n\pi^+ \pi^0) = (0.64 \pm 0.09_{\rm stat} \pm 0.02_{\rm syst})\% \\ \mathcal{B}(\Lambda_c^+ \to n\pi^+ \pi^- \pi^+) = (0.45 \pm 0.07_{\rm stat} \pm 0.03_{\rm syst})\% \\ \mathcal{B}(\Lambda_c^+ \to nK^- \pi^+ \pi^+) = (1.90 \pm 0.08_{\rm stat} \pm 0.09_{\rm syst})\% \\ \mathcal{B}(\Lambda_c^+ \to nK^- \pi^+ \pi^+) = (1.90 \pm 0.08_{\rm stat} \pm 0.09_{\rm syst})\% \\ \end{bmatrix}$$

Summary

- Recent results on Λ_c^+ SL and hadronic decays at BESIII are reported.
- These measurements provide important inputs for understanding the decay property of charmed baryon.
- More works will be reported in the future.

THANKS!