

WiV2023 ZHUHAI CHINA

The COHERENT experimental program at the SNS

Keyu Ding

July 5, 2023

Neutrino sources

Grand Unified Neutrino Spectrum at Earth

Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF

Neutrino interactions with matter

neutrino-nucleus scattering (CEvNS)

This is the *gentlest* interaction of a neutrino with a nucleus

Why CEvNS: high cross-section

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

Stopped-Pion (pDAR) Neutrinos

A fistful of CEvNS, all from COHERENT

COHERENT "First Light" CEvNS Program

- Complete the mapping of N² Dependence
- Multiple Targets key feature of COHERENT Experiment
- NA virtual tour at <u>https://my.matterport.com/show/</u> <u>?m=XYA19MBVdQS&nozoom=1&h</u> <u>elp=1&hl=1&lp=1</u>

Physics Background Detectors

- $> 0.29^{+0.17}_{-0.16}$ times MARLEY prediction
- > No NIN events at 1.8 σ -> good for background, bad for supernova detection (HALO)

Designed by TUNL/Duke University Installed in Neutrino Alley in 2014 Fermilab W&C Sam Hedges https://arxiv.org/pdf/2212.11295

MARS Fast Neutron Backgrounds

Mobile device Assembled at Sandia Installed in Neutrino Alley in 2017 COHERENT, 2022 JINST 17 P03021

COHERENT Precision Program now underway

Precise Flux Normalization

Fully Instrumented Water Cherenkov

UTK/CMU/VT/ORNL

- Two modules
- Calorimetry: no Ring Imaging
- Pin down 10% to 3% Statistical in 2 yrs
- Now operating

COHERENT 2021 JINST 16 P08048

Performance Optimized Detector

- High Light Collection
- Ring Reconstruction
- Directional Information
- CC differential cross section
- Fully characterize interaction response for supernova detection

US-Japan Workshop on Measurements for Supernova Neutrino Detection, ORNL Mar 2023

*S.Nakamura et. al. Nucl.Phys. A721(2003) 549

Ongoing detectors

- ➢ 24 kg Fiducial Mass
- Single Phase
- ➢ Kr^{83m} Calibrations
- ➤ 4.5 p.e. per keVee
- 20 keVnr threshold
- \succ ~5 σ data in-hand
- Final analysis underway

Liquid Argon detectors

Walt Fox, IU

- Future design: 750kg LAr Single phase
- Light Collection Options
 - > 3" PMT TPB
 - ➢ SiPM, Xenon Doping, …
- ➤ ~3000 CEvNS/yr

 \geq

 Fabrication underway @ Seoul and IU

NalvETe: Inelastic Interactions

$$\nu_e + {}^{127}\mathrm{I} \rightarrow {}^{127}\mathrm{Xe} + \mathrm{e}^{-1}$$

- Lightest-Nucleus
- 3.4 ton Nal Array
- > 3σ CEvNS/yr
- Installation 2022

Designed by TUNL/Duke

Installed in Neutrino Alley

https://arxiv.org/abs/2305.19594

> Measured cross section: $9.2^{+2.1}_{-1.8} \times 10^{-40} \ cm^2$

NuThor: Neutrino Induced Fissions

60 kgs thorium metal

Designed by TUNL/Duke Installed in Neutrino Alley

15

Cryogenic Scintillating Crystals

COH-CryoCsI

- Undoped Csl
- Maximal Light Yield, Minimal Afterglow at 40K
- Well matched for SiPM readout
- > QF ~ 17%, analysis on the way
- ~0.4 keVnr thresholds possible
- > 10kg and 750kg concepts

	Experiments	Type of crystals	Light yield [PE/keVee]
	COHERENT 2017	CsI[Na]	13.5 ± 0.1 Science p. eaao0990 (2017)
	PMT+small crystal	undoped CsI	20.4 ± 0.8 J. Inst. 11(10), P10003 (2016)
hig	her quantum efficiencyPMTs+large crystal	undoped CsI	26.0 ± 0.4 Eur. Phys. J. C 80, 547 (2020)
	Improved light collection	undoped CsI	33.5 ± 0.7 Eur. Phys. J. C 80(12), 1146 (2020)
	$PMT \rightarrow SiPMs$	undoped CsI	43.0 ± 1.1 Eur. Phys. J. C 82, 344 (2022)
	WLS coating on SiPMs	undoped CsI	50.0 ± 1.0
	$77 \rightarrow 40$ K, & SiPMs [*] with 50% PDE	undoped CsI	60 (final goal)

Broad Impact of π DAR CEvNS Studies

Mattia Atzori Corona's talk on Magnificent CEvNS 2023

Phase 1: 3 years exposure Phase 2: 5 years exposure

COHERENT Collaboration

~100 members, 21 institutions

- Formed in 2013 to observe CEvNS in multiple nuclear targets to measure N²-scaling of cross section
- Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) is also a perfect source of neutrinos.
- Intense flux of low-energy pulsed neutrinos also useful for studying supernova neutrinos, neutron radius, inelastic neutrino-nucleus interactions, sterile neutrinos, dark matter, neutrino magnetic moment, weak mixing angle and BSM light mediator

https://sites.duke.edu/coherent/

Take away

CEvNS are money saver!

High cross-section, require low energy threshold detectors

>Well predicted in the standard model

Precision measurements can be a great tool to probe physics in the standard model and beyond

Thank you! Questions?

Back up

Sensitivities on Non-standard neutrino Interactions

 $\succ \epsilon_{\alpha\beta}^{q}$ would change the CEvNS cross section by modifying the weak charge, $Q_{\alpha}^{2} \sim N/Z$ (joint fit)

- Assuming no contributions from other parameters, observable: flux (# of events)
- BSM evidence: non-zero values of coupling parameters

From Daniel Pershey

Observable on low-mass dark matter (LDM)

Time (left) and energy (right) distributions of CEvNS and DM signals

Sensitivities on LDM

$$\pi^0 \rightarrow \gamma + V^* \rightarrow \gamma + \chi^\dagger + \chi$$
 $\pi^- + p \rightarrow n + V^* \rightarrow n + \chi^\dagger + \chi$

Kinetic mixing (left) and leptophobic (right) dark-matter models Assuming dark matter is scalar

Observable on magnetic moment

e.g. arXiv:1505.03202, 1711.09773, 2207.05036

- Non-zero neutrino magnetic moment modifies CEvNS event rate at low energies
- Current limit: LZ and XENONnT
- All assuming the same amount of signal detected, nu_eff means three flavors contribution, nu_e means only nu_e contributes

$\mu_{\nu} =$	$\frac{3 e_0 G_F}{8 \sqrt{2} \pi^2} m_\nu \simeq 3.2 \times 10^{-19} \left(\frac{m_\nu}{\rm eV}\right) \mu_B,$				
	$ \mu_{\nu} [\times 10^{-11}\mu_B]$	$q_{\nu} \ [imes 10^{-13} e_0]$			
		FEA	EPA		
$\nu_{\rm eff}$	< 1.1	[-3.0, 4.7]	[-1.5, 1.5]		
ν_e	< 1.5	[-3.6, 6.5]	[-2.1, 2.0]		
ν_{μ}	< 2.3	[-8.9, 8.8]	[-3.1, 3.1]		
ν_{τ}	< 2.1	[-8.1, 8.1]	[-2.8, 2.8]		

Expanding model to include Workshop

$$egin{aligned} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 \ U_{11} & U_{52} & U_{53} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_
u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_lpha o
u_eta) = \left| \sum_{i=1}^{N_u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & P(
u_eta) = \left| \sum_{i=1}^{N_u} U_{ilpha}^\dagger U_{eta i} e^{-im_i^2 L/2E}
ight|^2 & U_{51} \ \end{bmatrix} & V_{51} \ \end{bmatrix} &$$

$$L/E, \text{ distance}$$

$$L/E, \text{ distance}$$

$$H - P(\nu_e \to \nu_s) = 1 - \sin^2 2\theta_{14} \cos^2 \theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

$$L/E, \text{ distance}$$

$$\frac{\Delta m_{41}^2 L}{4E}$$

Sensitivities on sterile neutrinos

- 19.3 m for COHCryoCsI-1
 22 m for COH-Ge-2 (50 kg)
 28 m for COH-Ar-750
- Observable: energy spectrum
 - **Evidence: low energy excess**
- Right top, excluded region
- Shadowed region, possible existence of sterile neutrinos

Matteo Cadeddu's talk on Magnificent CEvNS 2023 COHERENT Snowmass whitepaper

PPU and STS upgrades will ensure SNS remains the world's brightest accelerator-based neutron source

Why Ge-mini?

Ge-mini: inverted coaxial point-contact Ge detector

- Inverted coaxial -> large mass
- point-contact -> low threshold
- Electronic noise<150 eV FWHM</p>
- Threshold -> 0.4 keVee, ~2-2.5 keVnr

Shielding structure

- Pb and Copper (heavy nucleus) shields from gamma-rays
- Polyethylene capture neutron
- Muon veto

Data from similar shallow-depth Ge CEvNS experiments (such as CONUS) help guide Ge-mini background considerations

Ge-mini expected CEvNS events

Current status: > 10 kg worth has been deployed > The rest 8 kg will be deployed this summer

QF

Long Li's dissertation