Latest result of geoneutrino measurement with KamLAND

Research Center for Neutrino Science, Tohoku University, Japan Nanami Kawada

The 29th International Workshop on Weak Interaction and Neutrinos (WIN2023)

We are the KamLAND collaboration !!

>50 researchers from US, Netherlands and Japan

,

TOKUSHIMA UNIVERSITY

Contents

- Neutrino geoscience
- The KamLAND experiment
- Latest result of geoneutrino measurement

Contents

- Neutrino geoscience
- The KamLAND experiment
- Latest result of geoneutrino measurement

What formed our planet ?

Credit: Getty Images/iStockphoto

Traditional geoscientific approaches

Seismology

Structual modeling by earthquake analysis "Core—mantle—crust" layers in the Earth

Geochemistry / Cosmochemistry

Compositional estimation based on rock samples and chondrite meteorites

<u>Geothermology</u>

Heat flux measurement at the surface

etc...

Open questions

Which type of meteorites formed the Earth? What powers the geodynamics? How much layers the mantle have?

Geoneutrino is a key of these questions.

"Neutrino geoscience"

Geothermal evolution and geodynamics

©National geographic

C全日本防災計画協会

Earth heat budget

The history of the Earth is a global cooling process. The geodynamics are powered by heat inside the Earth.

Understanding the heat amount and its source inside the Earth is quite important.

Surface heat flux measurements

Bore-hole heat measurements Total heat flux is 47±2 TW. Source : primordial heat + radiogenic heat

Radiogenic heat

Heat generated by radioactive elements Past amount is calculated from the present value.

Important for understanding the geothermal evolution
 Different prediction from geophysics and geochemistry
 → Direct measurement is necessary.

Motivation of geoneutrino observation

Emission of $\overline{\nu}_{e}$ from U, Th and K. ²³⁸U \rightarrow ²⁰⁶Pb + 8 α + 6e⁻ + 6 $\overline{\nu}_{e}$ + 51.7 MeV ²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4e⁻ + 4 $\overline{\nu}_{e}$ + 42.7 MeV ⁴⁰K \rightarrow ⁴⁰Ca + e⁻ + $\overline{\nu}_{e}$ + 1.311 MeV

Geoneutrino total flux

 $\overline{
u}_{
m e}$ flux \propto $\overline{\rm U}$, Th \propto Radiogenic heat

Test of Earth's heat budget

Geoneutrino spectrum

 \bigcirc and \bigcirc have different $\overline{\nu}_{e}$ energy.

Test of Earth's chemical composition

Contents

- Neutrino geoscience
- The KamLAND experiment
- Latest result of geoneutrino measurement

The KamLAND detector

Scintillation inner detector

1kt purified liquid scintillator
(PC+Dodecane+PPO mixture)
1325 17" + 554 20" PMTs
photo coverage 34%
Neutrino detection

Water Cherenkov outer detector

3.2 kt purified water 225(140) 20" PMTs passive shielding active veto to muon

 $V_{e} \rightarrow p$ Thermalized neutron $(\tau \sim 210 \mu sec)$ Thermalized neutron $(\tau \sim 210 \mu sec)$ Thermalized neutron Thermalized neut

Anti-electron neutrino detection by inverse-beta decay
 ✓ Significant background reduction by two-fold coincidence
 ✓ Neutrino energy reconstruction from prompt scintillation
 ✓ No directional information → reactor neutrinos are background

History of neutrino geoscience in the provident of the south of the so

History of neutrino geoscience in KamLAND

History of neutrino geoscience in KamLAND

History of neutrino geoscience in KamLAND

improved observation accuracy.

Contents

- Neutrino geoscience
- The KamLAND experiment
- Latest result of geoneutrino measurement

Best fit geoneutrino signals

Best-fit time variation

Best fit geoneutrino signals

Rate + Shape + Time un-binned likelihood

Energy : 0.9 ≤ (Prompt Energy) ≤ 8.5 [MeV], 72 bins Time : each KamLAND run (~24 hour bin)

scan parameter : geo $\overline{\nu_e}$ signal (U,Th)

fit parameter : Δm_{21}^2 , θ_{12} , θ_{13} , backgrounds, systematics

Simultaneous scan of the oscillation parameters and geoneutrinos

Table. Best fit geoneutrino signals and backgrounds				
	Period1	Period2	Period3	All Period
energy range [MeV]	0.9–2.6	0.9–2.6	0.9–2.6	0.9–2.6
live time [day]	1485.5	1151.5	2590.0	5227.0
Reactor $\overline{\nu}_{e}$	325.75	229.64	48.97	604.36
$^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$	177.66	20.42	22.18	222.26
Accidental	59.35	40.53	24.79	124.67
Spallation ($^{8}\text{He}/^{9}\text{Li}$)	1.52	1.05	1.69	4.26
Background total	620.21	334.07	171.98	1126.26
observed	651	363	164	1178

Geoneutrino flux measured by KamLAND

Best fit geoneutrino signals

	$N_{\rm U/Th}$	flux		0-signal
	[event]	$[\times 10^5 \text{ cm}^{-2} \text{s}^{-1}]$	[TNU]	rejection
$U \\ Th \\ U + Th$	$\begin{array}{c} 116.6^{+41.0}_{-38.5} \\ 57.5^{+24.5}_{-24.1} \\ 173.7^{+29.2}_{-27.7} \end{array}$	$\begin{array}{c} 14.7^{+5.2}_{-4.8} \\ 23.9^{+10.2}_{-10.0} \\ 32.1^{+5.8}_{-5.3} \end{array}$	$\begin{array}{c} 19.1\substack{+6.7\\-6.3}\\9.7\substack{+4.1\\-4.1}\\28.6\substack{+5.1\\-4.8}\end{array}$	${3.343\sigma}\ {2.386\sigma}\ {8.3\sigma}$

KamLAND detected significant geoneutrino signal from both uranium and thorium inside the Earth.

Spectroscopic measurement of geoneutrinos from uranium and thorium was achieved.

Radiogenic heat measurement by KamLAND

KamLAND result

Crust estimation

central value : Enomoto 2007 uncertainty : Rudnick&Gao 2014 Th/U ratio : Wipperfurth et al 2018

Radiogenic heat from mantle

between flux and radiogenic heat in homogeneous mantle $Q_{\text{mantle}}^{\text{U,Th}} = (\Phi^{\text{U,Th}} - \Phi_{\text{crust}}^{\text{U,Th}}) \frac{\mathrm{d} \varphi_{\text{mantle}}}{\mathrm{d} \Phi^{\text{U,Th}}}$ measured flux flux estimate in at the surface crustal model Adding heat estimate from crust, ²³⁸U : 3.4 TW, ²³²Th : 3.6 TW $Q^{\rm U} = 3.3^{+3.2}_{-0.8} \,\mathrm{TW}$ $Q^{\rm Th} = 12.1^{+8.3}_{-8.6} \, {\rm TW}$ $Q^{\rm U} + Q^{\rm Th} = 15.4^{+8.3}_{-7.9} \,\,{\rm TW}$ Convective Uray ratio = $0.13^{+0.15}_{-0.06}$ **Heat contribution** separately from U and Th has been measured.

18

Conversion coefficients

Comparison to Earth models

BSE models (Sramek et al 2013)

Low-Q Based on compositional analysis of enstatite (10-15 TW) chondrites and isotopic constraints (U : 12±2 ppb, Th : 43±4 ppb)

Middle-QBased on compositional analysis of CI(17-22 TW)carbonaceous chondrites and earth samples
(U : 20±4 ppb, Th : 80±13 ppb)

Consistent with the KamLAND data.

High-Q (>25 TW)

Based on balancing mantle viscosity
and heat dissipation.
Predicting relatively large amount of
radiogenic heat for mantle convection.
(U: 35±4 ppb, Th: 140±14 ppb)

Inconsistent with the KamLAND data

Comparison to Earth models

Tension between KamLAND data and models $\chi^{2}_{\min} = \min_{(\alpha^{U}_{crust}, \alpha^{Th}_{crust}, \alpha_{BSE})} \left\{ \chi^{2}_{KL} (\Phi^{U}_{crust} + \Phi^{Th}_{crust} + \Phi_{mantle}) + \chi^{2}_{penalty} \right\}$ $\Phi_{mantle} = \left(Q_{BSE} - Q^{U}_{crust} - Q^{Th}_{crust} \right) \frac{d\Phi^{U,Th}_{mantle}}{dQ^{U,Th}_{mantle}}$ $\chi^{2}_{penalty} = (\alpha^{U}_{crust})^{2} + (\alpha^{Th}_{crust})^{2} + (\alpha^{Th/U}_{crust})^{2} + (\alpha^{Th/U}_{crust})^{2}$

Constraints from crust and BSE models

14.51

 232 Th

3.61

$$\begin{split} \alpha_{\rm crust}^{\rm U} &= \frac{Q_{\rm crust}^{\rm U} - Q_{\rm crust}^{\rm U,Model}}{Q_{\rm crust}^{\rm U,Model} \times (24\%)} = \frac{\Phi_{\rm crust}^{\rm U} - \Phi_{\rm crust}^{\rm U,Model}}{\Phi_{\rm crust}^{\rm U,Model} \times (24\%)} \\ \alpha_{\rm crust}^{\rm Th} &= \frac{Q_{\rm crust}^{\rm Th} - Q_{\rm crust}^{\rm Th,Model}}{Q_{\rm crust}^{\rm Th,Model} \times (11\%)} = \frac{\Phi_{\rm crust}^{\rm Th} - \Phi_{\rm crust}^{\rm Th,Model}}{\Phi_{\rm crust}^{\rm Th,Model} \times (11\%)} \\ \alpha_{\rm crust}^{\rm Th/U} &= \frac{\alpha_{\rm crust}^{\rm Th} - \alpha_{\rm crust}^{\rm U}}{\alpha_{\rm crust}^{\rm U} \times (\frac{4.8\%}{3.5\%})} \quad (\because \text{Th/U mass ratio} = 3.95^{+0.19}_{-0.13}) \\ \alpha_{\rm BSE} &= \frac{Q_{\rm BSE} - Q_{\rm BSE}^{\rm Model}}{Q_{\rm BSE}^{\rm Model} \times (10\%)} \quad Q_{\rm BSE}^{\rm Model} = 28.2 \,\text{TW} \quad (\text{High-Q model}) \\ \hline \frac{Q_{\rm crust}^{\rm Model} \,[\text{TW}] \quad \Phi_{\rm crust}^{\rm Model} \,[10^5 \,\text{cm}^{-2} \text{s}^{-1}]}{3.35} \quad 17.19 \quad 7.28 \end{split}$$

9.32

Comparison to Earth models

This result suggests mantle multi-layer convection.

Summary

- The KamLAND experiment has been measuring geoneutrinos from uranium and thorium.
- The reactor-off period in Japan supressed the reactor neutrino background significantly and enabled a spectropic measurement of geoneutrinos from uranium and thorium.

	$N_{\rm U/Th}$	flux		0-signal
	[event]	$[\times 10^5 \text{ cm}^{-2} \text{s}^{-1}]$	[TNU]	rejection
U	$116.6^{+41.0}_{-38.5}$	$14.7^{+5.2}_{-4.8}$	$19.1^{+6.7}_{-6.3}$	3.343σ
U + Th	$57.5_{-24.1}^{+21.0}$ $173.7_{-27.7}^{+29.2}$	$\begin{array}{c} 23.9^{+10.2}_{-10.0} \\ 32.1^{+5.8}_{-5.3} \end{array}$	$9.7_{-4.1}^{+1.1} \\ 28.6_{-4.8}^{+5.1}$	2.386σ 8.3σ

<u>Flux</u>

Radiogenic heat

 $Q^{\rm U} = 3.3^{+3.2}_{-0.8} \text{ TW}$ $Q^{\rm Th} = 12.1^{+8.3}_{-8.6} \text{ TW}$ $Q^{\rm U} + Q^{\rm Th} = 15.4^{+8.3}_{-7.9} \text{ TW}$

Convective Uray ratio = $0.13^{+0.15}_{-0.06}$

models based on chondrites pred at 99.76% confidence level ying multi-layer mantle

Latest publication from KamLAND

AGU ADVANCING EARTH AND SPACE SCIENCE

Geophysical Research Letters[.]

RESEARCH LETTER

10.1029/2022GL099566

Key Points:

- Geoneutrino measurement with low reactor neutrino backgrounds improves the distinct spectroscopic contributions of U and Th
- Radiogenic power in the Earth estimated from this geoneutrino measurement is consistent with a range of models and disfavors the higher power model
 Identifying the Earth's mantle
- contribution to the total geoneutrino flux strongly depends on an accurate estimation of the crustal contribution

Correspondence to:

N. Kawada, kawada@awa.tohoku.ac.jp

Citation:

Abe, S., Asami, S., Eizuka, M., Futagi, S., Gando, A., Gando, Y., et al. (2022). Abundances of uranium and thorium elements in Earth estimated by geoneutrino spectroscopy. *Geophysical Research Letters*, 49, e2022GL099566. https://doi.org/10.1029/2022GL099566 S. Abe¹, S. Asami¹, M. Eizuka¹, S. Futagi¹, A. Gando¹, Y. Gando^{1,2}, T. Gima¹, A. Goto¹, T. Hachiya¹, K. Hata¹, K. Hosokawa^{1,3}, K. Ichimura¹, S. Ieki¹, H. Ikeda¹, K. Inoue¹, K. Ishidoshiro¹, Y. Kamei¹, N. Kawada¹, Y. Kishimoto^{1,4}, M. Koga^{1,4}, M. Kurasawa¹, N. Maemura¹, T. Mitsui¹, H. Miyake¹, T. Nakahata¹, K. Nakamura¹, K. Nakamura^{1,4,5}, R. Nakamura¹, H. Ozaki^{1,6}, T. Sakai¹, H. Sambonsugi¹, I. Shimizu¹, Y. Shirahata¹, J. Shirai¹, K. Shiraishi¹, A. Suzuki¹, Y. Suzuki¹, A. Takeuchi¹, K. Tamae¹, H. Watanabe¹, Y. Yoshida¹, S. Obara^{7,8}, A. K. Ichikawa⁹, S. Yoshida¹⁰, S. Umehara¹¹, K. Fushimi¹², K. Kotera¹², Y. Urano¹², B. E. Berger^{4,13}, B. K. Fujikawa^{4,13}, J. G. Learned¹⁴, J. Maricic¹⁴, S. N. Axan¹⁵, C. Fu¹⁵, J. Smolsky¹⁵, L. A. Winslow¹⁵, Y. Efremenko^{4,16}, H. J. Karwowski^{17,18}, D. M. Marcoft^{17,19},

Abundances of Uranium and Thorium Elements in Earth

Estimated by Geoneutrino Spectroscopy

W. Tornow^{4,17,20}, A. Li¹⁸ ⁽⁵⁾, J. A. Detwiler^{4,21} ⁽⁵⁾, S. Enomoto^{4,21} ⁽⁶⁾, M. P. Decowski^{4,22} ⁽⁶⁾, C. Grant²³ ⁽⁶⁾, H. Song²³, T. O'Donnell²⁴ ⁽⁶⁾, S. Dell'Oro²⁴, and (The KamLAND Collaboration)

¹Research Center for Neutrino Science, Tohoku University, Sendai, Japan, ²Department of Human Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan, ³Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Hida, Japan, ⁴Institute for the Physics and Mathematics of the Universe, Tohoku University, Sendai, Japan, ⁴Institute for the Physics and Mathematics of the Universe, Tohoku University, Sendai, Japan, ¹⁰Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan, ¹⁰Raduate Program on Physics for the Universe, Tohoku University, Sendai, Japan, ¹⁰Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan, ¹⁰Raduate School of Science, Osaka University, Osaka, Japan, ¹⁰Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, Japan, ¹²Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan, ¹³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, ¹⁴Department of Physics and Astronomy, University of Tennesee, Knoxville, TN, USA, ¹⁷Triangle Universits Nuclear Laboratory, Durham, NC, USA, ¹⁸The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, ¹⁹North Carolina Central University, Durham, NC, USA, ²⁹Physics

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL099566

Geophysical Research Letters, Volume 49, Issue 16, e2022GL099566 First published on 2022/Aug./11

Please check it !!

EOS. Science News by AGU

ABOUT SPECIAL REPORTS TOPICS V PROJECTS V NEWSLETTER SUBMIT TO EOS

Q

Estimating Uranium and Thorium Abundance with Geoneutrinos

Terrestrial electron antineutrino observations provide new constraints on the contributions of radiogenic heat in the mantle.

By Morgan Rehnberg 31 August 2022

collide with the atomic nuclei. Credit: Research Center for Neutrino Science. Tohoku University

The editors of GRL have selected our paper to be featuread as "Research Spotlight" on Eos.org !!

(144 papers in July from GRL, 1 Research Spotlight)

AGU Research Spotlights summarize the research and findings of the best accepted articles for the broad Earth and space science community. Research Spotlights also may be sent to interested news media and may appear in the monthly *Eos* print version in addition to being published on <u>Eos.org</u>.

https://eos.org/research-spotlights/estimatinguranium-and-thorium-abundance-with-geoneutrinos

Backup slides

Structural modeling by seismology

Multi-point observation of earthquakes propagating through the Earth

Density and viscosity profiles of deep earth Multi layer of core-mantle-crust

?) No compositional information

© Encyclopædia Britannica, Inc.

Compositional modeling by geo(cosmo)chemistry

Earth's chemical composition estimate based on chondrite meteorites and earth samples

Enstatite

chondrite

Bulk-Silicate Earth (BSE) model give average composition of mantle+crust.

Earth samples give crustal compositional estimation.

The mantle composition is estimated by subtracting crustal elements from the BSE composition.

Candidate material of the Earth : chondrites

- CI carbonaceous chondrite : compositional similarity to solar atmosphere
 - abundant volatile elements •

 - Enstatite chondrite : isotopic similarity to the Earth
 - abundant iron •

We do never know which chondrite formed the Earth. There be never direct sampling of deep earth.

 \rightarrow Direct verification is needed.

Geoneutrino flux estimate

Broad science objectives of KamLAND experiment 28

Radioactivity and heat inside the Earth

Neutrino geoscience

Neutrino provides unique probe of particle physics, astronomy and geoscience.

Geoneutrino measurement in KamLAND

How does KamLAND measure geoneutrinos?

- KamLAND can measure rate and energy of neutrinos.
- Reactor neutrinos are the dominant background due to shared energy range.
- We can distinguish geoneutrinos from other neutrinos statistically by apllying energy (and time) spectrum fitting.

Large statistics and reduction of systematic uncertainties are very important.

It is also important to construct detector away from reactors.

Neutrino oscillation measurement

KamLAND measured 2 cycles of neutrino oscillation precisely for the first time in the world.

Liquid scintillator purification with distillation

Impact of reactor-off period

Reactor neutrino background

• Significantly decreased due to the reactor-off environment

Accidental-coincidence background

• Suppressed by optimization of likelihood-based anti-neutrino event selection in reactor-off period.

Geoneutrino signal

• In the reactor-off period, the spectrum shape can be seen clearly.

Statistical power of reactor-off period

Period3 (reactor-off period) contributes to the determination of geoneutrino flux from Uranium and Thorium.

Anti-neutrino event selection

Delayed-coincidence

Finding spacial and time coincident events

parameter	criteria
prompt energy [MeV]	$0.9 \le E_{\rm p} < 8.5$
delayed energy [MeV]	$1.8 \le E_{\rm d} < 2.6$ $4.4 \le E_{\rm d} < 5.6$
space correlation [m]	$\Delta R < 2.0$
time correlation $[\mu s]$	$0.5 \le \Delta T < 1000$
fiducial volume [m]	$R_{\rm p} < 6 \& R_{\rm d} < 6$

Likelihood selection

 $f_{\overline{
u}_{
m e}} = f_{\overline{
u}_{
m e}}(E_{
m p}, E_{
m d}, \Delta R, \Delta T, R_{
m p}, R_{
m d})\,$: Signal PDF (Geant4 simulation)

$$f_{
m accidental} = f_{
m accidental}(E_{
m p}, E_{
m d}, \Delta R, \Delta T, R_{
m p}, R_{
m d})$$
 : Accidental PDF (data driven)

$$\mathcal{L}_{\rm ratio}(E_{\rm p}) = \frac{f_{\overline{\nu}_{\rm e}}}{f_{\overline{\nu}_{\rm e}} + f_{\rm accidental}}$$

0

: Likelihood ratio; The probability that an DC pair is a IBD reaction

Anti-neutrino event selection

Likelihood selection threshold

Accidental-coincidence background

Only delayed-coincidence

Accidental-coincidence background

Delayed-coincidence only

Figure 5.16: Time variation of the accidental coincidence rate in Period1 and Period2. The accidental coincidence events are selected by the delayed-coincidence method and the likelihood selection has not been applied.

Figure 5.17: Time variation of the accidental coincidence rate in Period3. The accidental coincidence events are selected by the delayed-coincidence method and the likelihood selection has not been applied.

Likelihood selection applied

Figure 6.44: Time variation of the accidental coincidence background rate after Likelihood cut in Period3

Why acci. BG was suppressed in period3?

Fewer IBD expectation in

Accidental coincidence rate

The optimized threshold

shifted to right.

reactor-off period

period

'02/Mar./9-'03/Oct./31 (period1)

'18/May/19—'20/Dec./31 (Period3)

Figure 5.23: Likelihood selection procedure for $3.0 < E_p < 3.5$ in LH-7

38

Figure 5.20: Likelihood selection procedure for $3.0 < E_p < 3.5$ in LH-0

Reactor neutrino spectrum

Distillation system in KamLAND site

