Cosmological constraints on supersymmetric superWIMPs

Jan Hamann (夏陽)

based on arXiv:2307.XXXXX

with

Meera Deshpande, Dipan Sengupta, Martin White, Anthony Williams (University of Adelaide)

and Yvonne Wong (UNSW)

第29 屆弱相互作用和中微子國際研討會 中山大學, 3rd-8th July 2023

WIMP dark matter

+ natural production mechanism (thermal production plus freeze-out)
+ no fine-tuning necessary (WIMP miracle)
+ clear collider, direct and indirect detection signatures
+ convincing theory candidates (SUSY LSP)

[figure from Daniel Baumann's lecture notes]

comoving number density

WIMP dark matter

+ natural production mechanism (thermal production plus freeze-out)
+ no fine-tuning necessary (WIMP miracle)
+ clear collider, direct and indirect detection signatures
+ convincing theory candidates (SUSY LSP)

 most boring case imaginable from cosmological perspective (cold dark matter)

[figure from Daniel Baumann's lecture notes]

WIMP dark matter

+ natural production mechanism (thermal production plus freeze-out)
+ no fine-tuning necessary (WIMP miracle)
+ clear collider, direct and indirect detection signatures
+ convincing theory candidates (SUSY LSP)

 most boring case imaginable from cosmological perspective (cold dark matter)

– we haven't found it yet!

[figure from Daniel Baumann's lecture notes]

superWIMP dark matter

superWIMP

interacts so weakly with SM that it never gets thermalised in early Universe

superWIMP dark matter

LHC searches*

Decay must happen within detector, limiting sensitivity to lifetimes between

3 x 10⁻⁹ s and 3 x 10⁻⁶ s

* These constraints are somewhat model-dependent; this particular result assumes a gravitino superWIMP in a gauge-mediated SUSY breaking scenario.

[CMS collaboration (2019)]

Big Bang Nucleosynthesis

[figure from Daniel Baumann's lecture notes]

Energy injection (e.g., by decay of WIMPs to superWIMPs) can dissociate nuclei and change ``primordial'' element abundances.

BBN constraints

CMB: spectral distortions

[Fixsen et al. (1996)]

CMB: spectral distortions

causes the CMB energy spectrum to be distorted.

10⁶ s

Photon energy

temperature shift

[Chluba et al. (2019)]

full thermalization

Maximum of

CMB blackbody

Photon energy

µ-distortion

[Fixsen et al. (1996)]

CMB: temperature and polarization anisotropies

[*Planck* collaboration (2018)]

CMB: temperature and polarization anisotropies

Energy injection from around

10¹³ s (recombination)

- ionises neutral hydrogen
- increases free electron fraction
- enhances photon scattering
- changes acoustic peak pattern in CMB angular spectra

[figure from Sunyaev & Chluba (2009)]

Current CMB constraints

Future CMB constraints

Lyman-alpha forest

- Quasar spectra show Lyman-alpha absorption along line of sight
- Absorption is a measure of hydrogen column density
- Probe of small-scale matter fluctuations

[figures from Ned Wright's website]

Lyman-alpha forest

- Quasar spectra show Lyman-alpha absorption along line of sight
- Absorption is a measure of hydrogen column density
- Probe of small-scale matter fluctuations
- superWIMPs are not produced at rest
 - non-zero velocity dispersion, free-streaming
 - suppression of small-scale fluctuations
- Can map observed spectra to constraint on dark matter free streaming scale/velocity dispersion

[figures from Ned Wright's website]

Lyman-alpha constraints

 10^{-2} 10^{-4} – 10^{-6} . $\epsilon_{\rm SM}$ 10^{-8} · 10^{-10} -BBN FIRAS + *Planck* 10^{-12} $\mathsf{Lyman}\text{-}\alpha$ Future CMB 10^{-14} - 10^{19} 10^{10} 10^{13} 10^{7} 10^{16} 10^{22} 10^{25} 10^{28} 10^{4} τ [s]

There's a tiny corner where Lyman-alpha bounds beat other cosmological probes

Example 1: gravitino superWIMP

- Supergravity: gravitino is spin-3/2 superpartner of graviton
- Couples only gravitationally
- Can be LSP

Example 1: gravitino superWIMP

[e.g., Feng, Rajaraman, Takayama (2003)]

Gravitino superWIMP constraints

Gravitino mass – neutralino mass parameter space

Energy fraction – neutralino mass parameter space

Example 2: axino superWIMP

- Axion solves strong CP-problem
- Axino is axion's superpartner
- Coupling determined by axion decay constant f_a
- Can be LSP

Example 2: axino superWIMP

axino mass

[e.g., Covi et al. (2004)]

Axino mass – neutralino mass parameter space

Axino mass – neutralino mass parameter space

Axino mass – neutralino mass parameter space

Conclusions

- Cosmology can be a very powerful probe of particle physics models
- Complementarity with collider experiments
- Some discovery potential for superWIMPs from next generation CMB experiments
- We should consider building a modern version of FIRAS!