Signatures of Collapsars as Sources for High-energy Neutrinos and *r*-process Nuclei

> Gang Guo China University of Geosciences (Wuhan)

WIN 2023, SYSU, Zhuhai July 3-8, 2023

G. Guo, Y.-Z. Qian, and M.-R. Wu, arXiv: 2212.08266, to appear in PRD Letter

HE neutrino events at ICeCube

One Blazar (TXS 0506+056), three TDEs, and one near galaxy (NGC 1068) have been found to be correlated with some HE neutrino events, ...

Origin of IceCube events is largely unknown

From gamma-neutrino connection, hidden sources for HE neutrinos may be more likely

(see e.g., Murase+16,20; Fang+22)

This talk discusses one kind of hidden source: relativistic jets inside **collapsars**

Produced by collapse of massive stars into a BH surrounded by an accretion disk;

Relativistic jets: power long GRBs; HE neutrinos Non-relativistic outflow: *r*-process nuclei

Multi-messengers:

EM in different energy bands; Low-Energy & High-Energy neutrinos GWs

Aim of this talk:

To revisit HE neutrino production inside the progenitor star of collapsars
 To investigate a novel connection between HE & LE neutrinos from collapsars

HE neutrino production at jet-induced shocks in GRBs/CCSNe

Basic picture for HE neutrino production by shocks:

• proton acceleration by shocks

$$F(E_p) \propto E_p^{-\gamma} \operatorname{Exp}\left[-\frac{E_p}{E_{p,\max}}\right], \qquad \gamma \sim 2 - 2.2$$

 $E_{p,\max}$ is determined by the balance between acceleration and cooling timescales

- *pp* or *py* process produce π^{\pm} and K^{\pm} in shocked jets
- HE neutrinos from decay of π^{\pm} and K^{\pm} (cooling of mesons suppresses the produced neutrino flux)

Various sites for HE neutrino production:

prompt neutrino(Waxman+97...), neutrino afterglow(Waxman+99...), neutrinos from shock breakout, <u>neutrino produced by jets propagating inside stellar envelope</u> (more common for jets to be choked) Meszaros+01,Razzaque03,Ando+05, Murase+13,Xiao+14,Tamborra+16,Senno+15,He+18,Denton+18...

Murase+13

HE neutrino production deep inside progenitor star

Downside factors:

- ➤ Neutrino fluxes are highly suppressed at small radius due to strong synchrotron cooling of charged meson (more severe for slow jets, i.e., with small Lorentz factor Γ) $pp_{,} p\gamma \rightarrow \pi^{\pm}, K^{\pm} \rightarrow \nu$ $t_{syn}^{-1} \propto B^{2} \propto \epsilon_{B}L/(\Gamma^{2}r^{2})$
- Shocks produced deep inside stars are easily <u>radiation-mediated & do not support particle acceleration</u> radiation energy density $\propto \epsilon_e L/(\Gamma^2 r^2)$

Murase+13

To form a collisionless internal shock by pre-collimated jets

$$L_{52}r_{is,10}^{-1}\Gamma_2^{-3} \leq 5.7 \times 10^{-3} \min[\Gamma_{rel,0.5}^2, 0.32C_1^{-1}\Gamma_{rel,0.5}^3]$$

Murase+13

low power & fast jets, large shock radius are favored

mildly magnetized jets may provide a way out

• If the jets are sufficiently magnetized, a strong collisionless internal subshock can still develop in radiation dominated region.

* Magnetization helps to avoid strong mixing of jets with stellar matter and to reach a fast jet Gottlieb+20, 21

HE neutrino production at internal shocks inside progenitor star revisited

Consider fast, luminous, mildly-magnetized (instead of slow and non-magnetized) jets before collimation:

In our benchmark study, we take
$$R_{\rm is} = 3 \times 10^9$$
 cm,
 $\frac{L_{\rm iso} = 10^{53} \text{ erg/s}}{\sigma_d = \xi \sigma_u \approx 2\epsilon_{B,d} = 0.25}, \frac{\Gamma_r = 2\Gamma \approx 90L_{\rm iso,49}^{0.18} \approx 472}{\xi = 5, \ \epsilon_{e,d} = 0.5}, \epsilon_B \approx 0.5 \sigma$
and $\epsilon_{e,u} = 0.3$.

	$B_{d(u),8}$	$n_{p,d(u),19}$	$T_{\gamma,d(u),\mathrm{keV}}$
$\operatorname{downstream}$	$8.2(\epsilon_{B,d}L_{\rm iso,52})^{1/2}/(R_{\rm is,10}\Gamma_2)$	$1.8L_{\rm iso,52}(1-\epsilon_{e,d}-\epsilon_{B,d})R_{\rm is,10}^{-2}\Gamma_2^{-2}$	$3.7(\epsilon_{e,d}L_{\rm iso,52})^{1/4}R_{\rm is,10}^{-1/2}\Gamma_2^{-1/2}$
upstream	$B_{d,8}/\xi$	$n_{p,d,19}/\xi$	$T_{\gamma,d,\text{keV}}(\epsilon_{e,u}/\epsilon_{e,d})^{1/4}(\Gamma/\Gamma_r)^{1/2}$

Previous studies, by default, consider HE neutrino production in shocked jets (downstream of shock) We, instead, consider HE neutrino production in unshocked jets (upstream of shock)

Murase+13

$$pp, p\gamma \to \pi^{\pm}, K^{\pm} \to \nu$$

 $F(E_p) \propto E_p^{-2} \operatorname{Exp} \left[-\frac{E_p}{E_{p,\max}} \right]$
Pythia8 for *pp* yields; SOPHIA for *pγ* yields

antineutrinos from β -decay of synthesized elements Collapsars as sources for

 $\dot{\epsilon}_{\bar{\nu}_e,0} = 5 \times 10^{18} \text{ erg/g/s}$

r-process (*rapid neutron capture*) nuclei Siegel+19

$$\eta(t) \approx \left[\frac{1}{2} - \frac{1}{\pi} \arctan\left(\frac{t - T_r}{0.11 \text{ s}}\right)\right]^{1.3} \quad T_r = 0.4 \text{ s} \quad Y_e = 0.2$$

Rosswog+14, Wu+19

$$j_{\bar{\nu}_e}(E,r) = \frac{\dot{\epsilon}_{\bar{\nu}_e,0}\eta(r/v_{\rm ej})}{\langle E_L \rangle} \left[\frac{15(2\langle E_L \rangle - E)^2 E^2}{16\langle E_L \rangle^5}\right]$$

 $\langle E_L \rangle = 4 \text{ MeV}$ normalized spectrum of antineutrino; purely from the phase space

$$\begin{split} I_{\bar{\nu}_e}(E,R,\theta) &= \int \frac{\rho(r)j_{\bar{\nu}_e}(E,r)}{4\pi} dl & \frac{\bar{\nu}_e \text{ flux}}{(\text{MeV/cm}^2/\text{s/sr})} \\ &= \frac{R\dot{M}}{16\pi^2 \nu_{\text{ej}}} \int \frac{j_{\bar{\nu}_e}(E,r)\sin\theta}{r^2\sin^2(\theta+\theta')} d\theta' \\ \rho(r) &= \dot{M}/(4\pi r^2 \nu_{\text{ej}}) & \longleftarrow \text{ assuming spherically symmetric outflow} \\ \text{ejecta mass ejecta mass ejecta velocity} \\ \text{density loss rate 0.05c} & 0.05c \end{split}$$

oscillations of LE antineutrinos

Depending on the densities at points A (emit. LE $\bar{\nu}_e$) & B (pair ann.), if densities vary slowly.

Pair annihilation occurs inside jets with density below ~1 g/ cm³ (ρ_B is low)

Wind density is
$$\rho \sim \dot{M}/(4\pi r^2 v_{\rm ej}) \sim 10^3 \text{ g/cm}^3 \text{ at } r \sim 10^9 \text{ cm}$$

The density of stellar matter at 10^9 cm can reach 10^6 g/ cm³ (stellar matter may be blown away by the earlier jets or winds)

The emission site of $\bar{\nu}_e$ can span a wide range with different local densities (ρ_A has a wide range), we consider extremes cases (1) pure vacuum oscillation ($\rho_A = 0$) (2) MSW effect ($\rho_A \gg 10^4$ g/ cm³):

 \bar{v}_e is identical to \bar{v}_{1m} for normal (NH) and \bar{v}_{3m} for inverted (IH) neutrino mass hierarchies

$$(P_{\bar{\nu}_{e}}, P_{\bar{\nu}_{\mu}}, P_{\bar{\nu}_{\tau}}) \approx (0.55, 0.18, 0.27)$$
 pure vacuum osc
 $(0.675, 0.095, 0.23)$ MSW under NH
 $(0.022, 0.545, 0.433)$ MSW under IH

neutrino pair annihilation

- Relativistic jets & the nonrelativistic winds/ejecta are launched almost simultaneously after the formation of accretion disk & have similar duration (Just+22, Fujibayashi+22)
- Steady LE antineutrino background
- We construct a 1D MC simulation code to simulate neutrino pair annihilation taking into account decays of charged meson and leptons (though the secondary processes are not too relevant)

$$\nu_{\alpha} + \bar{\nu}_{\alpha} \rightarrow f + \bar{f}$$
 enhanced cross section
due to Z-resonance
quarks (hadronize), charged leptons, neutrinos
 π^{\pm}, K^{\pm} μ^{\pm}, τ^{\pm} neutrinos
 π^{\pm}, K^{\pm} μ^{\pm}, τ^{\pm} regenerated neutrinos

► Particle yields from $\nu_{\alpha} \bar{\nu}_{\alpha}$ are obtained from Pythia8, and only the dominant decay channels are considered

resulting HE neutrino spectrum and flavor composition

unnormalized flux assuming $\phi_p(E_p) = E_p^{-2} \operatorname{Exp}\left[-\frac{E_p}{E_{p,\max}}\right]$

Diffuse HE neutrino flux

$$\frac{c}{4\pi H_0} \frac{f_z f_\star \dot{n}_{\rm GRB} f_{\rm cr} E_{\rm iso}}{\ln(E_{p,\rm max}/E_{p,\rm min})} \frac{1}{\rm GeV \ cm^{-2} \ s^{-1} \ sr^{-1}} \sim 7 \times 10^{-9} \left(\frac{f_z f_\star \dot{n}_{\rm GRB}}{\rm Gpc^{-3} \ yr^{-1}}\right) f_{\rm cr} E_{\rm iso,53}$$

$$\times E^2 \phi_{\nu}$$

E²F_v [GeV cm⁻² s⁻¹ sr⁻¹] ... IceCube-cascade ---10⁵³ erg/s, no ann. . m = 0.01 1x10⁻⁸ I $\dot{m} = 0.02$ $\dot{m} = 0.05$ [0[°],45[°]], m = 0.02 [30[°],45[°]], m = 0.02 NH, $\dot{m} = 0.02$ 1x10⁻⁹ 10 1000 100 E [TeV]

 $f_* \sim 10$: the ratio of collapsar rate with mildly-magnetized jets to that of bright GRBs

major contributor: LLGRBs & potentially, choked GRBs,

all hosting relativistic jets with similar properties (luminosity, opening angle, Lorentz factor, etc.) Nakar+15, Senno+16

Stacked precursor search at IceCube limits contributions from bright GRBs to be within ~10% (2205.11410)

Predictions from our HE neutrino model

- Precursor neutrino burst from nearby LLGRBs (benchmark values for jets taken, ~10 cascades expected at IceCube-Gen2 from a nearby LLGRB at 100 Mpc, duration of a few tens seconds)
 testing models of LLGRBs (low- or high-luminosity jets)
- ✓ ν_{μ} -dominated flavor composition at source (strong cooling for charged mesons inside stars; can be clearly observed at IceCube-Gen2, see Song+2021) distinguishable from the pion-decay scenario with (1: 2: 0) at source
- ✓ If neutrino pair annihilation is considered, a sudden drop above 100-200 TeV in the diffuse spectrum would be expected

observing a sudden drop in the diffuse neutrino flux at IceCube-Gen2

A broken power-law flux for the diffuse flux

$$E^{2}F_{\nu} = A \times \begin{cases} (E/100 \text{ TeV})^{-\gamma}, & E < E_{b}, \\ (E_{b}/100 \text{ TeV})^{-\gamma} (E/E_{b})^{-\gamma-\delta\gamma}, & E > E_{b}. \end{cases}$$

We generate the so-called Asimov dataset assuming $A_0 = 2 \times 10^{-8}$ GeV cm⁻² s⁻² sr⁻¹, $E_{b0} = 150$ TeV, $\gamma_0 = 0.5$, and $\delta\gamma_0 = 2.5$. using 10 years of IceCube-Gen2 data

Consider atm. neutrino background only;

$$\chi^2(E_b, \delta\gamma) = \min_{\{A, \gamma, \alpha\}} \left[-2\sum_{i,j} (n_{ij} \ln \mu_{ij} - \mu_{ij}) \right]$$

Summary

HE production by internal shocks inside progenitor stars: Mildly-magnetized jets produce collisionless subshocks HE production in upstream of shocks instead of downstream

Annihilation with LE antineutrinos from β -decay of newly synthesized leave clear imprints on the spectrum and flavor composition of HE neutrino flux

Similar studies can be applied for BNSMs (or SGRBs)

Thanks

common central engines for LGRBs & SGRBs

relevant timescales for proton and π^{\pm}/K^{\pm}

proton can be accelerated to high energies

pair production $(\pi^{\pm}/K^{\pm} + \gamma \rightarrow \pi^{\pm}/K^{\pm} + e^{-} + e^{+})$ dominates Kaon dominates HE neutrino production

$$E_{\nu,\text{ob}} \sim 0.05 \ \Gamma_r \ E_p \sim 0.25 \ \Gamma_r \ E_\pi \sim 0.5 \ \Gamma_r \ E_K$$

Diffuse HE neutrino flux

