

Search for the coherent elastic neutrino-nucleus scattering and other rare processes in vGeN experiment at Kalinin nuclear power plant

A.Lubashevskiy^{1,2} on behalf of the vGeN collaboration

¹Joint Institute for Nuclear Research, Dubna, Russia

²Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

vGeN collaboration

- Joint Institute for Nuclear Research, Dubna, Russia
- Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
- Institute of Experimental and Applied Physics, Czech Technical University in Prague

vGeN aims:

vGeN experiment is aimed to study neutrino scattering using antineutrinos from the reactor core of Kalinin Nuclear Power Plant (KNPP) at Udomlya, Russia. Main searches:

- Coherent elastic neutrino-nucleus scattering (CEvNS).
- Non-standard neutrino interactions.
- Magnetic moment of neutrino.
- Nuclear physics, sterile neutrino.
- Other rare and exotics processes.

Standard parametrization of

Applied usage: reactor monitoring.

Detection of $\ensuremath{\mathsf{CEvNS}}$

Energy of nuclear recoil from CEvNS is very low: $E_A = \frac{2E^2(1-cos\theta)}{2MA}$

The detection of this process is very challenging, also taking into account that often only part of the energy can be detected due to quenching.

- Powerful neutrino source in full coherency regime < 30 MeV.
- Low threshold and low background detector.
- Effective separation of signals from background.
- Big target mass and good efficiency.
- Stable performance and knowledge of systematical errors.

vGeN reactor site at Udomlya, Russia

22.03.2023

WIN2023, A.Lubashevskiy

Comparison of the reactor sites

Experiment	Location	Neutrino flux v/(cm² s)	Overburden [m w. e.]
vGeN	KNPP, Russia	~(3.6-4.4)×10 ¹³	~50
CONUS	Brokdorf, Germany	2.4×10 ¹³	10-45
TEXONO	Kuo-Sheng NPP, Taiwan	6.4×10 ¹²	~30
RED-100	KNPP, Russia	1.7×10 ¹³	>50
CONNIE	Angra 2, Brazil	7.8×10 ¹²	0
RICOCHET	ILL, France	2×10 ¹²	~15
MINER	Texas A&M, USA	2×10 ¹²	~5
NUCLEUS	Chooz, France	2×10 ¹²	~3
NCC-1701	Dresden-II, USA	4.8×10 ¹³	-
NEON	Hanbit 6, Korea	7.1×10 ¹²	~8
SBS	Laguna Verde, Mexico	3×10 ¹² ?	?

Reactor unit #3 @ KNPP

Typical regime: ON: 18 months OFF: 2 months

- Spectrometer **vGeN** is located under the reactor • unit #3 (3.1 GW_{th} – thermal power)
- Distance to the center of the reactor core is about 11 m, this gives > $4 \cdot 10^{13} v/(sec \cdot cm^2)$
- Overburden ~ **50 m w.e.** good shielding against cosmic radiation due to reactor's surrounding
- Good support from KNPP administration

vGeN @ KNPP – lifting mechanism

HPGe detector for ν GeN

To detect signals from neutrino scattering we use a specially produced by CANBERRA (Mirion, Lingosheim) low-threshold, low-background HPGe detectors. The detectors are chilled by electric and nitrogen types of cooling. At the moment, only one detector with a mass of 1.4 kg and e-cooling is used for the detection at KNPP.

Current scheme of vGeN shielding

Photo from installation at KNPP in 11.2019

Control of experimental conditions

- The stable measurement conditions are very important, because instabilities can change amplification and noise level.
- Cosmogenic activation products slowly decay in time and have to be taken into account during analysis.
- ✓ Air temperature condition in the experimental hall is stabilized by three air-conditioners.
- Temperature and humidity are constantly monitored by two sensors.
- Neutron background outside shielding (fast and thermal) is measured by special low background He3 counter and NAIL detector.

0.2

0.4

0.6

0.8

1.2

energy, keV (6 us shaping)

1.4

Noise cuts

- Different shaping times of preamplifiers are used to suppress the noise with the help of graphical cuts.
- Time cuts allow to suppress signals generated by reset of the preamplifier and other artificial signals.
- Even at 200 eV efficiency is > 40% after applying cuts

Efficiency measured with pulse generator

Calibration at low energies

Measurements with pulse generator

WIN2023, A.Lubashevskiv

Muon veto & time cuts

- Coincidences with muon veto allow to suppress background connected with muons
- Efficiency of all cuts together with muon veto determined by 10.37 keV line is 85.3(19)%

Thermal power of reactor unit #3

Thermal power of reactor unit #3, upper position

Stability, count rate 2-8 keV

22.03.2023

New data 2023, upper position

Sensitivity studies

Taking into account OFF spectrum (55 kgd) and Azimov data sets (generated spectra contains CEvNS signals + OFF, taken statistic equivalent to current real one – 217 kgd), we created a predictions for sensitivity for CEvNS.

Conclusion

- Measurements with the νGeN spectrometer at Kalinin Nuclear Power Plant are ongoing.
- Good performance and stability were observed during measurements. No significant difference between regimes with reactor ON and OFF due to CEvNS has been observed so far.
- Lifting mechanism is in operation, and since 09/2022 we perform data taking at reduced distance to the reactor core (11.04 m from the center of reactor core).
- More than 1200 kgd of data has been accumulated so far.
- The optimization of data taking is performed as well. New results in the upper position with more statistics are expected soon.

Backup slides

J. Colaresi, J. I. Collar,* T. W. Hossbach, C. M. Lewis, and K. M. Yocum, «Measurement of Coherent Elastic Neutrino-Nucleus Scattering from Reactor Antineutrinos», PHYSICAL REVIEW LETTERS 129, 211802 (2022)

- Claimed about strong preference ($p < 1.2 \cdot 10^{-3}$) for the presence of CEvNS.
- Similar to nuGeN antineutrino flux from reactor (4.8 10¹³ v/cm2/sec)
- Sideway location gives almost no overburden (cosmogenic background).
- Almost no shielding against fast neutrons.
- Different shielding during reactor ON and OFF
- Big difference in background levels during reactor ON and OFF
- Moderate energy resolution > 160 eV (FWHM) (in nuGeN 101.6(5) eV)

Signals from detector

- Detectors are equipped with reset preamplifier.
- There is a special inhibit signal that indicates the time when the reset happens.
- The signals are shaped with amplifiers and processed with a real-time ADC.

Simplified scheme of measurements

22.03.2023

27

WIN2023, A.Lubashevskiy

High energy part of the spectrum

Measurements of high energy region with nuGeN, 20.21 days

