

## Flavour and Precision Physics



Hang Yin Central China Normal University

Weak interaction and Neutrino Conference

Zhuhai, China 07/03/2023

### Outlines

- Introduction
- O Selected topics:
  - Anomalous
  - Precision
- **O** Summary and prospects



#### Created by the Bing 'Image Creator'

### Selected topics (bias):

More talks in the Flavour and Precision physics sessions, also in two highlight talks

• Recent measurements of CP violation

Yinghui Guan

• Lepton Favor Universality experimental highlights Liang Sun

#### More LHCb results are selected

## Torwarding to the new physics



Created by the Bing 'Image Creator'

Created by the Bing 'Image Creator'

## Flavor physics

### **©** Fundamental questions :

- Matter-antiMatter asymmetry in the Universe
- Any physics beyond the Standard model (BSM)



### O Precision study of flavour and CP symmetry breaking can probe BSM physics at energy scale inaccessible directly at colliders

- Looking for new sources of CP violation
- Precision flavour measurements to test the Standard Model(SM)
- Looking for new phenomena in rare or forbidden decays
  - Flavour changing neutral current
  - Lepton flavour universality violation
  - Lepton flavour number violation



## Flavour: lepton and quark







#### Flavour and Precision Physics, Hang Yin

## Flavour changings are see in both lepton and quark sectors

#### However,

- In tree level, neutral lepton only
- In quark sector, two transitions
  - Charge Current:
    - $b \rightarrow c l^- \nu$ , tree level
  - Neutral current (FCNC):
    - $b \rightarrow s$ , loop level



5

## Flavour physics is a key-tool

**CP violation and FCNC:** sensitive probes of short distance physics

• Probed scales:  $\gg 1$  TeV, depending on  $C_{NP}$ 

Helium Bad

Many tests limited by statistics not by systematics nor theory

Scintillato

Soark Chambe

Scintillator

 $A(\psi_i \to \psi_j + X) = A_0 \left( \frac{C_{SM}}{v^2} + \frac{C_{NP}}{\Lambda_{NP}^2} \right)$ , where  $\Lambda_{NP}^2 (C_{NP})$  is NP scale (coupling)

### • **1964:** *CP* violation in the decay of Kaon meson

• Observation of  $K_L \rightarrow \pi \pi$ 

PLAN VIEW

Collimato



### $\Rightarrow$ Three generations

Flavour and Precision Physics, Hang Yin

Cerenkow

6

### Indirect search

# β decay of the neutron: Phenomena taking place at ~ 1 GeV reveals physics at the 100 GeV scale



## GIM mechanism and charm quark

Cabibbo angle theory explained the hadronic decay of kaon, and many other experimental results at that time

• However, for the *K*<sup>0</sup> decays:

•  $\mathcal{B}(K^+ \to \mu^+ \nu_{\mu}) = (63.56 \pm 0.11)\%$ 

Not observed yet, at that time



## GIM mechanism and charm quark

I970: Led Glashow, Illiopoulos and Maiani to postulate existence of an extra quark (4th quark, charm quark)
PRD 2 (1970) 1285-1292

Before discovery of charm quark in 1974



Same final state to sum ampliutdes  $|M|^2 = |M_1 + M_2|^2 \approx 0$ Cancellation not exact because  $m_u \neq m_c$ 

Flavour and Precision Physics, Hang Yin

### **CKM** matrix

Extend ideas to three quark flavours: Cabibbo, Kobayashi, Maskawa  $\bigcirc$ 



#### Weak eigenstates

**Mass eigenstates** 

#### Prog. of Theor. Phys., 49 (1973) 652-657

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tt} \end{pmatrix}$ 

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

#### **CP**-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)





Makoto Kobavashi To Prize share: 1/4

| The Nobel Foundation Photo: L |
|-------------------------------|
| ontan                         |
| oshihide Maskawa              |
| ize share: 1/4                |



### **Timeline:**

Sep. 1972: predict 3 generations Nov. 1974: discovery of  $J/\Psi$  (*c* quark) July. 1977: discovery of  $\Upsilon$  (*b* quark) Fed. 1995: discovery of top quark

#### The Nobel Prize in Physics 2008





### CKM: wolfgenstein parameterization

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - (i\eta)) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - (i\eta)) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
  

$$I = \begin{pmatrix} \sigma_{r_{d}} & \sigma$$

Flavour and Precision Physics, Hang Yin

#### Flavour and Precision Physics, Hang Yin

arXiv: 1910.11775

CERN-ESU-004

10 January 2020







## What do we have?

More heavy flavour results from LHCb can be found in Kechen Li's parallel talk



14

Flavour and Precision Physics, Hang Yin

### Facilities

LHCb • ATLAS/CMS

**Belle-II**  $\bigcirc$ 

O BES-III

○ g-2, COMET, mu2e



## The LHCb experiment JINST 3 (2008) 508005



Int. J. Mode. Phys. A30 (2015) 1530022

### O The LHCb detector is single-arm forward spectrometer

• Designed for the heavy flavour physics, with  $2 < \eta < 5$ 







## The ATLAS and CMS experiments







JINST 3 (2008) S08003

JINST 3 (2008) S08004

Covering  $\sim 4\pi$  solid angle

No hadron identification

<figure>

44m

General purpose detector, *B* phyiscs focusing on  $\mu^+\mu^-X$  final state

#### 7/3/2023

## Belle-II experiment



### • SuperKEKB accelerator: 7 GeV $e^-$ + 4 GeV $e^+$



**Flavour and Precision Physics, Hang Yin** 

### **Belle-II** experiment



### $\odot$ SuperKEKB accelerator: 7 GeV $e^-$ + 4 GeV $e^+$



### **BES-III** experiment



### C Electron-positron collider: center-of-mass energy of ranging between 2 to 5 GeV

• Charm, charmonium, light hadron,  $\tau$  lepton, QCD ...



## The mu2e experiment



### Search for coherent, neutrinoless conversion of muon into electron in a muonic atom (Fermilab)



## The COMET experiment



### **COherent Muon to Electron Transition**

### ○ Search for $\mu^- + N \rightarrow e^- + N$ (J-PARC)



| , 8 GeV | Phase I          |                          |  |
|---------|------------------|--------------------------|--|
| า       | Beam power       | 3.2 kW                   |  |
|         | Energy           | $8  {\rm GeV}$           |  |
|         | Average current  | $0.4\;\mu A$             |  |
|         | Beam emittance   | 10 $\pi$ mm $\cdot$ mrad |  |
|         | Proton per bunch | $< 10^{10}$              |  |
|         | Extinction       | $10^{-9}$                |  |
|         | Bunch spacing    | $1.17 \ \mu { m sec}$    |  |
|         | Bunch length     | 100 ns                   |  |

PTEP 2020 (2020) 3, 033C01

### Selected topics: anomalies



## Lepton Flavour Universality (LFU)

- In SM, EW couplings to each lepton generation are identical (except Yukawa)
- However, New Physics (NP) could contribute to these couplings (particularly 3<sup>rd</sup> generation of leptons)
- Ratio of branching fraction of different lepton species ideal for this LFU test  $R(H_c) = \frac{BF(H_b \to H_c l\nu)}{r}, \text{ where } l, l' = e, \mu, \tau$

$$R(H_c) = \frac{e}{BF(H_b \rightarrow H_c l' \nu)}, \text{ where } l, l' = e, \mu$$
  

$$H_c \text{ could be } D^{*+}, D^0, D^+, D_s^+, \Lambda_c^+, \cdots$$



## Hints of NP since 2012

**Babar Collaboration** 



#### 200 $D^0\ell$ 150 100 $|p_{\ell}^*|$ (GeV) [Events/(100 MeV) in insets] 00 $D^{*0}\ell$ $|\boldsymbol{p}_\ell^*|$ (GeV) $D^+\ell$ Events/(0.25 GeV<sup>2</sup>) $|\boldsymbol{p}_{\ell}^{*}|$ (GeV) 1.5 $|\boldsymbol{p}_{\ell}^*|$ (GeV) $m_{\rm miss}^2 ~({\rm GeV}^2)$ $\blacksquare \overline{B} \to D^{**}(\ell^-/\tau^-)\overline{\nu}$ $\blacksquare \overline{B} \rightarrow D\tau^- \overline{\nu}_{\tau}$ $\mathbb{Z} B \to D\ell^{-}$ $\square \overline{B} \to D^* \tau^- \overline{\nu}_{\tau} \quad \boxtimes \overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$ - Background

#### 1σ 2σ 0.4 3σ $\mathcal{R}(D^*)$ 4σ 5σ 0.3 $SM^{\neg}$ 0.2 0.4 0.6 $\mathcal{R}(D)$

7/3/2023

 $\bigcirc$ 

PRL 109, (2012) 101802

PRD 88, (2013) 072012

## New result from the LHCb

### • LHCb experiment update $R(D^{*-})$ measurement recently (13 TeV) • $\tau$ and $\mu$ channel



 $R(D^{*-}) = 0.247 \pm 0.015(stat.) \pm 0.015(syst.) \pm 0.012(ext)$ 

7/3/2023

Flavour and Precision Physics, Hang Yin

### Combination

### • With new results from the LHCb, world average becomes:







### Long standing 3 $\sigma$ deviation in the heavy flavour physics!

## Lepton Favour universality

### ○ Flavour changing neutral current: FCNC

- $b \rightarrow s$  transition
- Rare penguin decays, suppressed in the SM
- $\circ$  < 10<sup>-6</sup>, mediated via loops





## What we can measure?

### • Differential branching fraction: $(dB(B \rightarrow H(s)\mu^+\mu^-)/dq^2)$

Iarge theory uncertainties: hadronic form factor





## Angular measurements



## Improved LU measurement from LHCb

• Simultaneous analysis of  $R_K$  and  $R_{K^*}$ 

LHCb-Paper-2022-045, arXiv:2212.09153 LHCb-Paper-2022-046, arXiv:2212.09152

Electron mode:
 mis-ID background found

O Muon mode:

consistent with before

Still statistically dominated



## In agreement with SM

### $\bigcirc$ $R_K$ and $R_{K^*}$ consistent with 1

LHCb-Paper-2022-045, arXiv:2212.09153 LHCb-Paper-2022-046, arXiv:2212.09152



### Selected topics: precision



 $B_{d.s}^0 \rightarrow \mu^+ \mu^-$  search

### **O Golden modes in NP searches:**

- Flavour Changing Neutral current
   No tree diagram, only higher orders
   Helicity suppressed
- Possible new physics in the loops

### **O Precise SM prediction:**

• 
$$B(B_S^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$
  
•  $B(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$   
PRL 112 (2014) 101801  
JHEP 10 (2019) 232





 $\mu^+\mu^-$  search

### **O Golden modes in NP searches**



Mod. Phs. Lett. A 35 (2020) 2030017

 $B_{d.s}^0 \rightarrow \mu^+ \mu^-$  search

### O Golden modes in NP searches: precisely predicted in the SM



LHCb-CONF-2020-002

 $B_{d,s}^0 \rightarrow \mu^+ \mu^-$  status



## Unitarity triangle

• The unitarity triangle exploits the relation:

•  $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ 



7/3/2023

Flavour and Precision Physics, Hang Yin

## $\gamma$ direct measurement

 $\bigcirc B^{\pm} \rightarrow DK^{\pm}/\pi^{\pm}$  in binned  $D^{0} \rightarrow K\pi\pi\pi\pi$  phase space

- O Phase space regions with difference in sensitivity due to different strong phase
- $\odot$  One of the most precise single direct measurement of  $\gamma$



## $\gamma$ combination

For the strong phase of D meson, we need input from BESIII For example:  $\psi(3770) \rightarrow D\overline{D}$  [PRD 101 (2020) 112002]

### $\bigcirc$ Combining all LHCb results for $\gamma$

| B decay                               | D decay                               | Ref. | Dataset       | Status since   |
|---------------------------------------|---------------------------------------|------|---------------|----------------|
|                                       |                                       |      |               | Ref. [14]      |
| $B^{\pm} \rightarrow Dh^{\pm}$        | $D  ightarrow h^+ h^-$                | [29] | Run 1&2       | As before      |
| $B^{\pm} \rightarrow Dh^{\pm}$        | $D \to h^+ \pi^- \pi^+ \pi^-$         | [30] | Run 1         | As before      |
| $B^{\pm} \rightarrow Dh^{\pm}$        | $D \to K^\pm \pi^\mp \pi^+ \pi^-$     | [18] | Run 1&2       | $\mathbf{New}$ |
| $B^{\pm} \rightarrow Dh^{\pm}$        | $D \to h^+ h^- \pi^0$                 | [19] | Run 1&2       | Updated        |
| $B^{\pm} \rightarrow D h^{\pm}$       | $D  ightarrow K_{ m S}^0 h^+ h^-$     | [31] | Run 1&2       | As before      |
| $B^{\pm} \rightarrow Dh^{\pm}$        | $D 	o K^0_{ m S} K^{\pm} \pi^{\mp}$   | [32] | Run 1&2       | As before      |
| $B^{\pm} \rightarrow D^* h^{\pm}$     | $D  ightarrow h^+ h^-$                | [29] | Run 1&2       | As before      |
| $B^{\pm} \rightarrow DK^{*\pm}$       | $D \to h^+ h^-$                       | [33] | Run $1\&2(*)$ | As before      |
| $B^{\pm} \rightarrow DK^{*\pm}$       | $D \to h^+ \pi^- \pi^+ \pi^-$         | [33] | Run $1\&2(*)$ | As before      |
| $B^\pm \to D h^\pm \pi^+ \pi^-$       | $D  ightarrow h^+ h^-$                | [34] | Run 1         | As before      |
| $B^0  ightarrow DK^{*0}$              | $D  ightarrow h^+ h^-$                | [35] | Run $1\&2(*)$ | As before      |
| $B^0  ightarrow DK^{*0}$              | $D \to h^+ \pi^- \pi^+ \pi^-$         | [35] | Run $1\&2(*)$ | As before      |
| $B^0  ightarrow DK^{*0}$              | $D  ightarrow K_{ m S}^0 \pi^+ \pi^-$ | [36] | Run 1         | As before      |
| $B^0 \to D^{\mp} \pi^{\pm}$           | $D^+ \to K^- \pi^+ \pi^+$             | [37] | Run 1         | As before      |
| $B_s^0 \to D_s^{\mp} K^{\pm}$         | $D_s^+ \to h^+ h^- \pi^+$             | [38] | Run 1         | As before      |
| $B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$ | $D_s^+ \to h^+ h^- \pi^+$             | [39] | Run 1&2       | As before      |



Good agreement with CKM fitter Limited by statistics



## The future







## STFC (Super tau-charm factory)



- CME : 2-7 GeV
- Peaking  $\mathcal{L} : > 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- **Potential** to further improve the lumi and realize polarized beam
- Double storage ring : ~800 m , injection : ~ 300m
- BESIII-Like detector
- Cost 4.5B RMB

#### arXiv:2303.15790

From Gang Li's <u>talk</u> at Aug. 2022

Rich of Physics: unique for physics with c and  $\tau$  lepton









100 km double ring design (30 MW SR power, upgradeable to 50 MW)
 Switchable between Higgs/Z/W modes without hardware change
 New baseline for Linac (C-band, 2 GeV)



### FCC-ee

- O Similar design: longer timescale, higher design luminosity
- First  $e^+e^-$  collisions in the middle of 2040s
- Extremely interesting for EW physics, also b and *τ* physics

| c.m. energy      | lum./ IP                                  | int. lum./year (2 IPs)  | run time | power |
|------------------|-------------------------------------------|-------------------------|----------|-------|
| $[\mathrm{GeV}]$ | $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$ | $[\mathrm{ab^{-1}/yr}]$ | [yr]     | [MW]  |
| 91               | 200                                       | 48                      | 4        | 259   |
| 160              | 20                                        | 6                       | 1 - 2    | 277   |
| 240              | 7.5                                       | 1.7                     | 3        | 282   |
| 365              | 1.3                                       | 0.34                    | 5        | 354   |



## The journey of CLFV search ...

History of 
$$\mu \to e\gamma$$
,  $\mu N \to eN$ , and  $\mu \to 3e$ 



## Summary

- **Flavour physics plays key roles in the particle physics**
- **Still many anamolies in the flavour physics** 
  - $\circ b \rightarrow sll$  differential BR and angular measurements
  - LFU
  - g-2
  - ...
- <u>A precision flavour physics era ahead of us</u>
  - Belle II and LHCb upgrades will bring preciesion that not been achieved before
  - New colliders/facilities are coming: STCF, Fcc-ee
  - Lepton flavour experiments: g-2, COMET, mu2e





The Golden Age by Pietro da Cortona





## $B^0$ mixing to probe top mass



### $\mu + N \rightarrow e + N$ : experimental technique

- O Beam of low momentum muons
- Muons stopped in AI target
- Muons trapped in orbit around the nucleus
- Look for  $\mu^- N(A, Z) \rightarrow e^- N(A, Z)$  events: mono-energetic  $e^-$  with  $E \sim M_{\mu}$  produced
- Normalize to muon captures counting emitted muonic X-rays





Flavour and Precision Physics, Hang Yin

## A ratio measurement

O Advantages:

- Precision: large b-hardon production and lar
  - $\Rightarrow b \rightarrow c l \nu$  transitions: charge current, tree level, a f
- Uncertainties: hadronic form factor uncertai uncertainties are cancelled
  - SM prediction: 0.300 ± 0.008, from Lattice calcul Phys.Rev.D 92, 054410 (2015)]
  - → 0.254 ± 0.005

Challenges:

- Neutrinos: missing neutrinos in the final state, affects the resolution of observables @LHCb
- Large background: partially reconstructed background contamination
- Size of Simulation: large simulation samples needed for modelling signal and bkg



### Hints of NP since 2012

### O Belle Collaboration



Phys.Rev.Lett. 124 (2020) 16, 161803

### $\phi_s$ measurements

CP violation phase arising from interference between mixing and decay, precisely predicted

 $\bigcirc$  Golden channel exploited by LHCb, ATLAS, CMS:  $B_s^0 \rightarrow J/\psi \phi$ 

Statistically limited

• HFLAV combination:  $\phi_s = -0.041 \pm 0.025 \ rad$ 



Flavour and Precision Physics, Hang Yin

### measurements $\Phi_{\rm s}$

O The most precise measurement to date

•  $\phi_s = -0.039 \pm 0.022 \pm 0.006$  rad

Output of the set o

•  $\phi_s = -0.050 \pm 0.017$  rad (23% improvement)

•  $\phi_s^{c\bar{c}s} = -0.039 \pm 0.016$  rad (15% improvement)

Consistent with the prediction of global fits assuming SM

No evidence of CP violation



More details can be found in Peilian and Vukan's CERN seminar talk

LHCb-paper-2023-016, in preparation

Flavour and Precision Physics, Hang Yin

## $\gamma$ angle measurement

$$\gamma = \phi_3 = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$$

1. GLW (Gronau-London-Wyler) method:

 $D^{(*)}$  decay into CP eigenstates, eliminating further hadronic uncertainties from the  $D^{(*)}$  decays

#### 2. ADS (Atwood-Dunietz-Soni) method:

 $D^{(*)}$  decay with a pattern of Cabibbo dominance/suppression that counteracts the colour suppression/dominance of the B decay

3. GGSZ (Giri-Grossman-Soffer-Zupan) method:

Dalitz analysis of three body  $D^{(*)}$  decays, including a dependence on the amplitude mode for  $D^{(*)}$  decays

|      | Process                           | Constraint | Process                                            | Constraint                                          |
|------|-----------------------------------|------------|----------------------------------------------------|-----------------------------------------------------|
|      |                                   |            | $B \to D^{(*)} \ell \nu$                           | $ V_{cb} $ versus form factor $F^{B \to D^{(*)}}$   |
|      |                                   |            | $B \to X_c \ell \nu$                               | $ V_{cb} $ versus OPE                               |
|      |                                   |            | $B 	o \pi \ell \nu$                                | $ V_{ub} $ versus form factor $F^{B \to \pi}$       |
| Tree | $B \to D^{(*)} K^{(*)}$           | $\gamma$   | $B \to X_u \ell \nu$                               | $ V_{ub} $ versus OPE                               |
|      |                                   |            | $M \to \ell \nu$                                   | $ V_{UD} $ versus decay constant $f_M$              |
|      |                                   |            | $M \to N \ell \nu$                                 | $ V_{UD} $ versus form factor $F^{M \to N}$         |
|      |                                   |            |                                                    | or $M \to N$ amplitude                              |
|      | $B \to (c\bar{c})K^{(*)}$         | β          | $\epsilon_K \ (K\overline{K} \ { m mix})$          | $V_{ts}V_{td}^*$ and $V_{cs}V_{cd}^*$               |
|      |                                   |            |                                                    | versus bag parameter $B_K$                          |
| Loop | $B \to \pi\pi, \rho\pi, \rho\rho$ | lpha       | $\Delta m_d \ (B^0 \overline{B}{}^0 \ { m mix})$   | $ V_{tb}V_{td}^* $ versus bag parameter $B_{B^0}$   |
|      | $B_s^0  ightarrow J/\psi \phi$    | $\beta_s$  | $\Delta m_s \ (B^0_s \overline{B}^0_s \ { m mix})$ | $ V_{tb}V_{ts}^* $ versus bag parameter $B_{B_s^0}$ |

 $B_{d,s}^0 \rightarrow \mu^+ \mu^-$  status



## Charged lepton falvour violation (CLFV)

### ○ CLFV processes strongly suppressed in SM

Not forbidden due to neutrino oscillation

• rates 
$$\propto \frac{m_{\nu}^4}{m_W^4} < 10^{-50}$$
  
• enhanced in the new physics





 $\bigcirc \mu$  decays

 $\bullet \mu \to e\gamma, \mu \to eee, \mu + N \to e + N^{(\prime)}, \mu^- pp \to e^+ nn$ 

 $\odot \tau$  decays

$$\tau \to e\gamma, \tau \to eee$$

•  $\tau \rightarrow \mu \gamma$  can be highly enhanced in the NP model





### Effective mass scale



• Upper to 10<sup>4</sup> TeV

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \text{ h.c.}$$
$$+ \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left( \bar{u}_L \gamma^{\mu} u_L + \bar{d}_L \gamma^{\mu} d_L \right) + \text{ h.c.}.$$

