## Searches for new physics in the Higgs sector with the ATLAS detector



Lailin Xu(徐来林) University of Sci. & Tech. of China On behalf of the ATLAS Collaboration WIN2023

2023.7.3-8, Zhuhai



## Introduction

- The SM Higgs boson opens a new window for new physics beyond the SM
- Possible connections between Higgs and major open questions of particle physics and cosmology
  - The hierarchy problem
  - Matter and antimatter asymmetry
  - Dark matter

Salam, G.P., Wang, LT. & Zanderighi, G. <u>Nature **607**, 41–47 (2022)</u>



 Does the Higgs boson decay into pairs of quarks or leptons with distinct flavours (for example, H → μ<sup>+</sup> τ<sup>-</sup>)?

#### What is the origin of the early Universe inflation?

7/4/23

#### Outline

- Recent searches for new physics in the Higgs sector with full LHC Run2 data
  - Search for additional Higgs bosons ( $m_H \neq 125 \text{ GeV}$ )
  - Search invisible Higgs decays
  - Search for HH production

# Search for additional Higgs bosons $(m_H \neq 125 \text{ GeV})$

## Additional Higgs boson

- Why there should be only one  $(h_{125})$ ?
- Many extensions of the SM predict additional Higgs bosons
  - Electroweak singlets
  - Two-Higgs-Doublet-Models (2HDM)
  - Minimal Supersysmmetric Standard Model (MSSM)
  - Georgi-Machacek model (GM)

H (CP-even), A(CP-odd),  $H^{\pm}$ ,

Quintet $(H_5^{++}, H_5^{+}, H_5^{0}, H_5^{-}, H_5^{--})$ , triplet $(H_3^{+}, H_4^{0}, H_3^{-})$ , H

Н

#### Generic searches:

- New scalars
- New pseudo-scalars
  - Eg. Axions

#### Benchmark model searches:

- 2HDM
- GM

## Additional Higgs boson

| Searches                                                                          | Ref.                | Searches                                         | Ref.                |
|-----------------------------------------------------------------------------------|---------------------|--------------------------------------------------|---------------------|
| <b>Boosted</b> $a \rightarrow \gamma \gamma$<br>(10 GeV < $m_X < 70$ GeV)         | arXiv:2211.04172    | $t  ightarrow H^{\pm} b, H^{\pm}  ightarrow c b$ | arXiv:2302.11739    |
| <b>Low-mass resonance</b> $X \rightarrow \gamma \gamma$<br>(66 < $m_X$ < 110 GeV) | ATLAS-CONF-2023-035 | $H^{\pm\pm}  ightarrow l^{\pm}l^{\pm}$           | arXiv:2211.07505    |
| tta, $a  ightarrow \mu \mu$                                                       | arXiv:2304.14247    | $ttH/A \rightarrow tttt$                         | arXiv:2211.01136    |
| $X 	o Z\gamma$                                                                    | ATLAS-CONF-2023-030 | $A \rightarrow ZH \rightarrow lltt + vvbb$       | ATLAS-CONF-2023-034 |
| X  ightarrow WW                                                                   | ATLAS-CONF-2022-066 | FCNC $t \rightarrow qX, X \rightarrow bb$        | arXiv:2301.03902    |

Not able to cover all of them or in very detail

#### Boosted $a \rightarrow \gamma \gamma$

- Search for narrow resonances (X) in  $10 \text{ GeV} < m_X < 70 \text{ GeV}$ 
  - $p_T^{\gamma\gamma} > 50 \text{ GeV} \rightarrow$  motivated by the boosted signal and to reduce background
- Background shape parameterized with analytical functions
  - Background modelling uncertainties reduced with Gaussian Processes



Largest deviation observed at 19.4 GeV with **3.1** $\sigma$  of local significance (Global **1.5** $\sigma$ )



#### Boosted $a \rightarrow \gamma \gamma$

#### arXiv:2211.04172

#### Results

#### Limits interpreted into the KSVZ-ALP parameter space

Model-independent limits (fiducial cross-sections)



$$\frac{a}{4\pi f_a} \left[ \alpha_3 c_3 G^a \tilde{G}^a + \alpha_2 c_2 W^i \tilde{W}^i + \alpha_1 c_1 B \tilde{B} \right] + \frac{1}{2} m_a^2 a^2$$



Covers a longstanding gap in diphoton resonance searches

#### Low-mass resonance $X \rightarrow \gamma \gamma$

- Search for light scalar  $X \rightarrow \gamma \gamma$  with  $66 < m_X < 110 \text{ GeV}$ 
  - CMS sees a 2.9σ excess at 95 GeV CMS PAS HIG-20-002
- Model-independent search with 3 categories:
  - CC: two converted photons
  - **UU**: no conversion
  - UC: one converted photon
- Model-dependent search (to be compared with CMS):
  - Additional BDT used to separate the signal from background







#### Low-mass resonance $X \rightarrow \gamma \gamma$



#### $tta, a \rightarrow \mu\mu$

- Search for a light pseudoscalar produced with a top-quark pair,  $15 < m_a < 72 \text{ GeV}$
- Two signal processes:
  - **tta**,  $a \rightarrow \mu \mu$
  - $t \rightarrow H^+ b, H^+ \rightarrow W^+ a, a \rightarrow \mu \mu$ : 120 <  $m_{H^{\pm}}$  < 160 GeV
- Semileptonic *tt* decays with  $e\mu\mu$  and  $\mu\mu\mu$





Use dimuon mass  $m_{\mu\mu}$  to search for signals

*tta*,  $a \rightarrow \mu \mu$ 



 $-iy_tg_ta(\bar{t}\gamma_5 t)/\sqrt{2}$ 

#### Heavy resonances, $X \rightarrow Z\gamma$

ATLAS-CONF-2023-030

- Search for heavy narrow resonances in  $X \rightarrow Z\gamma, Z \rightarrow ee/\mu\mu$ , 220 GeV <  $m_X < 3.4$  TeV
  - Spin-0: ggF
  - Spin-2: ggF and  $qq \rightarrow X$



A dedicated electron identification is developed for boosted  $Z \rightarrow ee$ 

Background shape parameterized using analytical functions





#### 7/4/23

#### $ttH/A \rightarrow tttt$



#### $A \rightarrow ZH \rightarrow lltt + vvbb$

- In 2HDM,  $m_A > m_H$  is favored by electroweak baryogenesis and strong first-order phase transition
  - $A \rightarrow ZH$  decay dominates
- *lltt* channel: sensitive to  $m_H > 350 \text{ GeV}$ 
  - $3 \text{ lep}, \ge 4 \text{-jets}, 2 \text{ b-jets}$
  - Main bkg: *ttZ*
- *vvbb* channel: sensitive to  $m_H < 350 \text{ GeV}$ 
  - $E_T^{miss} > 150 \text{ GeV}, \ge 2 \text{ b-jets}$
  - Main bkg: *tt* and Z+heavy flavor



These channels have not been previously explored at the LHC



 $A \rightarrow ZH \rightarrow lltt + vvbb$ 

Exclusion limits in the  $m_A - m_H$  plane in both type-I and type-II 2HDM (only type-I shown here)

 $gg \rightarrow A \rightarrow ZH \rightarrow lltt$ 

 $gg \rightarrow A \rightarrow ZH \rightarrow vvbb$ 



#### $t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb$

- Search for a charged Higgs boson produced in top-quark decays,  $60 < m_{H^{\pm}} < 160 \text{ GeV}$
- Mass parametrized Neural Network discriminant



# 

Largest excess:  $3\sigma@m_{H^{\pm}} = 130$ GeV (Global significance: 2.5 $\sigma$ )

A factor 5 improvement compared to previous CMS search (JHEP11(2018)115) and with extended mass range

#### Compared with predictions from the 3HDM

#### arXiv:2211.07505

#### $H^{\pm\pm}, H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$

- Search for pair production of doubly charged Higgs bosons H<sup>±±</sup>, 300 < m<sub>H<sup>±±</sup></sub> < 1300 GeV</li>
   H<sup>±±</sup> → l<sup>±</sup>l<sup>±</sup>, l = e, μ, τ with electrons and muons in the final state
   Assuming the same Br of H<sup>±±</sup> → ee, eµ, µµ, eτ, µτ, ττ final states
  - Benchmark signal model: left-right symmetric type-II seesaw and Zee–Babu
- Signal regions:  $l^{\pm}l^{\pm}$ ,  $l^{\pm}l^{\pm}l^{\mp}$ ,  $l^{+}l^{+}l^{-}l^{-}$



 $m_{H^{\pm\pm}} < 1080 (900) \text{ GeV}$ excluded for the LRSM (Zee-Babu) model

Provides a first direct test of the Zee–Babu model  $(k^{++}k^{--})$  at the LHC



## Search invisible Higgs decays

## Invisible Higgs decay

- In the SM, Br(H $\rightarrow$ inv) = 0.1% ( $H \rightarrow ZZ^* \rightarrow 4v$ )
- Higgs portal is a benchmark Dark Matter model





## **Combination of invisible Higgs searches**



Phys. Lett. B 842 (2023) 137963

#### Higgs portal Dark Matter





## Search for HH production

## **DiHiggs production**

- Non-resonant hh:
  - Direct probe of the trilinear Higgs self-coupling  $\kappa_{\lambda}$
  - Main production processes: ggF and VBF

 $\sigma_{HH}^{GGF} = 31.05 \text{ fb} \pm 3\% (\text{PDF} + \alpha_S) \stackrel{+2.2\%}{_{-5\%}} (\text{scale}) \pm 2.6\% (m_t) @ 13 TeV$ 

 $\sigma_{HH}^{VBF} = 1.73 \text{ fb} \pm 2.1\% (\text{PDF} + \alpha_S) \stackrel{+0.03\%}{_{-0.04\%}} \text{(scale)} @ 13 \ TeV$ 

~2000 times smaller than that for the single Higgs production



## hh combination





## h + hh combination

Single-Higgs processes are indirectly sensitive to  $\kappa_{\lambda}$  via NLO EW corrections:



Linear correction  $O(\kappa_{\lambda})$ : both process and kinematics dependent



• Simplified template cross-section (STXS) results are parametrized as a function of  $(\kappa_{\lambda}, \kappa_m)$   $\kappa_m$ : the other couplings modifier  $(\kappa_V, \kappa_t, \kappa_b, \kappa_\tau)$ 

$$n_{i,f}^{\text{signal}}(\kappa_{\lambda},\kappa_{m}) \propto \mu_{i}(\kappa_{\lambda},\kappa_{m}) \times \mu_{f}(\kappa_{\lambda},\kappa_{m}) \times \sigma_{\text{SM},i} \times \text{BR}_{\text{SM},f} \times (\epsilon \times A)_{if}$$
production
decay

## h + hh combination



Provides the most stringent constraints on Higgs boson self-interactions to date

| Combination assumption                                                                          | Obs. 95% CL                    | Exp. 95% CL                     | Obs. value $^{+1\sigma}_{-1\sigma}$    |
|-------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|----------------------------------------|
| HH combination                                                                                  | $-0.6 < \kappa_\lambda < 6.6$  | $-2.1 < \kappa_\lambda < 7.8$   | $\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$ |
| Single- <i>H</i> combination                                                                    | $-4.0 < \kappa_\lambda < 10.3$ | $-5.2 < \kappa_\lambda < 11.5$  | $\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$ |
| HH+H combination                                                                                | $-0.4 < \kappa_\lambda < 6.3$  | $-1.9 < \kappa_\lambda < 7.6$   | $\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$ |
| <i>HH</i> + <i>H</i> combination, $\kappa_t$ floating                                           | $-0.4 < \kappa_\lambda < 6.3$  | $-1.9 < \kappa_\lambda < 7.6$   | $\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$ |
| <i>HH</i> + <i>H</i> combination, $\kappa_t$ , $\kappa_V$ , $\kappa_b$ , $\kappa_\tau$ floating | $-1.4 < \kappa_\lambda < 6.1$  | $-2.2 < \kappa_{\lambda} < 7.7$ | $\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$ |



Great advantage of combination

## Summary

- Diverse program in the Higgs sector to probe BSM physics
  - Direct searches for Higgs-like new scalar or pseudo-scalars
    - Produced in pp collisions or exotic Higgs decays
  - Charged or doubly charged scalars
  - Invisible Higgs decays
  - DiHiggs production: resonance and non-resonance
- Covers many event topologies and BSM models
- No significant deviation from the SM yet, but Run3 data taking is on-going ... and the HL-LHC ...





#### Heavy resonances, $X \rightarrow WW$

ATLAS-CONF-2022-066

• Search for heavy narrow resonances in  $X \rightarrow WW \rightarrow ev\mu v$ 



Results are interpreted in 5 signal models

#### **FCNC** $t \rightarrow qX, X \rightarrow bb$

#### arXiv:2301.03902

q = u/c

 $W^{\cdot}$ 

g

Lee-

- lepton+jets  $tt \rightarrow (qX)(b\ell\nu)$  with scalar  $X \rightarrow bb$  and q = u/c
  - Light scalar  $m_X < m_t$  (uncovered search at the LHC)
- A mass-parameterized neural network to separate S/B
- Main bkg normalization from control regions



#### Axions



new vector-like quarks charged under PQ

7/4/23

#### 2HDM

• Two complex scalar SU(2) doublets

P. M. Ferreira et al. arXiv:1106.0034

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left( \Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left( \Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left( \Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[ \left( \Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left( \Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right],$$

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ (v_a + \rho_a + i\eta_a) / \sqrt{2} \end{pmatrix}, \quad a = 1, 2$$

$$\langle \Phi_1 \rangle_0 = \begin{pmatrix} 0 \\ \frac{v_1}{\sqrt{2}} \end{pmatrix}, \quad \langle \Phi_2 \rangle_0 = \begin{pmatrix} 0 \\ \frac{v_2}{\sqrt{2}} \end{pmatrix}$$

$$\tan\beta \equiv \frac{v_2}{v_1}$$

|              | Type I                 | Type II                 | Lepton-specific        | Flipped                 |
|--------------|------------------------|-------------------------|------------------------|-------------------------|
| $\xi_h^u$    | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$  | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$  |
| $\xi^d_h$    | $\cos lpha / \sin eta$ | $-\sin lpha / \cos eta$ | $\cos lpha / \sin eta$ | $-\sin lpha / \cos eta$ |
| $\xi_h^\ell$ | $\cos lpha / \sin eta$ | $-\sinlpha/\coseta$     | $-\sinlpha/\coseta$    | $\cos lpha / \sin eta$  |
| $\xi^u_H$    | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$  | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$  |
| $\xi^d_H$    | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$  | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$  |
| $\xi^\ell_H$ | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$  | $\cos lpha / \cos eta$ | $\sin lpha / \sin eta$  |
| $\xi^u_A$    | $\coteta$              | $\coteta$               | $\coteta$              | $\coteta$               |
| $\xi^d_A$    | $-\coteta$             | aneta                   | $-\coteta$             | aneta                   |
| $\xi^\ell_A$ | $-\coteta$             | aneta                   | aneta                  | $-\coteta$              |

## 2HDM+a

- A simplified Dark Matter model for spin-0 mediators based on 2HDM
  - Gauge invariant and renormalisable
  - Pseudoscalar mediators: advantage of avoiding constraints from DM direct detection experiments
  - Recommended by the LHC DM WG (arXiv:1810.09420)
- Model parameters
  - 14 in total,
    - 2HDM parameters:  $m_h$ ,  $m_H$ ,  $m_{H^{\pm}}$ ,  $m_A$ ,  $\lambda_3$ , VEV,  $\tan\beta$ ,  $\cos(\beta \alpha)$
    - Additional parameters on the pseudoscalar:
      - $m_a$ : mass of the pseudoscalar
      - Quartic couplings with a:  $\lambda P1$ ,  $\lambda P2$
      - $\theta$ : mixing between a and A
    - Additional parameters on DM:  $m_{\chi}$ ,  $y_{\chi}$  (the coupling between a and the DM)
  - reduced to 5 with some assumptions
    - $m_a, m_A, m_\chi, \tan\beta, \sin\theta$



U. Haisch et al JHEP05(2017)138

#### 3HDM

• X, Y, and Z are coupling functions of four parameters of a unitary matrix U

$$\begin{pmatrix} G^+ \\ H_2^+ \\ H_3^+ \end{pmatrix} = U \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \\ \phi_3^+ \end{pmatrix} \qquad \qquad X = \frac{U_{d2}^\dagger}{U_{d1}^\dagger}, \qquad Y = -\frac{U_{u2}^\dagger}{U_{u1}^\dagger}, \qquad Z = \frac{U_{\ell2}^\dagger}{U_{\ell1}^\dagger}$$

The values of d, u, and I in these matrix elements depend on which of the five distinct 3HDMs is under consideration

|                        | 11     | d      | P      |
|------------------------|--------|--------|--------|
| 911DM (Trans I)        | 0<br>0 | a<br>0 | 2<br>0 |
| 3HDM (Type I)          | Z      | Z      | Z      |
| 3HDM (Type II)         |        | 1      | 1      |
| 3HDM (Lepton-specific) |        | 2      | 1      |
| 3HDM (Flipped)         |        | 1      | 2      |
| 3HDM (Democratic)      |        | 1      | 3      |

A.G. Akeroyd, Stefano Moretti, Muyuan Song, arXiv:1810.05403

#### Summary plots: generic (narrow width) neutral scalars

#### ATL-PHYS-PUB-2023-007



#### Summary plots: diboson resonances

<u>ATL-PHYS-PUB-2023-007</u>



Excluded mass range [TeV]

#### Summary plots: hMSSM and 2HDM ATL-PHYS-PUB-2022-043



## Summary plots: Georgi-Machacek



#### Summary plots: $X \rightarrow hh$

#### ATL-PHYS-PUB-2021-031



#### Boosted $a \rightarrow \gamma \gamma$

- Shape parameterized with analytical functions
  - Background modelling uncertainties reduced with Gaussian Processes



#### Boosted $a \rightarrow \gamma \gamma$



#### Low-mass resonance $X \rightarrow \gamma \gamma$

A diphoton BDT is used to discriminate between diphoton events from Higgs boson decays and those from the diphoton continuum CMS PAS HIG-20-002



#### Low-mass resonance $X \rightarrow \gamma \gamma$

- Background-only fits to data
  - Background modelled with analytical functions
  - Modelling systematics reduced after smoothing with a Gaussian Process regression



ATLAS-CONF-2023-035

#### Heavy resonances, $X \rightarrow WW$

ATLAS-CONF-2022-066

- Results are interpreted in 5 signal models
  - a Higgs-like narrow width scalar
  - a Higgs boson in the Georgi–Machacek model
  - a radion particle arising in the bulk Randall-Sundrum model
  - a spin-1 heavy vector triplet







 $tta, a \rightarrow \mu\mu$ 

arXiv:2304.14247

• 2HDM+a Results



Expected and observed lower limits on  $tan\beta$ 

 $t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb$ 



## $H^{\pm\pm}, H^{\pm\pm} \to l^\pm l^\pm$

#### • Results

Assuming the same branching ratio of  $H^{\pm\pm} \rightarrow ee, e\mu, \mu\mu, e\tau, \mu\tau, \tau\tau$  final states



Sensitivity driven by the 4l channel

#### $A \rightarrow ZH \rightarrow lltt + vvbb$

$$gg \to A \to ZH \to lltt$$

 $\Delta m = m_A^{cand} - m_H^{cand} \cong m_A - m_H$ 

 $gg \rightarrow A \rightarrow ZH \rightarrow vvbb$ 



## $X \rightarrow hh, hh \rightarrow bb\tau\tau$ • $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$ di-tau final states + 2-b jets • pDNN to separate S/B





 $X \rightarrow hh, hh \rightarrow bb\tau\tau$ 

