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1 Introduction

The exploration of underlying structures of hadrons has always been one of the most impor-
tant frontiers in particle and nuclear physics. The one-dimensional and three-dimensional
light-front wave functions (LFWFs) are important physical quantities describing the distri-
butions of constituents’ momentum in the hadron, and reflect the non-perturbative internal
structure of hadrons [1–3]. As for a light Nambu-Goldstone boson, the LFWFs also help us
to understand the chiral symmetry breaking [4–7].

It was firstly noticed that in an exclusive process [1, 2] the non-perturbative LFWFs
for a given Fock state are required. As an inevitable input, LFWFs also play an important
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role in theoretical analyses of B meson weak decays [8–12], which are of great values for
the test of the standard model (SM) and the search for new physics beyond the SM. The
unprecedented high precision of measurements at the current and forthcoming experimental
facilities strongly request the improvement of the accuracy of these non-perturbative physical
quantities from quantum chromodynamics (QCD).

In 1970s, the formation of one-dimensional hadronic wave function, namely, light-cone
distribution amplitudes (LCDAs) was established in the large momentum limit under light-
front quantization [1]. Results for a few lowest moments of the LCDAs were firstly obtained
from QCD sum rules [13, 14], and since then many progresses have been made in extracting
the moments of LCDAs in the past decades. Despite of these progresses, a complete
knowledge of meson wave functions from the first principle is not well-established yet.

An obvious difficulty in calculating LCDAs lies in the fact that it is inherently non-
perturbative and needs to be treated by methods such as lattice QCD (LQCD). However,
LCDAs belong to light-cone correlations of quark/gluon field operators, and thus contain
explicit time dependence, which cannot be directly calculated by lattice field theory defined
in the Euclidean spacetime. In this respect, only the moments of LCDAs, namely matrix
elements of the local operators, can be performed in the traditional LQCD approach [15–21].

A remarkable approach to circumvent the above problem is proposed in refs. [22, 23],
which is now systematically formulated as large momentum effective theory (LaMET). In
LaMET, one can construct the directly computable hadron matrix elements with non-local
operators, named as quasi-distributions, on the lattice. Through a perturbative matching,
the corresponding LCDAs can be accessed [22–25]. Many inspiring results on LCDAs were
reported in recent years, and reviews of recent developments can be found in refs. [24, 25].

Compared with LCDAs and parton distribution functions (PDFs), transverse-
momentum-dependent wave functions (TMDWFs) and TMD parton distribution functions
(TMDPDFs) provide more versatile information on the internal three-dimensional structure
of hadrons, which are also relevant for observables with transverse momentum dependent
(TMD) distributions of final-state particles in high-energy experiments. For instance,
TMDWFs have been applied to calculate various transition form factors such as the pion
electromagnetic form factor [26, 27], the proton form factors [28–31] and exclusive B de-
cays [8, 32]. Therefore, it is highly prerequisite to further investigate the three-dimensional
LFWFs from the first-principle QCD.

A very important progress in LaMET is that TMD distributions can be accessible
through the Euclidean equal-time correlations [33–37]. In ref. [35], it has been demonstrated
that the form factor of a bi-local four-quark operator, calculable on the lattice, can be
factorized into TMDWFs, a universal soft factor (function) and the matching kernel through
QCD factorization at large momentum transfer. A combined analysis of quasi-TMDWFs
on lattice allows a direct extraction of the universal soft function and TMDWFs. Based
on these proposals, Lattice determinations of the rapidity evolution anomalous dimension,
namely Collins-Soper (CS) kernel [38], can be found in refs. [39–44].

It is anticipated that in the large momentum limit, the form factor can be expressed
as a convolution of TMDWFs, soft functions and a hard kernel. In this work, we aim to
present a complete one-loop analysis of these quantities and provide the necessary details
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to the proposal in refs. [35, 37]. We use the expansion by regions and provide a proof of
the TMD factorization for the form factor. In the explicit calculation factor, we adopt
a modern technique based on the integration by part (IBP). With these results, we will
demonstrate the cancellation of the infrared divergences, and explicitly validate the TMD
factorization. Finally, we extract the hard kernels for the form factor and quasi-TMDWFs
through the factorization, which will be useful for a precision determination of TMDWFs
and soft functions. We also make use of the lattice data from Lattice Parton Collaboration
on quasi-TMDWFs [44] and show that the perturbative corrections to soft functions depend
on the Lorentz structures, and the magnitude can reach the order (10− 30)%. The results
are found to be less sensitive to the transverse separation, which may imply a factorized form
for the quasi-TMDWFs. As a comparison, we also give a phenomenological parametrization
which contains explicit dependence on the transverse separation.

The rest of this work is organized as follows. In section 2 we will briefly introduce
the concept of TMDWFs. In section 3, the one-loop perturbative results for TMDWFs,
soft functions, form factors and Wilson loops will be presented in order. To regularize the
rapidity divergence in TMDWFs and soft function, the delta regulator will be used in the
calculation. Based on these results, we will explicitly validate the TMD factorization of four
quark form factors and extract the short-distance hard kernel at one-loop level. In section 4,
the one-loop perturbative results for quasi-TMDWFs will be presented. In section 5, we use
the hard kernel and calculate the effects to extract the soft functions. We conclude this
work in section 6. In the appendix, we collect some details in the calculation.

2 TMD wave functions

In this section, we will follow the spirit of ref. [37] and give a self-contained description of
TMDWFs.

An intuitive identification of LFWFs is the light front correlation functions between
hadron state and QCD vacuum, in which light-like gauge links extending to infinities are
required to maintain the gauge invariance. This allows the identification of LF divergences
as rapidity divergences, known in the literature of TMD physics.

In high energy limit, light quarks and gluons inside a hadron move on the lightcone,
and are generally named as partons. In parton physics, light-front quantization (LFQ) is
a useful formalism to handle the hadron states. It provides a Hamiltonian description of
QCD similar with the diagonalized Hamiltonian in non-relativistic quantum mechanics as

P̂−|Ψn〉 = M2
n

2P+ |Ψn〉 , (2.1)

where |Ψn〉 denotes a QCD bound state [3], and P+ = (P 0 + P z)/
√

2. The wave functions
obtained in this picture can in principle be used to calculate all partonic densities and
correlations functions.

In the infinity momentum frame (IMF), making an IR cut-off on the longitudinal
momentum scale k+ = ε and taking all physics below it into renormalization constants, one
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can get an effective Hilbert space and obtain an effective LF theory with trivial vacuum,

ai|0〉 = 0 . (2.2)

Here |0〉 is the vacuum of LFQ, and ai denotes the annihilation operator of all kinds of
possible partons. Therefore, in the LF gauge A+ = 0 the hadron can be expanded in terms
of the superposition of all kinds of possible Fock states [3],

|P 〉 =
∞∑
n=1

∫
dΓnψn(xi, ~ki⊥)

∏
a†i (xi,~ki⊥)|0〉, (2.3)

where a†i is the creation operator of partons on the light-front, and the phase-space integral
takes a light-core decomposition dΓn = ∏ dk+d2k⊥

2k+(2π)3 . The ψn(xi,~ki⊥) is the LFWF, where
xi denotes the set of momentum fractions of each parton, and ki⊥ is the corresponding
transverse momentum. The summation over index n sums all possible partons of hadron
state, and the multiplication over index i multiplies all partons which that in the state.

With the truncation k+ ≥ ε, we can write the above expansion in form of invariant
matrix elements,

ψn(xi, ~ki⊥) = 〈0|
∏

ai(xi, ~ki⊥)|P 〉 . (2.4)

With the inclusion of gauge-invariance and regularizations, this invariant matrix element
will become the correlator matrix elements.

To get the correlations, we define the hardon momentum Pµ = (P z, 0, 0, P z). The
light-cone unit vector nµ = (1, 0, 0,−1)/

√
2 is anti-collinear with the hardon momentum,

and n̄µ = (1, 0, 0, 1)/
√

2 is the collinear light-cone unit vector. The covariant derivative is
Dµ = ∂µ − igAµ.

For a generic notation φi denotes all kinds of partons including the quark fields ψ and
gluon fields Aµ, with the index ‘i’ to label the field. We introduce a gauge-invariant field Φi

which contains gauge-link along the light-cone direction n, pointing to positive or negative
infinity as shown in figure 1:

Φ±i (ξ) = W±n (ξ)φ(ξ) , (2.5)

with the light-like Wilson line W±n (ξ)

W±n (ξ) = Peig
∫ ±∞

0 dsn·A(ξ+sn) , (2.6)

where P is a path order. Then the generic naive three-dimensional LFWFs, namely
TMDWFs, are written as

ψ±N (xi,~bi⊥, µ) =
∫ ( N∏

i=1
dλie

iλixi

)
× eiλ0x0

× 〈0|PN
(
N∏
i=1

Φ±i (λin+~bi⊥)
)
× Φ±0 (λ0n+~b0⊥)|P 〉. (2.7)
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In the above∑N
k=0 xk = 1,∑N

k=0 λk = 0, and each xi≥1 are longitudinal momentum fractions
carried by partons satisfying 0 < xk < 1. Likewise, when P has no transverse component,
the transverse coordinate ~b⊥ can be shifted by an overall constant without any effect.

The ultraviolet and infrared divergences from these amplitudes can be regulated in
dimensional regularization (DR) with modified minimal subtraction (MS)-scheme. However,
in TMDWFs, there is a new type of divergence from light-like gauge-links extending to
infinities, which is called rapidity divergence. It arises from the collinear gluons radiation
with the momentum fraction approaching zero but cannot be regulated by dimensional
regularization. There are multiple methods to regulate the rapidity divergence, and an
option is the so-called δ regulator [45, 46]. In this scheme, the gauge-link is modified as [37]

W±n (ξ)→W±n (ξ)|δ−

= Pexp
[
ig

∫ ±∞
0

dsn ·A(ξ + sn)e−
δ−
2 |s|

]
, (2.8)

where δ− is a positive quantity to characterize the rapidity divergence. It breaks the
gauge-invariance, but the breaking effects approach zero when δ− → 0. The regularization
for the other light-cone direction is similar with the regulator δ+. Then the TMDWFs are
written as

ψ±N (xi,~bi⊥, µ, δ−) =
∫ N∏

i=1
dλie

iλixi〈0|PN
N∏
i=1

Φ±i (λin+~bi⊥; δ−)|P 〉 , (2.9)

where the fields Φi are now defined as

Φ±i (ξ; δ−) = W±n (ξ)|δ−φ(ξ). (2.10)

As δ− → 0, TMDWFs and TMDPDFs diverge logarithmically, and the remanent finite
part also depends on the rapidity regulator. Therefore, the naive TMDWFs in eq. (2.9) can
not solely absorb all nonperturbative dynamics in the factorization for physical observables.
One must remove all divergences and rapidity regularization scheme dependencies in ψ, in a
way similar with removing UV divergences in physical quantities. These are accomplished
with the help of soft functions to be introduced in the next section.

For a pseudoscalar pion, the TMDWF is defined as

ψ±
(
x, b⊥, µ, δ

−) = 1
−ifπP+

∫
d(λP+)

2π e−i(x−
1
2 )P+λ

×
〈

0
∣∣∣Ψ±n (λn/2 + b) γ+γ5Ψ±n (−λn/2)

∣∣∣P〉 |δ− , (2.11)

where bµ = (0,~b⊥, 0) is the transverse space coordinate of the light-quark field, fπ is the
decay constant of pion. The factor 1

−ifπP+ comes from a normalization in terms of a
hadronic local operator matrix element,〈

0
∣∣∣ψ (0) γ+γ5ψ(0)

∣∣∣π〉 = −ifπP+. (2.12)

Ψ±n (ξ)|δ− is the field with a delta regulator δ−

Ψ±n (ξ)|δ− = Peig
∫ ±∞

0 dsn·A(ξ+sn)e−
δ−
2 |s|

ψ(ξ). (2.13)
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Figure 1. The Wilson line structure in the TMDWF, where the red line show the Wilson line in
the − direction, and the green line show the Wilson line in the + direction. All the Wilson lines
are in the n− ⊥ plane which show in blue, and the two end points of Wilson line are given by the
position (+,⊥).

3 TMDWFs in LaMET

At present, a most systematic approach to solve non-perturbative QCD is lattice field
theory [47]. Though quantities on the lightcone can not be straightforwardly implemented on
the lattice, LaMET offers a practical way to carry out the program of light-front quantization
(LFQ) [37]. In a certain sense, the quantization using tilted light-cone coordinates [48] is
similar to the spirit of LaMET [37]. Therefore, a practical implementation of LaMET can
be done through lattice calculations. While LFQ may provide an attractive physical picture
for the proton, the Euclidean equal-time formulation is more practical for carrying out the
calculations, and LaMET serves to bridge them.

The relation between partonic observables on the LF and the properties of a hadron
with a large momentum is not one to one. There are infinite possible Euclidean operators in
the large-momentum proton that generate the same LF observable. This is because the large-
momentum physical states have built-in collinear (as well as soft) parton modes, and upon
acting on a Euclidean operator they help to project out the leading LF physics. All operators
projecting out the same LF physics form a universality class. In the operator formulation
for parton physics such as soft collinear effctive theory (SCET) [49], one uses LF operators
to project out parton physics off the external states of any momentum, including P = 0.
Concepts such as the universality class have been explored in critical phenomena in condensed
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matter physics, where systems with different microscopic Hamiltonians can have the same
scaling properties near their critical points. Critical phenomena correspond to the infrared
fixed points of the scale transformation and are dominated by physics at long-distance scales.
In this case, parton physics arises from the infinite momentum limit, which is a ultraviolet
fixed point of the momentum renormalization equations (RGEs). It is the longitudinal
short-distance physics that is relevant at the fixed point. However, the short distance
here does not mean that everything is perturbative. The part that is nonperturbative
characterizes the partonic structure of the meson. The critical region P → ∞ acts as a
filter to select only the physics that is relevant, so universality classes emerge.

It has been pointed out that the soft function can be obtained from a form factor of a
pseudoscalar light-meson state [35]:

F (b⊥, P1, P2, µ) =

〈
P2
∣∣∣(ψ̄aΓψb) (b)

(
ψ̄cΓ′ψd

)
(0)
∣∣∣P1

〉
f2
πP1 · P2

, (3.1)

where ψa,b,c,d are light quark fields of different flavors. The factor 1
f2
πP1·P2

comes from the
normalization of two local hadronic operator matrix elements:〈

0
∣∣∣ψ (0) γµγ5ψ(0)

∣∣∣P1
〉

= −ifπPµ1 , (3.2)〈
P2
∣∣∣ψ (0) γµγ5ψ(0)

∣∣∣ 0〉 = ifπP2µ, (3.3)

where Pµ1 = (P z, 0, 0, P z) and Pµ2 = (P z, 0, 0,−P z) are two momenta which approach two
opposite light-like directions in the limit P z →∞. It should be warned that this choice of nor-
malization is not equivalent with the local matrix element

〈
P2
∣∣∣(ψ̄aΓψb) (ψ̄cΓ′ψd) (0)

∣∣∣P1
〉
.

Γ and Γ′ are Dirac gamma matrices, which can be chosen as Γ = Γ′ = I, γ5 or γ⊥ and γ⊥γ5,
so that the quark fields have leading power components on the respective light-cones. Here
γ⊥ = γx or γy. In principle, the combination Γ = σµν⊥ and Γ′ = σµν⊥ also gives the leading
power contribution, but their matrix elements between the pion state vanish.

At large momentum transfer, the form factor factorizes through TMD factorization
into TMDWFs. To motivate the factorization, one needs to consider the leading region of
IR divergences in a similar way with SIDIS and Drell-Yan [50, 51], and the leading reduced
diagram is shown in figure 2. There are two collinear sub-diagrams responsible for collinear
modes in + and − directions, and a soft sub-diagram responsible for soft contributions.
Besides, there are two IR-free hard cores localized around (0, 0, 0, 0) and (0,~b⊥, 0). In the
covariant gauge, there are arbitrary numbers of longitudinally-polarized collinear and soft
gluons that can connect to hard and collinear sub-diagrams, respectively. Based on the
region decomposition, we now follow the standard procedure for the factorization [51].

The soft divergences can be incorporated into the soft function S(b⊥, µ, δ+, δ−). It
resums the soft gluon radiations from fast-moving color-charges. Intuitively, soft gluons have
no impact on the velocity of the fast-moving color charged partons, and the propagators of
partons eikonalize to straight gauge links along their moving trajectory.

For the incoming hadron, the collinear divergences are captured by the TMDWFs for the
incoming parton ψq̄q(x, b⊥, µ, δ

′−). However, the naive TMDWFs contain soft divergences
as well, and to avoid double counting, one must subtract the soft contribution from the
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H

H
C C

S

P1 P2

Figure 2. The leading-power reduced diagram for the large-momentum form factor F of a meson.
Two H denote the two hard cores separated in the transverse space by ~b⊥, C are collinear sub-
diagrams and S denotes the soft sub-diagram. It should be noted that for TMD factorization
the separation of collinear and soft contribution can be achieved, however, there is no equivalence
between the collinear modes and TMDWFs.

bare collinear amplitude with the soft function S(b⊥, µ, δ+, δ
′−). This leads to the collinear

function for the incoming direction: ψq̄q(x, b⊥, µ, δ
′−)/S(b⊥, µ, δ+, δ

′−). Similarly, for the
out-going direction one obtains the collinear function ψ†(x′, b⊥, µ, δ

′+)/S(b⊥, µ, δ
′+, δ−).

Thus the explicit factorization form is conjectured as

F (b⊥, P1, P2, µ) =
∫
dx1dx2HF (Q2, Q̄2, µ2)

×

 ψ±q̄q(x2, b⊥, µ, δ
′+)√

S±(b⊥, µ, δ′+, δ−)

†  ψ±q̄q(x1, b⊥, µ, δ
′−)√

S±(b⊥, µ, δ+, δ′−)


× S±(b⊥, µ, δ+, δ−)√

S±(b⊥, µ, δ′+, δ−)S±(b⊥, µ, δ+, δ′−)
(3.4)

Here HF (Q2, Q̄2, µ2) is the hard kernel, ψ±q̄q is the TMDWF, S is the TMD soft function,
Q2 = x1x2P1 · P2, Q̄2 = x̄1x̄2P1 · P2. An integral over the momentum fractions x1,x2
is assumed.

Here we briefly comment on the gauge-link directions in soft functions and TMDWFs.
The gauge-links along the n direction can be past-pointing. However, similar with the
arguments in [52] for the SIDIS process, based on the space-time picture of collinear
divergences, one can choose future-pointing gauge-links along n direction as well. With all
the gauge-links being future pointing, the soft function equals to S− which is manifestly
real, and the TMDWFs for the incoming and outgoing hadrons are in complex conjugation
with each other. All rapidity regulators in TMDWFs and the soft functions are cancelled.

In the following, we will perform the one-loop perturbative calculation of TMDWFs,
soft function, and form factor at the partonic level, and the results are presented in order.

3.1 TMDWFs

Since the short-distance coefficient is insensitive to the hadrons, in the calculation of
TMDWFs one can replace the hadron by the partonic state. Therefore, we replace the
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Figure 3. One-loop diagrams for TMDWFs. The meson state is replaced by a pair of quark and
anti-quark. The first and second panels represent the real diagrams, and the third one represents
the vertex diagram. The last two are virtual diagrams.

hadron state |P 〉 by a pair of quark and anti-quark, and give the normalized definition on
quark level:

ψ±q̄q
(
x, b⊥, µ, δ

−) = 1
2P+

∫
d(λP+)

2π e−i(x−
1
2 )P+λ

×
〈

0
∣∣∣Ψ±n (λn/2 + b) γ+γ5Ψ±n (−λn/2)

∣∣∣ qq̄〉 |δ− , (3.5)

where the factor 1
2P+ is derived from the tree-level result of the local operator matrix

element, 〈
0
∣∣∣ψq̄ (0) γ+γ5ψq(0)

∣∣∣ qq̄〉 |tree = 2P+. (3.6)

Here, the quark pair is chosen to have the same JPC with the pion, and the spin average
with a Clebsch-Gordon coefficient and color average are assumed in this calculation. In
appendix A, we provide a detailed explanation of eq. (3.6), and the corresponding trace
formalism to derive this convention. It is necessary to mention that due to the partial
conservation of axial-vector current, matrix elements in eq. (3.6) are not affected by loop
corrections.

According to the definition of the normalized TMDWF, one can calculate directly at
the tree level,

ψ
±(0)
qq = δ(x− x0), (3.7)

where x0 is the momentum fraction of quark in initial state. Here, the spin average and
color average are considered in this calculation.

At the one-loop order, all Feynman diagrams are shown in figure 3. We choose the
dimensional regularization d = 4− 2ε to regularize the UV and IR divergences. The real
diagram shown in figure 3(a) can be obtained as follows:

ψ
±(1,a)
qq = µ2ε

0
ig2CF

2

∫
ddq

(2π)d e
−iq·bδ

[
(x− x0)P+ + q+

]
×

v̄γ+γ5(x0 /P − /q)/nu
(−q+ ± i δ2)[(x0P − q)2 + iε](q2 + iε)

= αsCF
2π

θ(x0 − x)x
x0(x− x0 ± i δ

−

2P+ )

( 1
εIR

+ Lb

)
. (3.8)

– 9 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
6

The virtual diagram figure 3(d) gives

ψ
±(1,d)
qq = −µ2ε

0
ig2CF
2P+ δ(x− x0)

∫
ddq

(2π)d
v̄γ+γ5(x0 /P − /q)/nu

(−q+ ± i δ2)[(x0P − q)2 + iε](q2 + iε)

= δ(x− x0)αsCF2π

∫ x0

0
dy

θ(x0 − y)y
x0(y − x0 ± i δ

−

2P+ )

( 1
εUV
− 1
εIR

)
, (3.9)

where Lb = ln µ2b2
⊥

4e−2γE with b⊥ ≡ |~b⊥|, and µ = µ0e
(ln(4π)−γE)/2 is the renormalization scale

which is defined in the MS scheme. After the UV renormalization, the remanent result can
be written in the form of plus function:

ψ
±(1,a+d)
qq = αsCF

2π

{[
xθ(x0 − x)
x0(x− x0)

( 1
εIR

+ Lb

)]
+

+ δ(x− x0)
(

1 + 1
2 ln −δ

−2 ∓ i0
4x2P+2

)( 1
εUV

+ Lb

)}
, (3.10)

where the plus function is[
g(x, x0)

]
+

= g(x, x0)− δ(x− x0)
∫ 1

0
dyg(y, x0). (3.11)

The summation of two Feynman diagrams exactly cancel out the infrared divergence in the
delta function term.

The vertex diagram figure 3(c) gives

ψ
±(1,c)
qq = −αsCF2π

(
x̄

x̄0
θ(x− x0) + x

x0
θ(x0 − x)

)( 1
εIR

+ Lb − 1
)
, (3.12)

which can be rewritten as:

ψ
±(1,c)
qq = αsCF

2π

{[
−
(
x̄

x̄0
θ(x− x0) + x

x0
θ(x0 − x)

)( 1
εIR

+ Lb − 1
)]

+

− δ(x− x0)1
2

( 1
εIR

+ Lb − 1
)}

. (3.13)

The quark self-energy will turn the IR divergence in the second term into the UV divergence.
The other two diagrams in figure 3 can be obtained from eq. (3.10) with the exchange

x ↔ 1 − x, and the details are collected in the appendix B. Summing the results in
eq. (B.3), (B.7), and eq. (B.8), one can obtain the one loop TMDWFs

ψ±q̄q(x, b⊥, µ, δ−) = δ(x− x0) + αsCF
2π

[
f(x, x0, b⊥, µ)

]
+

+ αsCF
2π δ(x− x0)

[
Lb

(3
2 + ln −δ

−2 ∓ i0
4x̄xP+2

)
+ 1

2

]
, (3.14)
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where

f(x, x0, b⊥, µ) =
[(

x

x0(x− x0) −
x

x0

)( 1
εIR

+ Lb

)
+ x

x0

]
θ(x0 − x)

+ {x→ 1− x, x0 → 1− x0}. (3.15)

All the UV divergence term have been eliminated by composite operator renormalization.
The imaginary part in eq. (3.10) comes from the contribution of the Wilson line with δ−
regulator, namely figure 3(a, b, d, e), which makes opposite imaginary parts for “+” direction
and “−” direction in TMDWF.

3.2 Soft functions and rapidity divergences

With a rapidity scale ζ, the rapidity divergences of the TMDWF showing in eq. (2.9) can
be renormalized by the on-light-cone soft functions. The soft function is defined with two
on-light-cone Wilson-line cusps explicitly as

S±(b⊥, µ, δ+, δ−) = 1
Nc

tr〈0|TW−†n̄ (b⊥)|δ+W±n (b⊥)|δ−W±†n (0)|δ−W−n̄ (0)|δ+ |0〉, (3.16)

where Wn̄ is defined as

W±n̄ (~b⊥) = Pexp
[
ig

∫ ±∞
0

dsn̄ ·A(sn̄+~b⊥)
]
. (3.17)

Here the subscript n̄ give the direction of the Wilson-line, and the superscript ± in W±n
should be chosen the same as that of the WF amplitudes, and T gives the time-ordered
product for quantum fields.

The soft function will be used to remove the rapidity divergence. It is interesting to
notice that the soft functions can be obtained from TMDWFs with an eikonal approximation
on the incoming parton lines, which re-sum the soft-gluon radiations and suffer from rapidity
divergences. To ensure the scheme independence of physical TMDWFs, one needs to
introduce a square root on the soft function. Since it contains two light-like directions, one
can define the “physical” TMDWFs amplitudes as

Ψ±q̄q(x, b⊥, µ, ζ) = lim
δ−→0

ψ±q̄q(x, b⊥, µ, δ−)√
S±(b⊥, µ, δ−e2yn , δ−)

, (3.18)

where yn is a dimensionless rapidity parameter for the renormalized TMDWFs. The
rapidity divergences cancel between the bare TMDWFs and the soft function, which leaves
a dependence of rapidity scales ζ in TMDWFs as ζ = 2(xP+)2e2yn with e2yn = δ+/δ−.

At tree-level, the matrix element in eq. (3.16) only involves a Nc × Nc unit matrix.
Therefore, it is easy to obtain S(0)±(b⊥, µ, δ+, δ−) = 1.

One-loop Feynman diagrams for soft functions are shown in figure 4. Based on the
exchange symmetry, figure 4(a) and figure 4(d) give the same contributions, and similar for
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Figure 4. One-loop diagrams for the soft funtion. Diagram (a)(d) give the virtual diagram, and
diagram (b)(c) give the real diagram.

figure 4(b) and figure 4(c). The results of these diagrams are given as

S(a)± = S(d)±

= −µ2ε
0 ig

2CF

∫
ddq

(2π)d
n̄µ

q− + i δ
+

2

nµ

q+ ± i δ−2

1
q2 + iε

= αsCF
4π

[
− 2
ε2UV

+ 2
εUV

ln ∓δ
−δ+ − i0
2µ2 − ln2

(∓δ−δ+ − i0
2µ2

)
− π2

2

]
, (3.19)

S(b)± = S(c)±

= µ2ε
0 ig

2CF

∫
ddq

(2π)d
n̄µ

q− + i δ
+

2

nµ

q+ ± i δ−2

e−iq·b

q2 + iε

= αsCF
4π

[
L2
b + 2Lb ln ∓δ

−δ+ − i0
2µ2 + ln2

(∓δ−δ+ − i0
2µ2

)
+ 2π2

3

]
. (3.20)

These results in eq. (3.19) and eq. (3.20) do not contain the infrared divergence, because
the δ+ and δ− act as the infrared regulators. When q+ →∞ and q⊥ →∞, the soft function
in eq. (3.19) contains a UV divergence, which is manifested as 1/ε. This is similar for the kine-
matic region q− →∞ and q⊥ →∞. The overlap of the above two kinematic regions gives the
1/ε2 divergences. For the real diagrams, the results in eq. (3.20) do not have UV divergence.
This is due to the factor that the transverse momentum of gluon is limited by the 1/b⊥.

After UV renormalization, the renormalized soft functions are

S±(b⊥, µ, δ+, δ−) = 1 + αsCF
2π

(
L2
b + 2Lb ln ∓δ

−δ+ − i0
2µ2 + π2

6

)
, (3.21)
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where S+ contains an imaginary part. In the “+” direction, all Feynman diagrams in
figure 4 contribute the imaginary part. The S− can be obtained by changing the sign in
front of δ−δ+ from S+. Our results are in agreement with those in the literature [53, 54].

Combining the above results, we obtain the one-loop TMDWFs as

Ψ±q̄q(x,b⊥,µ,ζ) = δ(x−x0)+αsCF
2π [f(x,x0, b⊥,µ)]+

+αsCF
2π δ(x−x0)

−L2
b

2 +Lb

3
2 +ln µ2

±
√
ζζ̄−i0

+ 1
2−

π2

12

 , (3.22)

where ζ̄ = 2(x̄P+)2e2yn . The renormalized TMDWFs in eq. (3.22) satisfies the rapidity
evolution equation

2ζ d
dζ

ln Ψ±q̄q (x, b⊥, µ, ζ) = K1 (b⊥, µ) . (3.23)

Substituting eq. (3.22) into eq. (3.23), the one-loop Collins-Soper kernel can be determined as

K1(b⊥, µ) = −αsCF
π

Lb. (3.24)

In the above evolution equation, the CS kernel K1 (b⊥, µ) is the same with that determined
from TMDDPFs.

3.3 Four-quark form factor

In this subsection, we aim to give a complete calculation of the four-quark form factors that
can be used to validate the TMD factorization scheme. At the quark level, we define the
four-quark form factor as

F (b⊥, P1, P2, µ) =

〈
q̄d (x̄2P2) qa (x2P2)

∣∣∣(ψ̄aΓψb) (b)(ψ̄cΓψd)(0)
∣∣∣ qb (x1P1) q̄c(x̄1P1)

〉
4P1 · P2

,

(3.25)
where the denominator is a normalization from two tree-level matrix elements〈

0
∣∣∣ψ̄cγµγ5ψb

∣∣∣ qb (x1P1) q̄c(x̄1P1)
〉
|tree = 2Pµ1 , (3.26)〈

q̄d (x̄2P2) qa (x2P2)
∣∣∣ψ̄aγµγ5ψd

∣∣∣ 0〉 |tree = 2P2µ. (3.27)

Here, the spin average and color average are employed. Actually the spinor calculation can
be implemented with a trace formalism that is described in appendix A.

At tree level, the form factor can be directly evaluated as:

F 0 = − 1
4NcP1 · P2

ūa (x2P2) eix2P2·bΓub (x1P1) e−ix1P1·bv̄c (x̄1P1) Γvd (x̄2P2)

= 1
16NcP1 · P2

tr
[
γ5 /P 2Γ/P 1γ5Γ

]
=


1

4Nc
, for Γ = I

− 1
4Nc

, for Γ = γ5, γ⊥ or γ⊥γ5.
(3.28)
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Figure 5. One-loop Feynman diagrams to the form factor. The quark self-energy corrections are
not shown.

One-loop Feynman diagrams for the form factor are shown in figure 5. The contribution
of figure 5(a) and figure 5(b) give the same contributions:

F (1,a) = µ2ε
0

ig2CF
4P1 · P2Nc

∫
ddq

(2π)d e
−iq·b 1

[(q + x1P1)2 + iε][(q − x̄1P1)2 + iε](q2 + iε)
× ūa(x2P2)Γ(/q + x1 /P 1)γµub(x1P1)v̄c(x̄1P1)γµ(/q − x̄1 /P 1)Γvd(x̄2P2)

= −F 0 × αsCF
4π

( 1
εIR

+ Lb − 1
)
. (3.29)

It is interesting to notice that there is no UV divergence in the above equation. In addition,
theses contributions are independent of the Lorentz structure Γ and the momentum fraction
x1 and x2.

For figure 5(c), the amplitude is given as:

F (1,c) = −µ
2ε
0 ig

2CF
4P1 · P2Nc

∫
ddq

(2π)d e
−iq·b ūa(x2P2)Γ(/q + x1 /P 1)γµub(x1P1)

[(q + x1P1)2 + iε][(q + x̄2P2)2 + iε](q2 + iε)
× v̄c(x̄1P1)Γ(q/+ x̄2P/2)γµvd(x̄2P2). (3.30)

There is a three-point loop integral in this amplitude:∫
ddq

iπd/2
µ2ε

0 e
−iq·b

[(q + x1P1)2 + iε] [(q + x̄2P2)2 + iε] (q2 + iε) , (3.31)

which is rather difficult to evaluate in a brutal force way.
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In the past decades, the study of mathematical properties of Feynman integrals has
received increasing attention, and significant progress has been made in understanding the
analytical behavior of multiloop Feynman integrals. One of the most powerful and advanced
tools to evaluate the master integrals analytically is the method of differential equations
(DEs) [55–59]. With the development of recent decades [60–63], this method has been
widely used in various processes. Ref. [60] points out that a suitable principal integral basis
(canonical basis) can be chosen in a general multiloop calculation. With the canonical basis,
the corresponding DEs are greatly simplified and their iterative solutions are derived in the
form of the dimensional regularization parameter. In addition, the boundary conditions of
DEs can be straightforwardly determined.

To compute the integral in eq. (3.31), we consider the following one-loop triangle
integral family

Gα1,α2,α3,α4 ≡
∫

ddq

iπd/2
(−iq · b)−α4 e−iq·b

(q2 + iε)α1
[
(q + x̄2P2)2 + iε

]α2 [(q + x1P1)2 + iε
]α3 , (3.32)

and the integral we need is G1,1,1,0. With the integration-by-parts (IBP) technique, one-loop
QCD corrections to the real diagram of form factor are reduced into a set of integrals,
named as master integrals, which are then solved using the method of DEs. The G1,1,1,0 is
evaluated as [64]:

G1,1,1,0 = e−εγE

(Q′2)1+ε

(
− 1
ε2

+ 1
2 ln2 Q

′2b2⊥
4 + 2γE ln Q

′2b2⊥
4 + 2γ2

E + π2

12

)
, (3.33)

with Q′2 = 2x1x̄2P1 · P2. When the integration variable q in eq. (3.32) goes to infinity, the
exponential oscillation in e−iq·b⊥ indicates the power suppression and thus there is no UV
divergence in G1,1,1,0. The divergence in the above result is infrared.

Then the contribution from figure 5(c) is evaluated as:

F (1,c) =−F 0×αsCF2π

[
− 1
ε2IR

+ 1
εIR

(
ln 4x1x̄2P

z2

µ2 −2
)

+L2
b

2 +Lb
(

ln 4x1x̄2P
z2

µ2 −2
)

+π2

12

]
.

(3.34)
Result for figure 5(d) can be obtained with the replacement x1 → −x̄1, x̄2 → −x2 from
eq. (3.34):

F (1,d) =−F 0×αsCF2π

[
− 1
ε2IR

+ 1
εIR

(
ln 4x̄1x2P

z2

µ2 −2
)

+L2
b

2 +Lb
(

ln 4x̄1x2P
z2

µ2 −2
)

+π2

12

]
.

(3.35)
The vertex diagram figure 5(e) gives

F (1,e) = µ2ε
0

ig2CF
4P1 · P2Nc

∫
ddq

(2π)d v̄c(x̄1P1)Γvd(x̄2P2)

×
ūa(x2P2)γµ(x2 /P 2 − /q)Γ(x1 /P 1 − /q)γµub(x1P1)

[(x2P2 − q)2 + iε][(x1P1 − q)2 + iε](q2 + iε) . (3.36)

– 15 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
6

The result for this diagram depends on the Lorentz structure. If Γ = γ5 or Γ = I, we obtain

F
(1,e)
(1) = −F 0 × αsCF

2π

{
1
ε2IR

+ 1
εIR

ln µ2

2Q2 + 1
2 ln2 µ2

2Q2 −
π2

12 + 1− 2
( 1
εUV
− 1
εIR

)}
,

(3.37)

where Q2 = x1x2P1 · P2. Here, we use subscript ‘(1)’ to represent the results of (pseudo)
scalar structures. After absorbing the contribution from the quark self-energy

Zψ = 1− αsCF
4π

( 1
εUV
− 1
εIR

)
, (3.38)

one has

F e
′

(1) = −F 0 × αsCF
2π

{
1
ε2IR

+ 1
εIR

(
ln µ2

2Q2 + 3
2

)
+ 1

2 ln2 µ2

2Q2 −
π2

12 + 1− 3
2εUV

}
. (3.39)

If Γ = γ⊥ or Γ = γ⊥γ5, the contribution is given as

F e(2) = −F 0 × αsCF
2π

{
1
ε2IR

+ 1
εIR

ln µ2

2Q2 + 1
2 ln µ2

2Q2

(
ln µ2

2Q2 + 3
)
− π2

12

+ 4 + 3
2εUV

− 2
( 1
εUV
− 1
εIR

)}
. (3.40)

Here, we use subscript ‘(2)’ to represent the results of (pseudo) vector structures. After
absorbing the contribution from the quark self-energy, we have

F e
′

(2) =−F 0×αsCF2π

{
1
ε2IR

+ 1
εIR

(
ln µ2

2Q2 + 3
2

)
+ 1

2 ln µ2

2Q2

(
ln µ2

2Q2 +3
)
−π

2

12 +4
}
. (3.41)

Results for figure 5(f) can be obtained from the previous results with the replacement
x1 → −x̄1 and x2 → −x̄2. If Γ = γ5 or Γ = I we obtain

F f
′

(1) = −F 0 × αsCF
2π

[
1
ε2IR

+ 1
εIR

(
ln µ2

2Q̄2 + 3
2

)
+ 1

2 ln2 µ2

2Q̄2 −
π2

12 + 1− 3
2εUV

]
, (3.42)

where Q̄2 = x̄1x̄2P1 · P2. If Γ = γ⊥ or Γ = γ⊥γ5 we obtain

F f
′

(2) =−F 0×αsCF2π

[
1
ε2IR

+ 1
εIR

(
ln µ2

2Q̄2 + 3
2

)
+ 1

2 ln µ2

2Q̄2

(
ln µ2

2Q̄2 +3
)
−π

2

12 +4
]
. (3.43)

Combining the above results, we obtain the complete result for the form factor with
Γ = I, γ5

F (b⊥, P1, P2, µ) = F 0
{

1− αsCF
2π

[
L2
b + Lb

(
ln 4Q2Q̄2

µ4 − 3
)

+ 1
2 ln2 2Q2

µ2 + 1
2 ln2 2Q̄2

µ2 + 1− 3
εUV

]}
. (3.44)
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If Γ = γ⊥, γ⊥γ5, the result is given as:

F (b⊥, P1, P2, µ) = F 0
{

1− αsCF
2π

[
L2
b + Lb

(
ln 4Q2Q̄2

µ4 − 3
)

− 3
2 ln 4Q2Q̄2

µ4 + 1
2 ln2 2Q2

µ2 + 1
2 ln2 2Q̄2

µ2 + 7
]}
. (3.45)

A few remarks are given in order.

• The UV divergence in the I and γ5 form factor. can be removed by the renormalization
constant of scalar density operator

ZS = 1 + αsCF
4π

3
εUV

. (3.46)

Therefore, the renormalized form factor is

F (b⊥, P1, P2, µ) = F 0
{

1− αsCF
2π

[
L2
b + Lb

(
ln 4Q2Q̄2

µ4 − 3
)

+ 1
2 ln2 2Q2

µ2 + 1
2 ln2 2Q̄2

µ2 + 1
]}
. (3.47)

• There is no UV divergence in the γ⊥ and γ⊥γ5 form factor. After some simplifications,
eq. (3.45) gives

F (b⊥,P1,P2,µ) = F 0
[
1− αsCF2π

(
7− 3

2 ln Q
2Q̄2b4⊥

4e−4γE
+ 1

2 ln2 Q2b2⊥
2e−2γE

+ 1
2 ln2 Q̄2b2⊥

2e−2γE

)]
.

This is due to the fact that there is no UV divergence between the nonlocal operators,
and the local ones are also free of renormalization due to the vector/axial-vector
current conservation.

• An observation is that although there are infrared divergences in every diagram,
summing all the results will cancel out all infrared divergences. As a result, the form
factor is an infrared-safe quantity at one-loop order.

3.4 TMD factorization for the form factor

It has been conjectured that the form factor can be factorized into hard, collinear, and soft
functions [35, 37]:

F (b⊥, P1, P2, µ) =
∫
dx1dx2HF (Q2, Q̄2, µ2)

×

 ψ±q̄q(x2, b⊥, µ, δ
′+)√

S±(b⊥, µ, δ′+, δ−)

†  ψ±q̄q(x1, b⊥, µ, δ
′−)√

S±(b⊥, µ, δ+, δ′−)


× S±(b⊥, µ, δ+, δ−)√

S±(b⊥, µ, δ′+, δ−)S±(b⊥, µ, δ+, δ′−)
. (3.48)
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A rigorous proof of the factorization requests a thorough analysis of the behaviors of different
dynamical modes, and in particular the cancellation of collinear and soft divergences. Though
the all-order analysis is not yet given in the literature, one can use the previous results and
explore the factorization at O(αs).

At O(αs), the form factor does not contain any infrared divergence, as shown in
eq. (3.45) and (3.47). There are infrared divergences in the TMDWFs at O(αs), but these
divergences only appear the plus function. To match the four factor, one must expand
the TMDWFs and soft-functions on the right-hand side of eq. (3.48) and integrate over
the momentum fraction. At O(αs), if the plus function term contributes in one of the two
TMDWFs, the other quantities should take tree-level result. Thereby this term vanishes
when one integrates over the momentum fraction since the hard kernel and soft function
at tree-level are constants, and the other TMDWFs is a delta function. As a result, the
infrared divergence on the right-hand side also vanishes. This indicates that the TMD
factorization for the form-factor is valid at O(αs).

At tree level, one has the factorization formula:

F (0)(b⊥, P1, P2) =
∫
dx1dx2H

(0)
F (Q2, Q̄2)Ψ(0)†

q̄q (x2, b⊥, µ)Ψ(0)
q̄q (x1, b⊥, µ)

×
[

S(b⊥, µ, δ+, δ−)√
S(b⊥, µ, δ′+, δ−)S(b⊥, µ, δ+, δ′−)

](0)
, (3.49)

from which one can obtain:

H
(0)
F =


1

4Nc
, Γ = I

− 1
4Nc

, Γ = γ5, γ⊥ or γ⊥γ5.
(3.50)

In the above the arguments in HF are omitted whenever there is no confusion. It is
interesting to note that tree level hard kernel can also be obtained by Fierz transformation
of four-quark operators, which is detailed in appendix A.

In a similar way, the one-loop form factor has the factorization expansion:

H
(1)
F (Q2, Q̄2) = F (1)(b⊥, P1, P2)−H(0)

F (Q2, Q̄2)

× αsCF
2π

[
−L2

b + Lb

(
3− ln 4Q2Q̄2

µ4

)
+ 1− π2

6

]
.

For Γ = I or Γ = γ5, we have the hard kernel

HF (Q2, Q̄2) = H
(0)
F

[
1 + αsCF

2π

(
− 1

2 ln2 2Q2

µ2 −
1
2 ln2 2Q̄2

µ2 + π2

6 − 2
)]
. (3.51)

For Γ = γ⊥ or Γ = γ⊥γ5, the hard kernel is calculated as

HF (Q2, Q̄2) =H
(0)
F

[
1+αsCF

2π

(
3
2 ln 4Q2Q̄2

µ4 − 1
2 ln2 2Q2

µ2 −
1
2 ln2 2Q̄2

µ2 +π2

6 −8
)]
. (3.52)
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The validation of TMD factorization requests a full calculation of form factors, but
an interesting observation on the hard kernel can be found based on the expansion by
regions. This hard function arises from the exchanges of highly offshell gluons, with a
typical momentum qµ ∼ (1, 1, 1)P z. Since the amplitudes in figure 5(a, b, c, d) contain an
exponential factor eiq⊥·b⊥ , these amplitudes are suppressed if the momentum is hard since
the factor eiq⊥·b⊥ is highly oscillating in the region ΛQCD � 1/b⊥ � P z. The hard function
only arises from figure 5(e) and (f), which are identical with the vertex corrections to the
scalar/pseudoscalar, and vector/axial-vector current. Then it can be found that the hard
kernel HF (Q2, Q̄2) is determined by the spacelike Sudakov form factor as follows:

HF (Q2, Q̄2) = HSud(−Q2)HSud(−Q̄2), (3.53)

where HSud(−Q2) is as given by [65].

3.5 Factorization analysis based on expansion by regions

In this subsection we will adopt the expansion by regions technique and give a factorization
analysis of the form factor. The analysis requests the multipole expansions of the form
factor, TMDWFs, and soft function. There are a few remarks given as follows.

• Contributions from three modes are at leading power, which are hard, collinear, and
soft modes with the typical momentum as:

pµh ∼ (Q,Q,Q),
pµc ∼ (Q,Λ,Λ2/Q),
pµs ∼ (Λ,Λ,Λ), (3.54)

with pµ = (p+, p⊥, p
−), Q ∼ P z, and Λ ∼ ΛQCD.

• When the amplitudes are expanded in different regions, the lightcone divergence will
show up. However, in this analysis, the δ regulator will not show up, and thus the
rapidity divergence is not properly accounted for. A realistic proof in future must
properly regularize the rapidity divergence.

• While the soft-function is homogeneously expanded, there are entangled contributions
in TMDWFs. Taking figure 3(a) as an example, this diagram contains contributions
from both collinear and soft modes. When q is soft, the amplitude is simplified as:

ψ
(1,a)
qq |soft =µ2ε

0
ig2CF

2

∫
ddq

(2π)d e
−iq·bδ

[
(x−x0)P++q+

]
v̄γ+γ5(x0 /P−/q)/nu

−q+[(x0P−q)2+iε](q2+iε) |soft

= δ

[
(x−x0)P+

]
µ2ε

0
ig2CF

2

∫
ddq

(2π)d e
−iq·b v̄γ+γ5x0P

+n̄//nu

−q+(−2x0P+q−)(q2+iε)

= δ(x−x0) v̄γ
+γ5u

2P+ µ2ε
0 ig

2CF

∫
ddq

(2π)d e
−iq·b 1

q+q−(q2+iε)
=ψ

(0)
qq ×S

(1,b). (3.55)

This contribution also contains a collinear contribution, and thus the

ψ
(1,a)
qq = ψ

(1,a)
qq |collinear + ψ

(0)
qq × S

(1,b). (3.56)
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Now one can perform the expansion by region for the form factor in order. For figure 5(a),
one can directly find this diagram is related to the vertex correction to TMDWFs, and in
particular only the collinear mode contributes in this diagram:

F (1,a) = H
(0)
F ⊗ ψ

(1,c)
qq ⊗ (ψ(0)

qq )† ×
( 1
S

)(0)
. (3.57)

The factorized diagram for figure 5(a) is shown in figure 6. This can be derived as follows.
One can make the Fierz transformation of the amplitude in eq. (3.29):

F (1,a) = µ2ε
0

ig2CF
4NcP1 · P2

∫
ddq

(2π)d e
−iq·b 1

[(q + x1P1)2 + iε][(q − x̄1P1)2 + iε](q2 + iε)
× cΓūa(x2P2)γνγ5vd(x̄2P2)v̄c(x̄1P1)γµ(/q − x̄1 /P 1)γνγ5(/q + x1 /P 1)γµub(x1P1)

= µ2ε
0
ig2CF

4P1 · P2

∫
ddq

(2π)d e
iq·b 1

[(q − x1P1)2 + iε][(q + x̄1P1)2 + iε](q2 + iε)
× (−H(0)

F )ūa(x2P2)γνγ5vd(x̄2P2)v̄c(x̄1P1)γµ(/q + x̄1 /P 1)γνγ5(/q − x1 /P 1)γµub(x1P1).
(3.58)

The structure ūa(x2P2)γνγ5vd(x̄2P2) is evaluated as ūa(x2P2)γ−γ5vd(x̄2P2) = 2P−2 , and
thus the γµ in the last line of the above equation becomes γ+. Accordingly the amplitude
is written as:

F (1,a) = H
(0)
F µ2ε

0
ig2CF

2P+
1

∫
ddq

(2π)d e
iq·b 1

[(q − x1P1)2 + iε][(q + x̄1P1)2 + iε](q2 + iε)
× v̄c(x̄1P1)γµ(/q + x̄1 /P 1)γνγ5(x1 /P 1 − /q)γµub(x1P1)

= H
(0)
F ×

∫
dxψ

(1,c)
qq (x). (3.59)

Since at tree-level the soft function and the TMDWFs are trivial, the above amplitude
takes a factorized form as eq. (3.57) with ⊗ denoting the convolution over the longitudinal
momentum fractions.

It is similar for the conjugate diagram:

F (1,b) = H
(0)
F ⊗ ψ

(0)
qq ⊗ (ψ(1,c)

qq )† ×
( 1
S

)(0)
. (3.60)

The amplitude for figure 5(c) can be incorporated into three different terms and the fac-
torized diagram is shown in figure 7. One can firstly expand the amplitude with a soft gluon:

F (1,c)|soft = −µ
2ε
0 ig

2CF
4NcP1 · P2

∫
ddq

(2π)d e
−iq·b ūa(x2P2)Γx1 /P 1γµub(x1P1)

[2x1P
+
1 q
−][2x̄2P

−
2 q

+](q2 + iε)
× v̄c(x̄1P1)Γx̄2P/2γ

µvd(x̄2P2)

= − 1
4NcP1 · P2

ūa(x2P2)Γub(x1P1)v̄c(x̄1P1)Γvd(x̄2P2)

× µ2ε
0 ig

2CF

∫
ddq

(2π)d e
−iq·b 1

q−q+(q2 + iε)
= H

(0)
F ⊗ ψ

(0)
qq ⊗ (ψ(0)

qq )† × S(1,b). (3.61)
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Figure 6. Factorization of form factor shown in figure 5(a). Only collinear mode contributes in
this diagram, while both hard and soft contributions are power suppressed.

Figure 7. Factorization of form factor shown in figure 5(c). The collinear, and soft modes contribute
in this diagram, while the hard mode’s contribution is power suppressed.

When q is collinear with P1, one has the amplitude:

F (1,c)|collinear = −µ
2ε
0 ig

2CF
4NcP1 · P2

∫
ddq

(2π)d e
−iq·b ūa(x2P2)Γ(/q + x1 /P 1)2x̄2P

−γ+ub(x1P1)
[(q + x1P1)2 + iε][2q+x̄2P

−
2 + iε](q2 + iε)

× v̄c(x̄1P1)Γvd(x̄2P2)

= −µ
2ε
0 ig

2CF
4NcP1 · P2

∫
ddq

(2π)d e
−iq·b ūa(x2P2)Γ(x1 /P 1 − /q)γ+ub(x1P1)

[(x1P1 − q)2 + iε][−q+](q2 + iε)
× v̄c(x̄1P1)Γvd(x̄2P2).

= −1
4NcP1 · P2

ūa(x2P2)Γub(x1P1)v̄c(x̄1P1)Γvd(x̄2P2)

× µ2ε
0 ig

2CF

∫
ddq

(2π)d e
−iq·b 2(x1P1 − q)+

[(x1P1 − q)2 + iε][−q+](q2 + iε)

= H
(0)
F ⊗ ψ

(1,a)
qq |collinear ⊗ (ψ(0)

qq )† ×
( 1
S

)(0)
. (3.62)

This is similar with the factorization when q collinear with P2. Then this diagram is
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factorized as:

F (1,c) =H
(0)
F ⊗ψ

(1,a)
qq |collinear⊗(ψ(0)

qq )†×
( 1
S

)(0)
+H(0)

F ⊗ψ
(0)
qq ⊗(ψ(1,a)

qq )†|collinear×
( 1
S

)(0)

+H(0)
F ⊗ψ

(0)
qq ⊗(ψ0)

qq)
†|collinear×S(1,b)

=H
(0)
F ⊗ψ

(1,a)
qq ⊗(ψ(0)

qq )†×
( 1
S

)(0)
+H(0)

F ⊗ψ
(0)
qq ⊗(ψ(1,a)

qq )†×
( 1
S

)(0)

+H(0)
F ⊗ψ

(0)
qq ⊗(ψ0)

qq)
†×
( 1
S

)(1,b)
, (3.63)

where we adopted the convention for the perturbative expansion: (1/S)(1,b) = −S(1,b).
This factorization scheme is similar for the amplitude from figure 5(d):

F (1,d) = H
(0)
F ⊗ ψ

(1,b)
qq ⊗ (ψ(0)

qq )† ×
( 1
S

)(0)
+H

(0)
F ⊗ ψ

(0)
qq ⊗ (ψ(1,b)

qq )† ×
( 1
S

)(0)

+H
(0)
F ⊗ ψ

(0)
qq ⊗ (ψ0)

qq)
† ×

( 1
S

)(1,c)
. (3.64)

For figure 5(e), there are leading power contribution from the hard modes in which the
full amplitude is perturbative. Contributions from the other three modes are similar with
figure 5(c). A sketch of the factorization is shown in figure 8, and the factorization formula
is given as:

F (1,e) = H
(1,e)
F ⊗ ψ(0)

qq ⊗ (ψ(0)
qq )† ×

( 1
S

)(0)
+H

(0)
F ⊗ ψ

(1,d)
qq ⊗ (ψ(0)

qq )† ×
( 1
S

)(0)

+H
(0)
F ⊗ ψ

(0)
qq ⊗ (ψ(1,d)

qq )† ×
( 1
S

)(0)
+H

(0)
F ⊗ ψ

(0)
qq ⊗ (ψ0)

qq)
† ×

( 1
S

)(1,d)
. (3.65)

This is similar with the factorization of figure 5(f):

F (1,f) = H
(1,f)
F ⊗ ψ(0)

qq ⊗ (ψ(0)
qq )† ×

( 1
S

)(0)
+H

(0)
F ⊗ ψ

(1,e)
qq ⊗ (ψ(0)

qq )† ×
( 1
S

)(0)

+H
(0)
F ⊗ ψ

(0)
qq ⊗ (ψ(1,e)

qq )† ×
( 1
S

)(0)
+H

(0)
F ⊗ ψ

(0)
qq ⊗ (ψ0)

qq)
† ×

( 1
S

)(1,a)
. (3.66)

In total, the TMD factorization of the form factor at one-loop level is derived as:

F = HF ⊗ ψqq ⊗ (ψqq)† ×
1
S
, (3.67)

with the perturbative kernel up to O(αs):

HF = H
(0)
F +H

(1,e)
F +H

(1,f)
F . (3.68)
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Figure 8. Factorization of the form factor shown in figure 5(e). The panel (b) denotes the hard
kernel function due to the exchange of a hard gluon, which corresponds to a vertex correction to the
vector current or scalar density operator.

4 quasi-TMDWFs

The definition of quasi-TMDWFs is similar with the TMDWF, but one should replace the
Lorentz structure γ+γ5 with γzγ5, and the Wilson line in quasi-TMDWF along with the z
direction:

Ψ̃± (x, b⊥, µ, ζz) = lim
L→∞

1
−ifπ

∫
dλ

2πe
−i(x− 1

2 )(−P z)λ

×

〈
0
∣∣∣Ψ∓nz (λnz2 + b

)
γzγ5Ψ∓nz

(
−λnz

2

)∣∣∣P〉√
ZE (2L, b⊥, µ)

, (4.1)

where ζz = (2xP · nz)2 with nµz = (0, 0, 0, 1). Ψ∓nz(ξ)is the field with finite Wilson line

Ψ∓nz(ξ) = Peig
∫ ∓L+ξ·nz

0 dsnz ·A(ξ+snz)ψ(ξ), (4.2)

and ZE is the Wilson loop which is defined as

ZE (2L, b⊥, µ) = 1
Nc

tr〈0|TW (C)|0〉. (4.3)

Before presenting the result, we should mention that it is also feasible to choose the
γtγ5 instead of γzγ5 in eq. (4.1). But actually, there is no difference in these two Lorentz
structures up to one-loop, and the verification of this behavior is given in appendix E.
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Figure 9. One-loop diagrams for the quasi TMDWF.

Figure 10. One-loop diagrams for the Wilson loop. The coordinates s1 and s2 of gluon propagators
are at any point on the Wilson loop. This includes self-energy, real corrections, and virtual
corrections.

4.1 One-loop calculation

The calculation of quasi-TMDWFs requests to replace the hadron by a couple of quark and
anti-quark state,

Ψ̃±qq (x, b⊥, µ, ζz) = lim
L→∞

∫
dλ

4πe
−i(x− 1

2 )(−P z)λ

×

〈
0
∣∣∣Ψ∓nz (λnz2 + b

)
γzγ5Ψ∓nz

(
−λnz

2

)∣∣∣ qq〉√
ZE (2L, b⊥, µ)

. (4.4)

At tree level, the quasi TMDWF is also a delta function, while the one-loop Feynman
diagrams are shown in figure 9. The route C of the Wilson line W (C) = Peig

∫
C dsµ·A

µ(s) is
shown in figure 10. The detailed calculation of these contributions is given in appendix D.
In the following, we take figure 9(b, c) as an example to illustrate the calculation. In
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dimensional regularization d = 4− 2ε, contributions from figure 9(b) and figure 9(c) are
given as:

ψ̃
±(1,b+c)
qq (x, b⊥, µ, ζz) = −µ2ε

0
g2CF

2

∫
dλ

2πe
i(x−1)P zλ

×
∫ 1

0
dsL′µ(s)

[
e−ix̄0λP ·nz

∫
ddk

(2π)d v̄γ
zγ5 e

−i(x0P−k)·L(s)

(x0P − k)2 + iε

×
/k

k2 + iε
γµu+

∫
ddk

(2π)d v̄γ
µ e
−i(x̄0P+k)·L(s)

(x̄0P + k)2 + iε

/k

k2 + iε

× e−ik·(−λnz−b)γzγ5u

]
, (4.5)

where L = ∑3
i=1 Li is the Wilson line of quasi-TMDWF:

L1 =

 0
~0⊥
∓Ls

 , L2 =

 0
s~b⊥
∓L

 , L3 =

 0
~b⊥

∓L+ (λ± L)s

 .
In the large L limit, we have

ψ̃
±(1,b+c)
qq (x, b⊥, µ, ζz) = αsCF

2π

{
1

(x− x0)P z

[
x

x0

( 1
εIR

+ Lb

)
θ(x0 − x)θ(x)

]
+

+ 1
2δ(x0 − x)

( 1
εUV

+ Lb

)

+ δ(x− x0)
4π1/2P z

[
G3,3

3,5

(
−1

4(b⊥P zx0)2 ± i0
∣∣∣∣ 1

2 , 1, 1
1
2 , 1, 1,−

1
2 , 0

)

− 2G3,3
3,5

(
−1

4(b⊥P zx0)2 ± i0
∣∣∣∣ 1, 1, 1

1
2 , 1, 1, 0, 0

)]

+ {x0 → x̄0, x→ x̄}
]}
, (4.6)

where the G is the Meijer G-function [66], and the different sign in ±i0 comes from the
different Wilson line directions in eq. (4.2). We should note that the third term in the
above is independent of the renormalization scale.

In the large P z limit, this diagram gives

ψ̃
±(1,b+c)
qq = αsCF

2π

{
1

x− x0

[
x

x0

( 1
εIR

+ Lb

)
θ(x0 − x)θ(x)

]
+

+ 1
2δ(x0 − x)

( 1
εUV

+ Lb

)

− δ(x− x0)
2

[
L2
b

2 +
(

ln −ζ
z ± i0
µ2 − 1

)
Lb + 1

2

(
ln2 −ζz ± i0

µ2

− 2 ln −ζ
z ± i0
µ2 + 4

)
+ π2

2

]
+ {x0 → x̄0, x→ x̄}

}
. (4.7)
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Summing all contributions in eq. (D.3), (D.4), (D.5) and Wilson loop in eq. (D.8), we
obtain the one-loop renormalized quasi-TMDWFs:

Ψ̃±qq(x, b⊥, µ, ζ
z) = δ(x− x0) + αsCF

2π [f(x, x0, b⊥, µ)]+

+ αsCF
2π δ(x− x0)A±

(
x, µ, ζz, ζ̄z

)
, (4.8)

where

A±
(
x, µ, ζz, ζ̄z

)
= −L

2
b

2 + 5
2Lb −

3
2 −

π2

2

+
[
− 1

4 ln2 −ζz ± i0
µ2 + 1

2(1− Lb) ln −ζ
z ± i0
µ2 + {ζz → ζ̄z}

]
, (4.9)

with ζ̄z = (2x̄P · nz)2. The imaginary part comes from the gluon exchange between the
quark field and the Wilson line, namely figure 9(b, c).

With the above results, one can match the quasi-TMDWFs to the TMDWF as

Ψ̃±q̄q (x, b⊥, µ, ζz)S
1
2
r (b⊥, µ) = H±1

(
ζz, ζ̄z, µ

)
e

1
2 ln ∓ζ

z+i0
ζ

K1(b⊥,µ)Ψ±q̄q (x, b⊥, µ, ζ) , (4.10)

where H±1
(
ζz, ζ̄z, µ

)
is the perturbative matching kernel. The Sr is the reduced soft

function defined as

Sr (b⊥, µ) = lim
δ+,δ−→0

S−
(
b⊥, µ, δ

+, δ−
)

S− (b⊥, µ, δ+)S− (b⊥, µ, δ−) . (4.11)

The S− (b⊥, µ, δ±) in the denominator is defined similar with the soft function defined
in eq. (3.16), but with one on-light-cone gauge-link direction along n̄ or n, and another
off-light-cone one along nz.

The reduced soft functions can also be extracted by using off-light-cone soft func-
tions. Both the on-light-cone and off-light-cone soft functions are rapidity dependent,
but the reduced soft functions are rapidity independent. The off-light-cone soft functions
S±(~b⊥, µ, Y, Y ′) are composed of two off-light-cone Wilson-line cusps. One can first define
the space-like vectors as n̄→ n̄Y = n̄− e−2Y n, n→ nY ′ = n− e−2Y ′ n̄ and the off-light-cone
Wilson-line cusps W±(b⊥, Y, Y ′):

W±(~b⊥, Y, Y ′) = W±nY ′ (
~b⊥)W †n̄Y (~b⊥) , (4.12)

where the off-light-cone gauge-links Wn̄Y and Wn′Y
are defined as

Wn̄Y (~b⊥) = Pexp
[
ig

∫ −∞
0

dλ′n̄Y ·A(λ′n̄Y +~b⊥)
]
, (4.13)

W±nY ′ (
~b⊥) = Pexp

[
ig

∫ ±∞
0

dλnY ′ ·A(λnY ′ +~b⊥)
]
, (4.14)

respectively.
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The off-light-cone soft functions are defined in a way similar to the on-light-cone soft
function eq. (3.16).

S±(b⊥, µ, Y, Y ′) = 1
Nc

tr〈0|T W
±(b⊥, Y, Y ′)|0〉√

ZE(Y )ZE(Y ′)
, (4.15)

where ZE is Wilson loop to subtract the pinch singularities and power divergences of the
off-light-cone Wilson lines. In the light-cone limit Y + Y ′ →∞, we have:

S±(b⊥, µ, Y, Y ′) = eK1(b⊥,µ) ln(∓eY+Y ′−i0)+D(b⊥,µ), (4.16)

where D is different from the on-light-cone version. Similar to the case of δ regulator,
imaginary part appears in the S+ case due to analyticity property. In fact, one can show
that the off-light-cone soft function depends only on the (complex) hyperbolic angle for the
directions vectors from which the imaginary part can be generated. The rapidity-independent
part is defined as the generalized reduced soft function:

Sr(b⊥, µ) = e−D(b⊥,µ) . (4.17)

According to the properties of off-light-cone soft functions [33, 67], the reduced soft
function Sr defined in eq. (4.11) is consistent with that defined by eq. (4.17). At O(αs),
the reduced soft function reads

Sr (b⊥, µ) = 1− αsCF
π

Lb. (4.18)

Substituting all the results known so far into eq. (4.10), the matching kernelH±1
(
ζz, ζ̄z,µ

)
is extracted as

H±1

(
ζz, ζ̄z,µ

)
= 1+αsCF

2π

{
− 5π2

12 −2+ 1
2

[
ln−ζ

z±i0
µ2 − 1

2 ln2 −ζz±i0
µ2 +{ζz→ ζ̄z}

]}
.

(4.19)

Results in eq. (4.19) are in agreement with ref. [37].

4.2 Form factor and quasi-TMDWFs

Substituting eq. (4.10) into eq. (3.4), one can arrive at the factorization of form factor as
follows:

F (b⊥, P1, P2, µ) =
∫
dx1dx2H(x1, x2)Sr(b⊥, µ)Ψ̃†qq(x2, b⊥, µ, ζ

z
2 )Ψ̃qq(x1, b⊥, µ, ζ

z
1 ), (4.20)

where the hard kernel H(x1, x2) can be written as

H(x1, x2) = HF (Q2, Q̄2, µ2)[
H±1

(
ζz2 , ζ̄

z
2 , µ

) ]†[
H±1

(
ζz1 , ζ̄

z
1 , µ

) ] , (4.21)

where ζzi = (2xiP · nz)2, ζ̄zi = (2x̄iP · nz)2, and the condition ζz1ζz2 = ζ1ζ2 is used.
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For Γ = I or Γ = γ5, the matching kernel is then derived as:

H(x1,x2) =H(0)
{

1+αsCF
8π

[
4π2+8+ln2

(−ζz1±i0
µ2

)
+ln2

(
−ζ̄z1±i0
µ2

)
+ln2

(−ζz2∓i0
µ2

)

+ln2
(
−ζ̄z2∓i0
µ2

)
− 1

2 ln2
(
ζz1ζ

z
2

µ4

)
− 1

2 ln2
(
ζ̄z1 ζ̄

z
2

µ4

)
−2ln ζ

z
1ζ

z
2 ζ̄

z
1 ζ̄

z
2

µ8

]}

=H(0)
{

1+αsCF
2π

[
2+π2+ 1

2 ln2
(
−x2
x1
∓i0

)

+ 1
2 ln2

(
− x̄2
x̄1
∓i0

)
−ln 16x1x2x̄1x̄2P

z4

µ4

]}
. (4.22)

For Γ = γ⊥ or Γ = γ⊥γ5, we have:

H(x1,x2) =H(0)
{

1+αsCF
8π

[
4π2−16+ln2

(−ζz1±i0
µ2

)
+ln2

(
−ζ̄z1±i0
µ2

)
+ln2

(−ζz2∓i0
µ2

)

+ln2
(
−ζ̄z2∓i0
µ2

)
− 1

2 ln2
(
ζz1ζ

z
2

µ4

)
− 1

2 ln2
(
ζ̄z1 ζ̄

z
2

µ4

)
+ln ζ

z
1ζ

z
2 ζ̄

z
1 ζ̄

z
2

µ8

]}

=H(0)
{

1+αsCF
2π

[
π2−4+ 1

2 ln2
(
−x2
x1
∓i0

)

+ 1
2 ln2

(
− x̄2
x̄1
∓i0

)
+ 1

2 ln 16x1x̄1x2x̄2P
z4

µ4

]}
. (4.23)

Results for Γ = γ⊥ in eq. (4.23) are in agreement with ref. [25].

5 Impact on the reduced soft function

In the previous section, we have validated the factorization of the form factor and determined
the hard kernel in perturbation theory. A direct use of the previous results is that from
eq. (4.20), one can express the reduced soft function as:

Sr(b⊥, µ) = F (b⊥, P1, P2, µ)
H

, (5.1)

where the denominator term is

H =
∫
dx1dx2H(x1, x2)Ψ̃†(x2, b⊥, P

z, ζz2 )Ψ̃(x1, b⊥, P
z, ζz1 ). (5.2)

Once the form factor and quasi-TMDWFs are simulated on the Lattice, the reduced soft
functions can be determined from first-principles, and the first attempts can be found in
refs. [39–44].

In the first analyses, the tree-level result is used for the perturbative hard kernel
H [40, 42], while a precision determination requests to include the radiative corrections.
Based on the lattice data on quasi-TMDWFs from Lattice Parton Collaboration with
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P z = 1.72 GeV, 2.15 GeV and 2.58 GeV under b⊥ = a, 2a, 3a, 4a, 5a (a = 0.12 fm) [44], we
give an estimate of the impact from O(αs) corrections on the reduced soft function. To be
more explicit, we define the ratio

R = H1 −H0
H0

(5.3)

which directly manifests the effects on the denominator of the reduced soft function in
eq. (5.1). Here in H0, the tree-level hard kernel is used, while in H1, the one-loop results
are incorporated. The corresponding results are shown in figure 11. The left panels show
the results for Γ = Γ′ = I, γ5, while the right ones correspond to Γ = Γ′ = γ⊥, γ⊥γ5.

A few remarks are given in order.

• In the lattice simulation, the Wilson line can have two directions, denoted as +L and
−L. Results are consistent with each other within errors.

• Errors shown in the plots arise from the lattice data, which significantly increase with
the increase of transverse separation.

• From the figure, one can see that the magnitude of QCD corrections can reach about
(20 − 30)% for Γ = Γ′ = I, γ5, and about −(10 − 20)% when Γ = Γ′ = γ⊥, γ⊥γ5.
However in the latter case, the QCD corrections to the denominator are negative,
which means the corresponding reduced soft function are enhanced.

• The corrections to the denominator will decrease with the increase of P z.

• The results are insensitive to the transverse separation b⊥, though at large b⊥, the
errors are too large to make a decisive conclusion.

It should be noted that the convolution in eq. (5.2) involves both the longitudinal
momentum fraction and the transverse separation. In general, the QCD corrections should
contain the dependences on these two parameters, while results in figure 11 exhibit the
dependences. A natural understanding of this feature is that the quasi-TMDWFs could be
written as a factorized form, namely

Ψ̃′(x, b⊥) = φ(x)× Σ(b⊥). (5.4)

Substituting this result into eq. (5.2), one can see that this dependence on b⊥ cancels in
the ratio in eq. (5.3).

As a comparison, we adopt a phenomenological model for quasi-TMDWF Ψ̃′(x, b⊥) [68]:

Ψ̃′(x, b⊥) = 6x(1− x)
[
1 + 3aπ2

2

(
5(2x− 1)2 − 1

)]
exp

[
− x(1− x)b2⊥

α2

]
, (5.5)

where the longitudinal and transverse distributions are entangled. We choose α = 0.197 fm,
and the Gegenbauer moments aπ2 = 0.25 [69]. The behavior of R as a function of b⊥ is
shown in figure 12. Using the above model, we have also calculated the radiative corrections
to the denominator and find that the results are about (20−30)% for scalar or pseudo-scalar
Lorentz structure, and reach about −(10 − 20)% for vector or axial-vector structure. A
dramatic difference with the results in figure 11 is that these results show an explicit
dependence on the transverse separation.
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Figure 11. One-loop QCD corrections to the denominator to extract reduced soft function as
defined in eq. (5.3). The lattice data on quasi-TMDWFs from Lattice Parton Collaboration with
P z = 1.72 GeV, 2.15 GeV and 2.58 GeV under b⊥ = a, 2a, 3a, 4a, 5a (a = 0.12 fm) is used [44]. The
left panels show the results for Γ = Γ′ = I, γ5, while the right ones correspond to Γ = Γ′ = γ⊥, γ⊥γ5.
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Figure 12. Similar with figure 11 but using a phenomenological model for quasi-TMDWFs in
eq. (5.5).

6 Conclusion

TMDPDFs and TMDWFs are important physical quantities characterizing the distributions
of constituents momentum in the hadron, and reflect the non-perturbative internal structure
of hadrons. In LaMET, the TMDWFs can be extracted from the first-principle simulation
of a four-quark form factor and quasi distributions [35–37].

In the present work, a number of details are provided to understand the proposal in
refs. [35–37]. In particular we have explored the form factors of four kinds of four-quark
operators and calculated the one-loop perturbative corrections to these quantities. In the
calculation of four-quark form factors, we have adopted a modern technique based on
integration by part and differential equations that can be generalized to the analysis of other
nonlocal TMD quantities in LaMET. With the perturbative results, we have validated the
TMD factorization of form factors and quasi-TMDWFs at one-loop level, and then extracted
the O(αs) hard function. Converting the TMDWFs to quasi-TMDWFs, the LaMET provided
a “two-step” approach to the LFQ physics and achieves the goal of LFQ without performing
the LFQ explicitly. Using the lattice data on quasi-TMDWFs and a phenomenological
model, we have investigated the effects from the one-loop matching kernel and find that the
magnitude of perturbative corrections to the soft function depend on the operator to define
the form factor, but are less sensitive to the transverse separation. These results are helpful to
precisely extract the soft functions and TMD wave functions from the first-principle in future.
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A Normalization of TMDWFs, and trace formalism and Fierz
transformation

Decay constant of a pion is parametrized by the matrix element as〈
0
∣∣∣ψ (0) γµγ5ψ(0)

∣∣∣π〉 = −ifπPµ. (A.1)

This provides a formal normalization for the TMDWF and quasi-TMDWFs. For the
TMDWFs defined in eq. (2.11), one can set ~b⊥ = 0 and integrate over the momentum
fraction x∫

dxψ±
(
x,0,µ,δ−

)
= 1
−ifπ

∫
dx

∫
dλ

2πe
−i(x− 1

2 )P+λ
〈

0
∣∣∣∣Ψ±n (λn2

)
γ+γ5Ψ±n

(
−λn2

)∣∣∣∣π〉∣∣∣∣
δ−

= 1
−ifπP+

〈
0
∣∣∣ψ(0)γ+γ5ψ(0)

∣∣∣π〉= 1. (A.2)

From this equation, one can see that the TMDWF is formally normalized to 1. Two remarks
are given in order.

• Firstly, if λ = 0 and ~b⊥ = 0, the Wilson line in Ψ±n vanishes, and then the interpolating
operator is local.

• Secondly, it should be noticed that the physical TMDWFs does not have to satisfy this
normalization constraint. The TMDWF is valid in the hierarchy ΛQCD � 1/b⊥ �
1/λ ∼ P z, however when integrating over the momentum fraction, this hierarchy is
not satisfied in all kinematics region. In addition, the renormalization procedure does
not commute with the integration, which also indicates that the above normalization
only has a formal meaning.

At the parton level, the quark matrix element has been calculated in eq. (3.26), and
this can be implemented with a trace formalism. We consider a tree level matrix element:〈

0
∣∣∣ψ̄c(0)γµγ5ψb(0)

∣∣∣ qb (xP ) q̄c(x̄P )
〉

=
〈

0
∣∣∣∣ψ̄c(0)γµγ5ψb(0) 1√

2

[
b†↑,b (xP ) d†↓,c (x̄P )− b†↓,b (xP ) d†↑,c (x̄P )

]∣∣∣∣ 0〉
= 1√

2
Tr
{

[u↑ (xP ) v̄↓ (x̄P )− u↓ (xP ) v̄↑ (x̄P )] γµγ5
}
, (A.3)

where the arrow ↑ and ↓ denote the spin +1/2 and −1/2 for quark pair. Using the spinor

u↑(xP ) = v↓(xP ) =
√
xP z


1
0
1
0

 , u↓(xP ) = v↑(xP ) =
√
xP z


0
1
0
−1

 (A.4)

under the Dirac representation, one has

1√
2

[u↑ (xP ) v̄↓ (x̄P )− u↓ (xP ) v̄↑ (x̄P )] = c1γ5P/, (A.5)
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with the coefficient c1 =
√
xx̄/2. Since this factor c1 appears both in the evaluation of tree

level and one-loop matrix elements, we can take it to be 1. Thus one can employ the matrix
element

〈
0
∣∣∣ψq̄ (0) γµγ5ψq(0)

∣∣∣ qq̄〉 |tree = 1
2
∑
s v̄γ

µγ5u ≡ 2Pµ.
Now we derive the tree-level matching coefficient for the form factor, based on the Fierz

transformation of four-quark operators:(
ψ̄aψb

)(
ψ̄cψd

)
=−1

4 ψ̄cψbψ̄aψd−
1
4 ψ̄cγ

µψbψ̄aγµψd−
1
8 ψ̄cσ

µνψbψ̄aσµνψd

+ 1
4 ψ̄cγ

µγ5ψbψ̄aγµγ
5ψd−

1
4 ψ̄cγ

5ψbψ̄aγ
5ψd, (A.6)(

ψ̄aγ
5ψb

)(
ψ̄cγ

5ψd
)

=−1
4 ψ̄cψbψ̄aψd+ 1

4 ψ̄cγ
µψbψ̄aγµψd−

1
8 ψ̄cσ

µνψbψ̄aσµνψd

− 1
4 ψ̄cγ

µγ5ψbψ̄aγµγ
5ψd−

1
4 ψ̄cγ

5ψbψ̄aγ
5ψd, (A.7)(

ψ̄aγ
µψb

)(
ψ̄cγµψd

)
=−ψ̄cψbψ̄aψd+ 1

2 ψ̄cγ
νψbψ̄aγνψd

+ 1
2 ψ̄cγ

νγ5ψbψ̄aγνγ
5ψd+ψ̄cγ5ψbψ̄aγ

5ψd, (A.8)(
ψ̄aγ

µγ5ψb
)(
ψ̄cγµγ

5ψd
)

= ψ̄cψbψ̄aψd+ 1
2 ψ̄cγ

νψbψ̄aγνψd

+ 1
2 ψ̄cγ

νγ5ψbψ̄aγνγ
5ψd−ψ̄cγ5ψbψ̄aγ

5ψd, (A.9)(
ψ̄aσ

µνψb
)(
ψ̄cσµνψd

)
=−3ψ̄cψbψ̄aψd+ 1

2 ψ̄cσ
ρδψbψ̄aσρδψd−3ψ̄cγ5ψbψ̄aγ

5ψd. (A.10)

Note that all repeated Lorentz indices in eqs. (A.6)–(A.10) should be summed. To be
complete, one should also include the color Fierz transformation:

δijδkl = δilδkj
Nc

+
T ailT

a
kj

TR
, (A.11)

where i, j, k, l are the color indices of those quark fields ψa, ψb, ψc, ψd respectively. The
second term will vanish at tree level because the index i and j are anti-symmetry for T ail .

Taking Γ = Γ′ = I as an example, we evaluate the matrix element:

F (b⊥, P1, P2, µ) =

〈
P2
∣∣∣(ψ̄aψb) (b)

(
ψ̄cψd

)
(0)
∣∣∣P1

〉
f2
πP1 · P2

= 1
4Ncf2

πP1 · P2

〈
P2
∣∣∣ψ̄c(0)γµγ5ψb(b)ψ̄a(b)γµγ5ψd(0)

∣∣∣P1
〉
. (A.12)

At tree level, there is no interaction between the quarks, and thus the four quarks can be
split into two groups, each of which is related to TMDWFs:

F (b⊥, P1, P2, µ) = 1
4Ncf2

πP1 · P2

〈
P2
∣∣∣ψ̄c(0)γµγ5ψb(b)

∣∣∣ 0〉〈0
∣∣∣ψ̄a(b)γµγ5ψd(0)

∣∣∣P1
〉

= 1
4Ncf2

πP1 · P2
(−ifπPµ2

∫
dx2ψ(x2, b, P2))†(−ifπP1µ

∫
dx1ψ(x1, b, P1)).

(A.13)
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Comparing with the factorization of form factor, one can easily derive the tree-level hard
kernel:

H
(0)
F = 1

4Nc
. (A.14)

This is also similar for the cases Γ = γ5. For Γ = Γ′ = γ⊥, γ⊥γ5, notice that the form
factor that we defined in the main text does not include the summation, and there is a sign
difference.

The tensor form factor
〈
P2
∣∣∣(ψ̄aσµνψb) (b)

(
ψ̄cσµνψd

)
(0)
∣∣∣P1

〉
seems to contribute

with a leading-twist component
〈
P2
∣∣∣(ψ̄aσµν⊥ ψb) (ψ̄cσµν⊥ψd)∣∣∣P1

〉
. However, as shown

in eq. (A.10) that the Fierz transformation for tensor Lorentz structure can not generate a
axial-vector Lorentz structure. Therefore, the contribution of tensor current for form factor
is zero.

In addition, based on Fierz transformations one can make uses of the combinations to
eliminate the power-suppressed contributions:(

ψ̄aψb
)(
ψ̄cψd

)
−
(
ψ̄aγ

5ψb
)(
ψ̄cγ

5ψd
)

=−1
2 ψ̄cγ

µψbψ̄aγµψd+ 1
2 ψ̄cγ

µγ5ψbψ̄aγµγ
5ψd,

(A.15)(
ψ̄aγ

µψb
)(
ψ̄cγµψd

)
+
(
ψ̄aγ

µγ5ψb
)(
ψ̄cγµγ

5ψd
)

= ψ̄cγ
νψbψ̄aγνψd+ψ̄cγνγ5ψbψ̄aγνγ

5ψd.

(A.16)

These combinations have been used in ref. [42].

B TMD wave function

The real diagram at the one-loop QCD correction as shown in figure 3(a) can be obtained
as follows:

ψ
±(1,a)
qq =µ2ε

0
ig2CF

2

∫
ddq

(2π)d
v̄γ+γ5(x0 /P−/q)/nu

(−q+±i δ2)[(x0P−q)2+iε](q2+iε)
e−iq·bδ

[
(x−x0)P++q+

]
= αsCF

2π
xθ(x0−x)

x0(x−x0±i δ
−

2P+ )

( 1
εIR

+Lb
)
. (B.1)

The UV divergence is regularized by transverse coordinates deviations of the two quark
fields. The contribution from the mirror diagram figure 3(b) can be obtained from eq. (B.1)
with the replacement x→ (1− x) and x0 → (1− x0):

ψ
±(1,b)
qq = αsCF

2π
(1− x)θ(x− x0)

(1− x0)(x0 − x± i δ
−

2P+ )

( 1
εIR

+ Lb

)
. (B.2)

For the vertex diagram figure 3(c) we obtain:

ψ
±(1,c)
qq (x, b⊥, µ, δ−)

= µ2ε
0
ig2CF

2

∫
ddq

(2π)d
v̄γµ(x̄0 /P + /q)γ+γ5(x0 /P − /q)γµu

[(x̄0P + q)2 + iε][(x0P − q)2 + iε](q2 + iε)e
−iq·bδ

[
(x− x0)P+ + q+

]

= −αsCF2π

(
x̄

x̄0
θ(x− x0) + x

x0
θ(x0 − x)

)( 1
εIR

+ Lb − 1
)
. (B.3)
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Using the plus function we obtain

ψ
±(1,c)
qq (x, b⊥, µ, δ−)

=
[
ψ
±(1,c)
qq

]
+
− αsCF

2π δ(x− x0)
∫ 1

0
dx

(
x̄

x̄0
θ(x− x0) + x

x0
θ(x0 − x)

)( 1
εIR

+ Lb − 1
)

=
[
ψ
±(1,c)
qq

]
+
− δ(x− x0)αsCF4π

( 1
εIR

+ Lb − 1
)

(B.4)

For figure 3(d) and figure 3(e), we obtain

ψ
±(1,d)
qq = −µ2ε

0
ig2CF
2P+ δ(x− x0)

∫
ddq

(2π)d
1
2
∑
s

v̄γ+γ5(x0 /P − /q)/nu
(−q+ ± i δ2)[(x0P − q)2 + iε](q2 + iε)

= αsCFP
+

2πx0
δ(x− x0)

∫ x0

0
dy

θ(x0 − y)y
(y − x0)P+ ± i δ−2

( 1
εUV
− 1
εIR

)
, (B.5)

ψ
±1,(e)
qq = −µ2ε

0
ig2CF
2P+ δ(x− x0)

∫
ddq

(2π)d
1
2
∑
s

v̄/n(x̄0 /P + /q)γ+γ5u

[(x̄0P + q)2 + iε](q+ ± i δ2)(q2 + iε)

= αsCFP
+

2πx̄0
δ(x− x0)

∫ 1

x0
dy

θ(x− x0)ȳ
(x0 − y)P+ ± i δ−2

( 1
εUV
− 1
εIR

)
, (B.6)

where ȳ = 1− y. The combination of eq. (B.1) and eq. (B.6) will cancel the IR divergence.
After by taking the UV renormalization, the finite term can be obtained in the form of plus
function:

ψ
±(1,a)
qq + ψ

±(1,d)
qq

=
[
ψ
±(1,a)
qq

]
+

+ δ(x− x0)αsCFP
+

2π

∫ x0

0
dx

x

x0

[
(x− x0)P+ ± i δ−2

] ( 1
εUV

+ Lb

)

=
[
ψ
±(1,a)
qq

]
+

+ δ(x− x0)αsCF2π

[
1 +

(
1∓ iδ−

2x0P+

)
ln ∓iδ−

2x0P+ ∓ iδ−

]( 1
εUV

+ Lb

)

=
[
ψ
±(1,a)
qq

]
+

+ δ(x− x0)αsCF2π

(
1 + 1

2 ln −δ
−2 ∓ i0

4x2P+2

)( 1
εUV

+ Lb

)
, (B.7)

where we take the limit δ− → 0+ in the last step. Results for figure 3(b, e) are given
similarly:

ψ
±(1,b)
qq +ψ

±(1,e)
qq =

[
ψ
±(1,b)
qq

]
+

+δ(x−x0)αsCF2π

(
1 + 1

2 ln −δ
−2 ∓ i0

4x̄2P+2

)( 1
εUV

+ Lb

)
. (B.8)

C Four-quark form factor

For figure 5(c), we obtain the amplitude:

F c = −µ
2ε
0 ig

2CF
4P1 ·P2

∫
ddq

(2π)d
ūa(x2P2)Γ(/q+x1 /P 1)γµub(x1P1)v̄c(x̄1P1)Γ(/q+x̄2 /P 2)γµvd(x̄2P2)

[(q+x1P1)2+iε][(q+x̄2P2)2+iε](q2+iε) e−iq·b.

(C.1)
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For Γ = γ5 or Γ = I we obtain

F c = (−F 0)×(−µ2ε
0 ig

2CF )
∫

ddq

(2π)d


(D−2)

2x1x̄2(P1·P2)

(
(q+x̄2P2)2−q2

)(
(q+x1P1)2−q2

)
[(q+x1P1)2+iε][(q+x̄2P2)2+iε](q2+iε)

+
−(D−4)q2+4x1x̄2(P1 ·P2)+2

(
(q+x̄2P2)2−q2

)
+2
(

(q+x1P1)2−q2
)

[(q+x1P1)2+iε][(q+x̄2P2)2+iε](q2+iε)

e−iq·b

= (−F 0)×(−µ2ε
0 ig

2CF )
∫

ddq

(2π)d

[
(D−2)

2x1x̄2(P1 ·P2)

( 1
q2+iε−

1
(q+x1P1)2+iε−

1
(q+x̄2P2)2+iε

+ q2

[(q+x1P1)2+iε][(q+x̄2P2)2+iε]

)
− (D−4)

[(q+x1P1)2+iε][(q+x̄2P2)2+iε]

+ 4x1x̄2(P1 ·P2)
[(q+x1P1)2+iε][(q+x̄2P2)2+iε](q2+iε) + 2

[(q+x1P1)2+iε](q2+iε)

− 2
[(q+x1P1)2+iε][(q+x̄2P2)2+iε] + 2

[(q+x̄2P2)2+iε](q2+iε)

− 2
[(q+x1P1)2+iε][(q+x̄2P2)2+iε]

]
e−iq·b

= (−F 0)×
(
αsCF
π

){
µ2ε

0
16π2P1 ·P2

2dπd/2
G1,1,1,0−

1
εIR
−Lb−

3
2b2⊥P z2x1x̄2

}
.

In the above equation the G1,1,1,0 is the three-point loop integral defined in eq. (3.32) and
will be calculated by DEs. For Γ = γ⊥ or Γ = γ5γ⊥, we will encounter a similar result as

F c = (−F 0)×
(
g2CF
4π2

){
µ2ε

0
16π2P1 · P2

2dπd/2
G1,1,1,0 −

1
εIR
− Lb −

1
b2⊥P

z2x1x̄2

}
.

For figure 5(d), and Γ = γ5 or Γ = I we obtain

F d = (−F 0)×
(
g2CF
4π2

){
µ2ε

0
16π2P1 · P2

2dπd/2
G1,1,1,0 −

1
εIR
− Lb −

3
2b2⊥P z2x2x̄1

}
.

For Γ = γ⊥ or Γ = γ⊥γ5 we obtain

F d = (−F 0)×
(
g2CF
4π2

){
µ2ε

0
16π2P1 · P2

2dπd/2
G1,1,1,0 −

1
εIR
− Lb −

1
b2⊥P

z2x2x̄1

}
.

Therefore, by taking the large-momentum limit P z →∞, G1,1,1,0 can be determined
as [64]:

G1,1,1,0 = e−εγE

(Q′2)1+ε

(
− 1
ε2

+ 1
2 ln2 Q

′2b2⊥
4 + 2γE ln Q

′2b2⊥
4 + 2γ2

E + π2

12

)
. (C.2)

When the integration variable q in eq. (3.32) goes to infinity, the power suppression and
exponential oscillation cause G1,0,0,0 without UV divergence. The divergence in above
integral is purely infrared.
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D quasi-TMDWFs

From the definition

ψ̃±qq (x, b⊥, µ, ζz) = lim
L→∞

∫
dλ

4πe
−ixr(−P z)λ

〈
0
∣∣∣∣Ψ∓nz (λnz2 + b

)
γzγ5Ψ∓nz

(
−λnz2

)∣∣∣∣ qq〉 ,
(D.1)

one obtains the tree level result:

ψ̃
±(0)
qq = δ(x− x0). (D.2)

By taking pure dimensional regularization d = 4 − 2ε, the sail diagram as shown in
figure 9(b) and figure 9(c) in the large L limit and large P z limit gives:

ψ̃
±(1,bc)
qq (x,b⊥,µ,ζz)

=−g
2CF
2

∫
dλ

2πe
i(x−1)P zλ

∫ 1

0
dsL′(s)µ

[
e−ix̄0λP ·nz

∫
ddk

(2π)d v̄γ
zγ5 e

−i(x0P−k)·L(s)

(x0P−k)2+iε
/k

k2+iεγ
µu

+
∫

ddk

(2π)d v̄γ
µ e
−i(x̄0P+k)·L(s)

(x̄0P+k)2+iε
/k

k2+iεe
−ik·(−λnz−b)γzγ5u

]

= αsCF
2π

{
1

(x−x0)

[
x

x0

( 1
εIR

+Lb
)
θ(x0−x)θ(x)

]
+

+ 1
2δ(x0−x)

( 1
εUV

+Lb
)

− δ(x−x0)
2

[
L2
b

2 +
(

ln−ζ
z±i0
µ2 −1

)
Lb+

1
2

(
ln2 −ζz±i0

µ2 −2ln−ζ
z±i0
µ2 +4

)
+π2

2

]

+{x0→ x̄0,x→ x̄}
}
. (D.3)

For the vertex diagram figure 9(a) we obtain:

ψ̃
±(1,a)
qq (x,b⊥,µ,ζz)

=µ2ε
0
ig2CF

2

∫
dλ

2πe
i(x−1)P zλ

×
∫

ddq

(2π)d v̄γµ
x̄0 /P+/q

(x̄0P+q)2 γ
zγ5 x0 /P−/q

(x0P−q)2 γ
µ 1
q2+iεue

−iq·bei(x̄0P z+qz)λ

= αsCF
2π

( 1
εIR

+Lb−1
)[(

− x

x0
θ(x0−x)θ(x)

)
+
− 1

4δ(x−x0)+{x0→ x̄0,x→ x̄}
]
. (D.4)

For self-energy diagram figure 9(d) in large L limit we obtain

ψ̃
±(1,d)
qq (x, b⊥, µ, ζz)

= 1
4 v̄(x̄0P )e−ix̄0P ·(λnz+b⊥)γzγ5

∫
dλ

2πe
i(x−1)P zλ

[
ig

∫
L
ds1L′µ(s1)

] [
ig

∫
L
ds2L′µ(s2)

]
× u(x0P )

∫
ddq

(2π)d
−igµν

q2 + iε
e−iq·[L(s1)−L(s2)]

= αsCF
4π δ(x− x0)

[ 6
εUV

+ 4 + 6Lb + 4πL
b⊥

]
. (D.5)
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Then consider the Wilson loop ZE which is the denominator of the quasi-TMDWF
we defined before limit. At tree-level, the operator of matrix element only involves a
Nc × Nc unit matrix. Therefore, for the tree-level of soft function it is easy to obtain
ZE (2L, b⊥, µ) = 1. At one-loop QCD correction as shown in figure 10, the Wilson loop
could be written as

ZE = 1+ 1
Nc

〈
0
∣∣∣∣ 1
2!

[
ig

∫
C
d~s1 ·A(~s1)

][
ig

∫
C
d~s2 ·A(~s2)

]∣∣∣∣0〉
= 1+ g2CF

8π2 µ2ε
0 π

εΓ(1−ε)
∫
C
ds1

∫
C
ds2

[
C′µ(s1)C′µ(s2)

][
−(C(s1)−C(s2))2

]ε−1
, (D.6)

where the integral on the route C could be divide into four parts as
∫
C =

∫
C1

+
∫
C2

+
∫
C3

+
∫
C4

and each part itself have route

C1(s) = −Lnz + 2Lsnz,
C2(s) = Lnz + bs,

C3(s) = b+ Lnz − 2Lsnz,
C4(s) = b− Lnz − bs. (D.7)

Here the variable s ranges from 0 to 1. By computing this integral directly, we have

ZE = 1 + αsCF
2π

[
2
( 1
εUV

+ ln L2µ2

e−2γE
+ 2

)
+ 2

( 1
εUV

+ ln b2⊥µ
2

4e−2γE
+ 2

)

+ 2
(4L
b⊥

arctan 2L
b⊥

+ ln b2⊥
b2⊥ + 4L2

)
+ 2

(
b⊥
L

arctan b⊥
2L + ln 4L2

b2⊥ + 4L2

)]
. (D.8)

After taking the L→∞ limit, the final result of wilson loop can be achieved,

ZE = 1 + αsCF
4π

( 8
εUV

+ 8Lb + 8Lπ
b⊥

+ 8
)
. (D.9)

One should note that the contribution of transverse and longitudinal Wilson lines to
exchange gluons is 0. That means

1
Nc

〈
0
∣∣∣∣∣ 1
2!

[
ig

∫
Ci
d~s1 ·A (~s1)

] [
ig

∫
Ci+1

d~s2 ·A (~s2)
]∣∣∣∣∣ 0

〉
= 0, (D.10)

1
Nc

〈
0
∣∣∣∣∣ 1
2!

[
ig

∫
Ci+1

d~s1 ·A (~s1)
] [
ig

∫
Ci
d~s2 ·A (~s2)

]∣∣∣∣∣ 0
〉

= 0 (D.11)

for Ci ∈ C1,2,3,4.

E Lorentz structures in TMDWFs

In the definition of quasi-TMDWFs, one has two options for the Lorentz structures in the
interpolating operator: γzγ5, and γ0γ5. In the main text we have presented the result for
γzγ5, but here we will show that the short-distance results for γ0γ5, namely the hard kernel,
are the same at least at one-loop level.
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It is easy to see that the tree-level TMDWFs for both structures are the delta function.
At one-loop level, it is also obvious that the virtual corrections in figure 9(d) are the same
for the two Lorentz structures.

For the diagram figure 9(b, c) on l direction (where l = z or 0), we obtain the matrix
element:

ψ̃
±(1,bc)
qq = −g

2CF
2

∫
dλ

2πe
i(x−1)P zλ

×
∫ 1

0
dsC′(s)µ

[
e−ix̄0λP ·nz

∫
ddk

(2π)d v̄γ
lγ5 e−i(x0P−k)·C(s)

(x0P − k)2 + iε

/k

k2 + iε
γµu

+
∫

d4k

(2π)4 v̄γ
µ e−i(x̄0P+k)·C(s)

(x̄0P + k)2 + iε

/k

k2 + iε
e−ik·(−λnz−b)γlγ5u

]
, (E.1)

where C(s) is the route of the Wilson line. The spinor structures in eq. (E.1) are

v̄γµ/kγzγ5u = v̄γµ/k
/n+ /̄n√

2
γ5u = v̄γµ/k

/n√
2
γ5u, (E.2)

v̄γµ/kγ0γ5u = v̄γµ/k
/n− /̄n√

2
γ5u = v̄γµ/k

/n√
2
γ5u. (E.3)

We find that the result of this diagram is independent of the Lorentz structure.
The vertex diagram figure 9(a) on l direction (where l = z or 0), we have the amplitude:

ψ̃
±(1,a)
qq = µ2ε

0 i
g2CF

2 (ūγlγ5v)
∫

ddq

(2π)d
D−2
P z [(x̄0P + q)2ql − (x0P − q)2ql − P lq2]

[(x̄0P + q)2 + iε][(x0P − q)2 + iε](q2 + iε)

× e−iq·bδ
[
(x− x0)P z + qz

]
. (E.4)

A brutal-force evaluation of this amplitude indicates the equivalence for the two Lorentz
structures, but in the following we adopt the expansion by regions technique. Explicitly, we
will demonstrate in this diagram only the collinear modes contribute.

In the quasi-TMDWFs, there are three typical models according to the decomposition
of the momentum q = (q+, q⊥, q

−),

• Hard mode with q ∼ (1, 1, 1)P z. The amplitude in eq. (E.4) contains an exponential
factor eiq⊥·b⊥ , which is oscillating in the region 1/b⊥ � P z. After the integration over
the q, the final result is power suppressed accordingly.

• Collinear mode with q ∼ (Q,ΛQCD,Λ2
QCD/Q). In this region, one can find that the

amplitude is O(Q), and actually the amplitudes for both structures are reduced to
the TMDWF:

ψ̃
±(1,a)
qq =µ2ε

0 i
g2CF

2 (ūγlγ5v)
∫

ddq

(2π)d
D−2
P z

−P lq2
⊥

[(x̄0P+q)2+iε][(x0P−q)2+iε](q2+iε)

×e−iq·b
√

2δ
[
(x−x0)P++q+

]
.
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• Soft mode q ∼ (ΛQCD,ΛQCD,ΛQCD). In this kinematics region, one can find the power
of this amplitude is O(Λ3

QCD/Q
2), and namely this amplitude is suppressed.

This analysis indicates that the amplitude from figure 9(a) is independent of the Lorentz
structure, and moreover we have checked that the expansion by regions technique can be
used to demonstrate the multiplicative factorization of the quasi-TMDWFs.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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