

Machine Learning Applications for Atmospheric Neutrinos in JUNO

Jiaxi Liu¹, **Zhen Liu¹**, Wuming Luo¹, Hongyue Duyang², Teng Li², Zekun Yang² ¹ Institute of High Energy Physics

² Institute of Frontier and Interdisciplinary Science, Shandong University

JUNO Experiment

- JUNO is a next-generation 20 kton liquidscintillator neutrino detector.
- The Central Detector is instrumented by 17'612 20-inch Large-PMTs and 25'600 3-inch Small-PMTs.
- JUNO's main physics goal is the determination

Motivation

- JUNO's sensitivity to NMO can be enhanced by combining the measurements of reactor neutrinos and atmospheric neutrinos.
- Event reconstruction and flavor identification are challenging but crucial for the study of atmospheric neutrino

of neutrino mass ordering (NMO).

oscillations.

Waveform Feature Extraction

Features extracted from each PMT's waveform reflect the event's topological structure and carry information about the event's direction, energy, etc.

A Multi-purpose Machine Learning Approach

Combining the waveform features of all PMTs forms a spherical point cloud signal, upon which different types of neural network models have

Direction Reconstruction Performance

Model Optimization for Flavor Identification

Zenith angle (θ) reconstruction

performance presented as an example.

2D distribution of Reconstructed θ VS True θ in all energies, and 1D distribution of Reconstructed θ - True θ in [3,4]GeV $(\nu_{\mu}/\bar{\nu}_{\mu})$ full MC simulation events, PointNet++ result as example)

Besides waveform features, eventlevel features (such as lepton energy ratio, neutron multiplicity, etc.) can also help to distinguish between ν and $\overline{\nu}$.

WIN2023

Zhuhai

Optimized flavor identification model by using both waveform and event-level features:

Flavor Identification Performance

Flavor identification result* without using event-level features

Confusion matrix (Efficiency)

Flavor identification result* using both waveform and event-level features

Confusion matrix (Efficiency)

ų,

*Result obtained

A multi-purpose machine learning approach has been proposed for the event reconstruction (including directionality, energy, interaction vertex, etc.) and particle/flavor identification for high energy (GeV) events.

without considering the electronic effect of the detector. A more realistic study using reconstructed event level information based on full MC is on-going.

Preliminary results based on simulations show great potential in measuring atmospheric neutrinos, with good resolution for reconstructing GeV events and high efficiency for neutrino flavor separation.

July 03-08, 2023

References

1. Tan, M. and Q. Le (2021). Efficientnetv2: Smaller models and faster training. International Conference on Machine Learning, PMLR.

2. Defferrard, M., et al. (2020). DeepSphere: a graph-based spherical CNN. arXiv preprint arXiv:2012.15000.

3. Qi, C. R., et al. (2017). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems.

zhen.liu@ihep.ac.cn