Latest result of neutrinoless double-beta decay search by KamLAND-Zen

Research Center for Neutrino Science, Tohoku University, Japan Nanami Kawada

The 29th International Workshop on Weak Interaction and Neutrinos (WIN2023)

We are the KamLAND-Zen collaboration !!

>50 researchers from US, Netherlands and Japan

TOKUSHIMA UNIVERSITY

Contents

- Neutrinoless double-beta decay
- The KamLAND-Zen experiment
- Latest result of neutrinoless double-beta decay search

Contents

- Neutrinoless double-beta decay
- The KamLAND-Zen experiment
- Latest result of neutrinoless double-beta decay search

Neutrinoless double-beta decay

Majorana neutrino

• Neutrino can be Majorana particle.

https://higgstan.com/

- Majorana neutrino is key componet of
 - Tiny neutrino mass (via SeeSaw mechanism)
 - Matter dominant universe (via Leptogenesis)

Neutrinoless double-beta decay (0vββ)

- It happens only if v is Majorana particle.
 Proof of Majorana neutrino
- Experiment: peak search around the Q-value
- Requirements: large exposure, background reduction
 KamLAND is a suitable detector

Contents

- Neutrinoless double-beta decay
- The KamLAND-Zen experiment
- Latest result of neutrinoless double-beta decay search

KamLAND detector

Scintillation inner detector

1kt purified liquid scintillator (PC+Dodecane+PPO mixture) 1325 17" + 554 20" PMTs photo coverage 34% energy resolution 6.7%/VE[MeV] Physics observation

Water Cherenkov outer detector

3.2 kt purified water 225(140) 20" PMTs passive shielding active veto to muon

Broad scientific objectives of KamLAND experiment

- Solar neutrinos https://journals.aps.org/prc/abstract/10.1103/PhysRevC.92.055808
- Reactor neutrinos https://doi.org/10.1103/PhysRevD.88.033001
- Geoneutrinos https://doi.org/10.1029/2022GL099566
- Atmospheric neutrinos https://doi.org/10.1103/PhysRevD.107.072006
- Astrophysical neutrinos https://doi.org/10.3847/1538-4357/ac7a3f

- Proton decay <u>https://iopscience.iop.org/article/10.3847/0004-637X/818/1/91</u>
- Neutrinoless double-beta decay (This talk) https://doi.org/10.1103/PhysRevLett.130.051801

and more !!

KamLAND-Zen experiment

Zero-<u>n</u>eutrino double-beta decay search with <u>KamLAND</u> detector

Advantage of using the KamLAND detector

- Ultra-low radioactive environment U, Th $\leq 10^{-17}$ g/g
- Huge & scalable 1kt liquid scintillator

 \rightarrow Ideal environmet for extremely rare decay search !!

Double-beta decay source : ¹³⁶Xe

- $0\nu\beta\beta$ Q-value : 2.46 MeV below ²⁰⁸Tl γ BG
- Long $2\nu\beta\beta$ half life fewer $2\nu\beta\beta$ BG
- (Relatively) easy to enrich/purify by distillation

¹³⁶Xe is enriched to ~90%

• Dissolved into liquid scintillator (LS) at 3%

Mini-balloon installed to support xenon-loaded LS (XeLS)

- Outer LS provides passive shielding from external radioactive background.
- Concentrated target nuclei can suppress volume-proportional backgrounds.

History and future of KamLAND-Zen

Past: 2011 – 2015

KamLAND-Zen 400

- Mini-balloon radius = 1.54 m
- 320–380 kg of enriched xenon
- $\langle m_{\beta\beta} \rangle < 61 \text{--} 165 \text{ meV}$

Phys. Rev. Lett. 117, 082503 (2016)

Present: 2019 -

KamLAND-Zen 800

- Mini-balloon radius = 1.90 m
- 745±3 kg of enriched xenon

Cleaner mini-ballon, more xenon for better sensitivity (this talk)

Future:

KamLAND2-Zen

- Detector upgrade for better energy resolution
- ~1 ton of enriched xenon

Toward $\langle m_{\beta\beta} \rangle = 20 \,\,\mathrm{meV}$!!

Hand-made mini-balloon production in 2017

Geometry

3.8 m

Procedure

- 1. wash the film
- 2. cut the film

It took more than 1.5 year with 20+ researchers.

- 3. weld the film to balloon shape
- 4. leak hunt and repair holes
- 5. Install !!

published as JINST 16 P08023(2021)

Low-radiactivity technique

Class-1 super clean room in Sendai

- Particle with 0.5+ μ m-radius is less than 1 per cubic foot.
- All items in the room is also cleaned well with ethanole and pure water.

<u>Clean suit</u>

- Full-body suit, goggle and double gloves.
- Suits goes to laundry after one-time-use.

Contamination comes from human bodies and clothes.

10

Mini-balloon radioactivity reduction

- 0 (g/g) 3×10^{-10} 3×10^{-11}
 232 Th (g/g)
 ~ 3×10^{-10} ~ 4×10^{-11}

 Sensitive volume (m³)
 5.7
 16.2
- radioactivity reduction by factor of 10
- >x2.5 sensitive volume achieved !!

Backgrounds in KamLAND-Zen

Double-beta decay of ¹³⁶Xe ($2\nu\beta\beta$)

 The only way to suppress this background is separetion by energy.

Cosmic-ray muon spallation products

- ¹²C spallation (short-lived spallation)

 effectively tagged by muon-neutron-spallation triple coincidence and showering tag method
- ¹³⁶Xe spallation (long-lived spallation)

Major backgrounds (details on the next page)

Radioactive impurities

- Contamination in/on mini balloon
 - well studied with radius distribution

Neutrinos

- Interactions by solar neutrinos
 - Negligible for now. In the future, it might be serious background.

Long-lived spallation products Figures from https://doi.org/10.1103/PhysRevC.107.054612

Energy spectrum of major ¹³⁶Xe daughters

- FLUKA simulation for primary spallation product yields
- GEANT4 + ENSDF for daughters yields
- Expected event rate : 0.082 event/day/Xe-ton/ROI

Background reduction technique

- Xenon spallation is accompanied by many neutrons (n-cluster).
- (Muon)–(n-cluster)–(spallation product) tagging is effective.
- We achieved 42±8.8% rejection with 8.6% signal sacrifice.

Contents

- Neutrinoless double-beta decay
- The KamLAND-Zen experiment
- Latest result of neutrinoless double-beta decay search

Double-beta decay analysis

Single (0vββ candidate) dataset

Analysis Method

- 2D scan of 0vββ rate and L.L. rate
- Simultaneous fit of 2 datasets with:
 - ➢ 86 energy bins
 - ➢ 40 equal-volume bins
 - 3 time bins

Best-fit energy spectra in KamLAND-Zen 800

Figures and numbers from https://doi.org/10.1103/PhysRevLett.130.051801

Single (0vββ candidate) dataset (R < 1.57)

$\Delta \chi^2$ map of $0\nu\beta\beta$ rate and L.L. rate in ROI

0.16

-ton]

Long-lived spallation (L.L.) tagged dataset (R < 1.57)

- Dominant background : 2νββ & Long-lived spallation
- Best-fit 0vββ rate : 0 [event/day/Xe-ton]
- 90% U.L. on the number of $0\nu\beta\beta$ event : 7.9
- Corresponding $0\nu\beta\beta$ half-life 90% lower limit : **2.0** × **10**²⁶ years

Combined analysis of KamLAND-Zen 400 and 800

 $\Delta \chi^2$ map of $0\nu\beta\beta$ rate and L.L. rate in ROI

All period combined $\Delta \chi^2$ Xe-ton X. 35 1.0 all 1.0 al 0.12 rate 1σ 90% n spallation r 000 000 15 95% Xenon X 0.06 0.12 0 0.020.040.08 0.1 $0\nu\beta\beta$ rate [Event/Day/Xe-ton]

0.06

0.08

0.1

 $0\nu\beta\beta$ rate [event/day/Xe-ton]

0.12

0.02

0.04

80.0 80.0 PC-sballations 0.06

10

5

3

2

 $\Delta \chi^2$

dataset was re-analyzed with the new strategy. dataset were combined in $\Delta \chi^2$ map.

limit (90% C.L.):

=

- Zen400 : 0.9×10^{26} years
- Zen800 : 2.0×10^{26} years
- Combined : 2.3 × 10²⁶ years >2x better half-life limit !!
- This analysis also gave the most precise measurement of Xe spallation.

Upper limit on effective Majorana mass

• $0\nu\beta\beta$ half-life is translated to effective Majorana mass as

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

 $G^{0
u}$: Phase space factor $|M^{0
u}|^2$: Nuclear matric element (NME)

• Combined $(T_{1/2}^{0\nu})^{-1}$ lower limit (**2.3** × **10**²⁶ years) is translated to $\langle m_{\beta\beta} \rangle < 36 - 156 \text{ meV}$ with different NMEs.

• KamLAND-Zen achieved the first search for neutrinoless doublebeta decay in the Inverted-Ordering band below 50 meV.

Towards further sensitivity

numbers from https://doi.org/10.1103/PhysRevLett.130.051801

Background summary

	# of event in ROI
(a) 2νββ	12.0
(b) Long-lived spallation	12.5
(c) IB ²¹⁴ Bi	3.0

PID with neural network

- (b) and (c) are accompanied by γ -ray, while $0\nu\beta\beta$ is pure β .
- Finding γ-cascade resulting nonisotropic event topology would be a key technique.
- KamNet (Phys. Rev. C 107, 014323) was developed and has achieved 27% L.L. rejection accepting 90% of 0vββ signal.

What we can do for 2vββ background reduction?

- Separation by observed energy is the only way.
- Energy resolution is definitive.

$$N_{\rm BG}^{2\nu2\beta} \propto \left(\frac{\Delta E}{E}\right)^{5.2}$$

(very raugh estimation)

KamLAND2-Zen

Detector upgrade plan

- Light yield increase by
 - High light-yield scintillator (x1.4)
 - Light-correcting Winston cone on PMT (x1.8)
 - High quantum efficiency PMT (x1.9)
- New mini-balloon of <u>scintillating material</u>
- State-of-the-art read-out electronics: MoGURA2
 - RFSoC powered data acquisition
 - Huge buffer for SN-burst detection
- Increased xenon: 745 kg \rightarrow 1,000 kg

Target sensitivity

- The half-life : 2.0×10^{27} year
- $\langle m_{etaeta}
 angle\sim 20~{
 m meV}$ (in 10 years)

KamLAND2-Zen will be the first search to cover the Inverted-Ordering band !!

- \checkmark x5 increased effective light yield
- ✓ Twice better energy resolution@Q-value
- **ν** 2vββ background reduction by order of 2.
- ✓ Film-²¹⁴Bi rejection by α -tagging
- ✓ Expanding effective volume
 - ✓ ~100% spallation neutron detection
 ✓ More efficient L.L. tagging
- ✓ More xenon, more exposure.

KamLAND2-Zen

KamLAND2-Zen R&D in prototype detector

Tank overview

50 m3 tank was built for benchmark of light-yield increase

by a tagging

Tank inside view

14 High-QE PMTs were installed at the bottom of the tank with Winston cones. The tank is filled with filtered water.

LS-filled Acrylic box

LAB LS is filled into 30 cm x 30 cm x 30 cm acrylic box and installed at the center

New read-out electronics is also tested in this detector. The light-yield increase performance is under demonstration !! ²¹⁴Bi readioantive source calibration particle ID

DAQ test

Me installing radioactive source very very very carefully

Summary

- The latest result of the $0\nu\beta\beta$ search by KamLAND-Zen were reported.
 - 0vββ half-life lower limit (90% C.L.):
 - ➢ Zen400 : 0.9 × 10²⁶ year
 - ➢ Zen800 : 2.0 × 10²⁶ year
 - Combined : 2.3 × 10²⁶ year
 - Effective Majorana mass limit (90% C.L.) > $\langle m_{\beta\beta} \rangle < 36 - 156 \text{ meV}$
- New analytical techniques are being developed for further sensitivity.
- R&D for the future of KamLAND-Zen, "KamLAND2-Zen", is on-going !!