

The CUPID double beta decay experiment

Long Ma (on behalf of the CUPID collaboration)

Fudan University

WIN2023, July 3-8, 2023, Zhuhai, China

Neutrinoless double beta decay

"Are massive neutrinos and antineutrinos identical?" -- E. Majorana, 1937

 $\bar{v} \neq v$

2v2β decay: Standard Model process
 => observed in several isotopes

- > Observation of $0v2\beta$ decay:
- reveal the Majorana nature of v => beyond SM
- provide direct evidence of lepton number violation process (LNV), $\Delta L = +2$
- model-dependent constraint of absolute v mass
- may explain matter-antimatter asymmetry

Neutrinoless double beta decay

Double beta decay half life

- $T^{2v}_{1/2} = 10^{19} \sim 10^{24} \text{ yr}$
- T^{0v}_{1/2} > 10²⁶ yr (>10¹⁵ times the age of the universe ~1.37x10¹⁰ yr)
 -- very difficult to observe !

Experimental search for $0\nu\beta\beta$

Experimental search: looking for monochromatic peak at the Q-value in the kinetic energy sum spectrum of two emitted electrons

Experimental challenge Sensitivity

Large exposure (mass x live-time) Large η (isotopic abundance) Large ϵ (signal efficiency) Small b (background level) Small ΔE (energy resolution) *assuming nonzero background in ROI

Experimental search for $0\nu\beta\beta$

- Multiple technologies have been applied for $0\nu\beta\beta$ search
- Current experiments based on different technologies and isotopes have achieved comparable measurement sensitivity
- The next generation experiments
 explore the full inverted hierarchy region !

Bolometric experiment

Cryogenic bolometer

- Crystal detector operating at extremely low T (~10 mK)
- High sensitivity measurement of the energy deposition (phonon) via T variation (ΔT)
- Thermometer: neutron transmutation doped germanium thermistor (NTD-Ge)
- Technical merits:
- ✓ Low energy threshold: eV~keV
- \checkmark High efficiency: Source = Absorber
- ✓ High energy resolution: ~0.2% (FWHM)
- ✓ Multi-isotope deployment => cross check discoveries

Competitive technology for rare event search !

CUORE

• Location: Italy-LNGS

- Tonne-scale detector
- 988 TeO₂ natural crystals (741 kg, ¹³⁰Te ~206kg)
- ~15 ton @ T < 4K
- ~3 ton @ T < 50 mK

World's largest bolometric $0\nu\beta\beta$ experiment !

Cryogenics 102, 9 (2019)

CUORE

102400

2500

2600

2700

2800

2900

3000

3100

3200 Energy (keV)

- tonne-scale 0vββ bolometric experiments are feasible
- ~90% of CUORE Bkg in the ROI is from α s •
- ~10% in the ROI is y/β from environmental radioactivity •
- Background model fit to the data: degraded αs at 3 MeV ~99% of the total Bkg (expect ~100 • reduction of background after α rejection)
- Reducing background is the key to increasing experimental sensitivity

CUPID

CUPID (CUORE Upgrade with Particle Identification)

- new generation 0vββ bolometric experiment
- CUORE cryogenic infrastructure with detector upgrades
- ¹⁰⁰Mo-enriched Li₂MoO₄ crystal bolometers for search for 0vββ decay of ¹⁰⁰Mo

Scintillating bolometer technology

- PID via heat-light dual readout: particle discrimination (>99.9% α rejection @ E>3 MeV)
- Sensitivity goal : fully cover the inverted neutrino mass hierarchy region

arXiv:1907.09376 (CUPID pre-CDR)

CUPID

CUORE bolometer

- pure thermal detector
- measure only heat (phonon) signal
- No PID

CUPID bolometer

- scintillating crystal
- measure heat+light signals
- PID (α vs. β/γ discrimination)

1D => 2D : A big leap!

CUPID: the target isotope

- Q-value and natural abundance
- background level and enrichment cost

Event rate

• For finite target mass, $r^{0v} \propto |M^{0v}|^2 \, G^{0v} \, or \ (T^{0v}_{1/2} \mid m_{\beta\beta} \mid ^2)^{-1}$

¹⁰⁰Mo

1) high $Q_{\beta\beta}$ (~3034keV, reduced γ Bkg) 2) relative high abundance ~10% 3) existing enrichment technology

CUPID: the light detector

The light detector (LD)

 a bolometer with eV energy threshold and fast readout => important for pile-up rejection

CUPID prototypal LD (baseline)

- Ge wafers with anti-reflecting coating and NTD readout
- <100 eV RMS and >90% absorption efficiency (arXiv:2304.04674)
- optimized size, geometry and absorber coupling
- Competitive technical solutions: NL-LD, TES-LD

- Neganov-Luke light detector (NL-LD)
- enhances signal-to-noise & signal response
- wide dynamical range

- Transition-Edge-Sensor light detector (TES-LD)
- fast readout, good timing resolution ~10 µsec
- easy to scale & compatible with multiplexing

CUPID: the conceptual design

- 1596 Li₂¹⁰⁰MoO₄ crystals, total mass ~450 kg (~240 kg ¹⁰⁰Mo)
- Single crystal size: 45×45×45mm³ (~280 g)
- Tower structure: 57 towers of 14 floors
- 1710 Ge light detectors with anti-reflecting coating
- Cryostat (CUORE): T~10 mK
- Muon veto for muon induced background suppression

CUPID: sensitivity projection

- Bkg estimated based on data-driven background models of CUPID demonstrators and CUORE results
- ➤ CUPID-baseline: 240 kg ¹⁰⁰Mo, BI<10⁻⁴ cts/keV/kg/yr, Γ_E ~ 0.2%(FWHM) @ Q_{ββ}, Sensitivity (3σ, 10 yr runtime): T^{0v}_{1/2} > 10²⁷ yr , m_{ββ} < (12-20) meV</p>

CUPID: pilot experiments

- CUPID-0: the first pilot experiment for CUPID (enriched Zn⁸²Se crystal bolometer)
- CUPID-Mo: pilot experiment using Li₂¹⁰⁰MoO₄ scintillating crystals
- Well demonstrated perspectives for 0vββ search based on scintillating bolometers:
- high efficiency
- good energy resolution
- background rejection...

Phys. Rev. Lett. 123, 032501; Phys. Rev. Lett. 126, 181802

Exploratory experiments

- **CROSS:** surface-event identification (discriminate surface vs bulk events)
- **BINGO:** geometry optimization, active γ veto and square LD with NL

J. High Energ. Phys. 2020: 18; arXiv.2204.14161

Selected results: CUPID-Mo

Experimental setup

- 20 scintillating Li₂MoO₄ cylindrical crystals, (2.34 kg of ¹⁰⁰Mo, >95% enrichment)
- 20 Ge light detectors
- Operated at LSM during 2019-2020

Detector performance and physics results

- Good energy resolution: 7.4 keV FWHM at Q_{ββ}
- Good PID performance: > 99.9 α separation
- Excellent internal radiopurity of crystals: ²³⁸U/²³²Th:(0.3-1) µBq/kg, ²¹⁰Po:100 µBq/kg
- Constraint on $m_{\beta\beta}$ (¹⁰⁰Mo exposure of 1.47 kg.yr): $\langle m_{\beta\beta} \rangle < 280-490 \text{ meV}$

Eur. Phys. J. C 80:44 Eur. Phys. J. C 82:1033

R&D progress: mini-tower run

- A series of cryogenic tests in multiple cryogenic facilities (LNGS/LSC)
- validate baseline decisions
- explore alternative design & technologies
- background control study
- 8-LMO run (LNGS Hall C)
- ¹⁰⁰Mo enriched crystal
- Ge wafer with SiO AR coating ٠
- Main goal :light collection study
- crystal geometry
- reflective foil
- light detector
- 8-LMO run (LNGS Hall C)
- natural crystal
- 12 Ge wafers with SiO AR coating
- Main goal: PID performance study and detector structure optimization
- LD noise level: LD RMS_{bsl}=35-70 eV
- PID performance: α rejection > 99.9 %
- Energy resolution at Q-value : 5.9 keV (FMWH)

Long Ma

6000

R&D progress: BDPT run

- BDPT: Baseline Design Prototype Tower
- first validation of detector baseline design at LNGS
- small scale baseline design successfully deployed
- 14-floor tower run
- 28 LMO crystals from different origins
- 30 Ge light detectors
- Main goal: validation of the CUPID detector structure and performance
- validation of tower assembly procedures completed
- Run3 ongoing: further test on vibration and thermal characteristics

R&D progress: CCVR run

- Underground bolometric test of crystals in different cryogenic facilities (LNGS/LSC)
- Typical configuration: 4 crystals of each type/ producer (Bridgman/Czochralski) assembled in a 2x2 array with 8 light detectors for light readout
- Main goal: sensitive radiopurity assessment
 => crystal quality evaluation
- reach required sensitivity on U, Th and K

The CUPID collaboration

~ 30 institutes, >150 collaborators

Integrate the experience from CUORE, CUPID-0 and CUPID-Mo in operating bolometric detectors with particle identification technology !

CUPID potential for multiple physics studies

Summary

- CUPID is a next generation bolometric experiment aiming at high sensitivity search for 0vββ of ¹⁰⁰Mo
- The project takes advantage of existing CUORE expertise & infrastructures
- Performance of small scale module (mini-tower composed of Li₂MoO₄ crystal bolometers) is well demonstrated
- Multiple R&D programs are ongoing towards a future tonnescale (CUPID-1T) experiment

Backups: CUPID-1T

CUPID-1T: HALLMARKS

- 1000 kg of ¹⁰⁰Mo in a single cryostat or multiple facilities world wide
- > Sensitivity: $m_{\beta\beta} < 10 \text{ meV}$ (NH)

POTENTIAL EXPANSIONS

Large volume cryogenic facilities in multiple Underground Labs worldwide

Towards CUPID-1T. Snowmass 2021 Planning workshop

Path to reach CUPID background requirement:

- crystal purity quality control
- cleaning of passive elements
- further reduce contamination in cryogenic infrastructure
- fast readout reduce pile-up contribution