

WIV2023

Measurement of Neutrino-electron Elastic Scattering in the NOvA Near Detector

Yiwen Xiao On Behalf of the NOvA Collaboration

University of California Irvine WIN 2023 July 5, 2023

NOvA (NuMI Off-Axis ν_e Appearance)

Parallel Talk of NOvA by Alec Habig (#170)

- Long baseline neutrino oscillation experiment, optimized for measuring $\nu_{\mu}/\bar{\nu_{\mu}}$ disappearance and $\bar{\nu_{e}}/\bar{\nu_{e}}$ appearance
- 2 functionally identical tracking calorimeter detectors filled with mineral oil, located 14.6 mrad off-axis from NuMI beamline
 - The near detector (ND) is 1 km away from the neutrino beam target
 - 300t, 300 ft underground
 - The far detector (FD) is 810 km away
 - 14 kt on surface
- Beam flux uncertainty essentially affect all analyses using neutrino beam data
 - The near detector allows an in-situ measurement of the flux using neutrino-electron elastic scattering channel

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector

TRVINE

NOvA (NuMI Off-Axis ν_e Appearance)

The NOvA Near Detector

- The near detector (ND) is 1 km away from the neutrino beam target and lies 100 m underground at Fermilab.
- It is located 14.6 mrad off-axis from the NuMI beam line, results in a narrow-band neutrino flux peaked at ~2 GeV with ~1 GeV FWHM.
- 300t tracking calorimeter, constructed from extruded PVC cells filled with liquid scintillator.
- High neutrino flux at Near Detector:
 - Used as a control for the oscillation analyses.
 - Provides a rich dataset for measuring neutrino cross sections.

The NOvA Near Detector

- Segmented liquid scintillator detector provides 3D tracks and calorimetry.
- Optimized for EM shower measurements: X0 = 38 cm (6 cell depth, 10 cell width).
- Good time resolution (~ 5 ns) and spatial resolution (~ few cm).
- Allow clear separation of interactions.

NOvA Reconstruction

- Hits associated in time and space are used to form a candidate interaction.
- Tracks and showers are reconstructed from these hits.

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector

Neutrino Source

- NuMI beam: ν_{μ} or $\bar{\nu_{\mu}}$
 - colliding a proton beam on a solid target and focusing the resulting particles through focusing horns
 - carries large uncertainties from hadron productions on targets and beam transport.
- Neutrino cross-section measurements performed at the near detector are affected by the large uncertainty on the absolute neutrino flux
- External hadron production measurements are used to correct and constrain the flux, and the uncertainties on those measurements result in $\sim 10\%$ uncertainty on the flux prediction

Neutrino-Electron Elastic Scattering

- Neutrinos can elastically scatter off electrons via neutral current or charge current exchange.
- νe is a pure leptonic process, whose amplitude can be precisely calculated in the standard model at the 1% level (precision of $\sin^2 \theta_W$).
- The cross section is very low (~ 1/2000 of the total charged-current cross section).
- Using νe to measure the flux of the neutrino beam, which is helpful for all cross-section measurements.

CNN-Based Classifiers for event selection

- The topology of signal event requires one EM shower with no other particles in the final state.
- Event identifications are important for separating signals from substantial backgrounds.
- NOvA has developed a convolutional neural network (called CVN) to classify events (ν_e CC, ν_μ CC, ν NC, Cosmics). The architecture is modified based on MobileNet_v2 with similar performance as ResNet whilst being ~4x faster.

CNN-Based Classifiers for event selection

- Training Sample:
 - Signal: Simulation of single electrons in the detector
 - Background: Inclusive MC of an enriched ν_e sample
 - Preselection was applied to remove events from the peripheral region
- Two event classifiers based on the same architecture were trained.
 - νe PID:
 - trained with four categories ($\nu e, \nu$ induced $\pi^0, \nu_e CC$, Others)
 - to separate νe scattering events from backgrounds.
 - e/π^0 PID:
 - trained with only two categories $(\nu e, \nu \text{ induced } \pi^0)$
 - to further rejects backgrounds with ν induced π^0 in the final state.

CIRVINE

$\nu - e$ Signal Selection

- Monte Carlo (MC) samples were used to study the event selection.
- Event Selection:
 - Pre-selection: remove obvious ν_{μ} CC interactions.
 - Fiducial and Containment: define the fiducial region and suppress backgrounds induced by neutrino interactions in the rock (mostly upstream of the ND).
 - Single Particle Requirement: the topology of the signal event requires one EM shower with no other particles in the final state.
 - Energy of the primary shower: exclude low-energy events which are hard to distinguish.
 - Nu-on-e classifiers: separating signals from substantial backgrounds using the CNN technique.
 - $E\theta^2$: the scattered electron is very forward going.

NOvA Simulation

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector

11

$\nu - e$ Signal Selection and Optimization

• Monte Carlo (MC) samples were used to study the event selection.

$\nu - e$ Signal Selection Results and Sideband Constraint

- E refers to the calorimetric energy of the most energetic shower and θ is the angle between the direction of the most energetic shower and the beam direction
- With CNN PIDs and cut optimization,
 - Sig. 675.09, Bkg. 75.47
 - FOM = 24.59
- Sideband Region ($0.005 < E\theta^2 < 0.04$).
 - Large sideband region (7x signal region) to reduce statistical error
 - Sideband region can be used to correct background yield in the signal region

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector

Performance of CNN PIDs breakdown by Primary Mother Particle

- After all cuts without CNN PID, μ^- and π^0 play major roles;
- νe PID helps to remove μ^- events;
- e/π^0 PID helps to further reject π^0 events.

Performance of CNN PIDs breakdown by interaction mode

• $\nu - e$ PID and e/π^0 PID helps to remove QE, RES, DIS, COH, MEC and Diff events in the background

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector

$Nu-E\,Signal\,Correction-One-Loop\,Radiative\,Correction$

• To improve the precision of the simulated $\nu - e$ elastic scattering cross-section, radiative corrections were calculated by tuning C_{LL} and C_{LR} to one-loop values obtained from global fits to electroweak data. (Ref: arXiv:1512.07699 and arXiv: 1906.00111)

	$C_{LL}^{ u_e e}$	$C_{LL}^{ u_{\mu}e}$	$C_{LR}^{ u e}$
GENIE 3	0.7313	-0.2687	0.2313
This analysis	0.7276	-0.2730	0.2334

$$w(\nu_{\mu}e) = \frac{\sigma^{radcor}(\nu_{\mu}e^{-})}{\sigma^{nom}(\nu_{\mu}e^{-})}$$

Systematic Uncertainty Study — background

• The integrated neutrino flux in the data can be determined as follows:

$$\Phi(Data) = \Phi(MC) \times \frac{N_{\nu-e}^{Data}}{N_{\nu-e}^{MC}}$$

• The background in the signal region needs to be estimated and subtracted to obtain the $\nu - e$ signal yield in data $(N_{\nu-e}^{Data})$

$$N_{\nu-e}^{Data} = N^{Data} - N_{Background}^{MC}$$

- The background subtraction procedure is subject to systematic uncertainties because the mis-modeling of the background and neutrino flux can bias the signal measurement.
- To improve background subtraction, the Data/MC ratio in the $E\theta^2$ sideband region (dominated by background events) is used to correct the MC background yield in the signal region.

$$N_{Background, \ corrected}^{MC} = N_{Background}^{MC} * C_{bkg}$$
$$N_{\nu-e}^{Data} = N^{Data} - N_{Background, \ corrected}^{MC}$$

• Genie modeling, neutrino flux, beam focusing, and detector response uncertainties are included in the total uncertainty calculation

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector

Flux Weights (100 Universes) Sideband

Summary and Prospect

- FOM-based cut optimization gives a promising result.
 - CNN-based classifiers could achieve better performance for separating νe events from backgrounds.
- The radiative correction in the νe elastic scattering covered the next-leading order effect of the amplitude
- We produced an enhanced νe sample to overlay one νe interaction on one spill on the inclusive sample to increase the statistic for νe events \rightarrow anticipate a small statistical uncertainty (~0.1%).
- We are working on systematic studies to estimate the uncertainties of our measurement.
- v e scattering is promising to constrain the flux uncertainty to ~ 6%. (Current, by the external hadron production measurement ~10%)
- Stay tuned!

Backup

Training Sample

Training Sample Breakdown by interaction type

