Cosmic-ray muon reconstruction with
machine learning methods at JUNO
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Motivation

® JUNO Is a next-generation large liquid-scintillator neutrino
detector, designed to determine the neutrino mass ordering from
ItS reactor neutrino measurement.

® |ts Central Detector (CD) iIs a 20 kton liquid scintillator detector
that uses 17,612 20-inch PMTs (LPMTs) and 25,600 3-inch
PMTs (SPMTs) as photosensors.

® Cosmogenic backgrounds induced by muons should be rejected
carefully by applying veto cuts to the CD, which requires
accurate muon track and shower vertex reconstruction.
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Data Sample

~100k events In total, divided Into 8:2 train & test sets:

® Taken from Monte Carlo simulation without considering the
electronic effect;

® All single through-going muon events;
® Deposited energy>0 In the Central Detector.

Features Extraction

® Features are extracted from each LPMT’s PE distribution,
which contains the topological information on muon event.

® All the LPMT positions on CD’s spherical surface are projected
to the 2-D (0, ¢) plane, as the input of machine learning model.

Total PEs

v 125 | Max PEs 2z mesesn o -
L I 2 ’Z;f ;-E 3 I 4000
. 10.0 |l . . %f-‘«i‘;:; -3500
e Slope Detector simulation o N
0 | truth of one LPMT e

I —— i

, B

0.0 : hﬂ 1. P

0 250 500 750 1000 1250 ™ &

Time (ns)

® 5 features are used for reconstruction: Total PEs, First hit time,
Max PEs, Slope (Max PEs divided by peak time), PE ratio (PEs
in the first 4ns divided by total PEs).

Machine Learning Model

CoAtNet: CNN + Transformer hybrid networks

® Capture global information with Transformer blocks;

® Better performance with limited dataset than Transformer model;

® Good ability to learn from more and more data.
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Shower definition: muon positions
where muon energy loss (dE/dx) > 6
MeV/cm in the simulation.

Vertex distance: The distance between
reconstructed and true shower vertex.

oi: the angle between reconstructed and
true track.

Track distance: The distance between
midpoints of reconstructed and true track.
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Summary and Outlook

® \\e presented a method of reconstructing cosmogenic single
muon tracks and shower vertices with machine learning, and
preliminary studies based on Monte Carlo simulation without
considering electronic effect show unprecedented reconstruction
performance.

» The method is planned to be further applied to new samples with
full Monte Carlo simulation.
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