

CDEX-300v Program Searching for ⁷⁶Ge 0vββ decay

Wenhan Dai (on behalf of Prof. Hao Ma)

Department of Engineering Physics, Tsinghua University

(CDEX Collaboration)

2023/07/05

*W***ί***V***2023** ΖΗUΗΑΙ CHINA

- I. Neutrinoless double beta decay $(0\nu\beta\beta)$
- **II. Introduction to CDEX and CDEX-300v**
- **ΙΙΙ. 0vββ results from CDEX**
- IV. Pre-Conceptual design of CDEX-300v
- V. Future plan of CDEX-300v

Motivation from Neutrino Physics

Questions for neutrino physics:

Oscillation experiments \rightarrow non-zero neutrino mass

- ➢ How do neutrinos acquire their mass?
 - If $\nu \neq \overline{\nu}$ (Dirac fermion)

get mass by the Higgs mechanism

- If $v = \overline{v}$ (Majorana fermion) get mass by the Seesaw mechanism
- What is the absolute mass scale?
- > What is the mass hierarchy?

. . .

Neutrinoless double beta decay

□ Probe neutrino by 0vββ decay:

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

- > Occurred in $2\nu\beta\beta$ isotope if $\nu = \bar{\nu}$
- Lepton number violation process
- ➤ Search for a monoenergetic signal from the two e-

\Box If 0vββ decay is observed:

- ✓ Neutrino is Majorana fermion ($\nu = \overline{\nu}$)
- ✓ Absolute mass scale given by $0\nu\beta\beta$ decay rate
- ✓ Key to understand matter anti-matter unbalance
- ✓ Beacon for many BSM theories

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

□ Experimental search for 0vββ decay:

Build detector and wait for signal

Key to success:

- > More signal:
 - Enrichment (A)
 - Larger exposure $(M \cdot T)$
 - Higher efficiency (ε)
- Less background (γ, 2νββ...)
 - BG from $2\nu\beta\beta$ of Ge-76
 - BG from other materials

Benefits of extremely low background:

Better use of the precious exposure

Energy resolution is important:

crucial for reducing 2vββ background

Neutrinoless double beta decay experiment

Germanium as 0vββ detector:

- Source = detector (high ε)
- Industrial enrichment for ⁷⁶Ge to \geq 86% (*A*)
- Intrinsic high-purity crystal: ~13N (Low *BI*)
- Background rejection (Low *BI*): PSD, LAr veto...
- Excellent E resolution (σ) ~0.05% @ 2MeV

\succ Current best BI & σ achieved by Ge detector

Energy resolution crucial for reducing 2vββ background

Iso	Experiment	Exposure [kg·yr]	σ/Q _{ββ} [%]	Background [cpROI·t·yr]	Τ ^{0ν} [yr]	<m<sub>ββ> [meV]</m<sub>
⁷⁶ Ge	GERDA	127.2	0.05%	2.1	> 1.8E+26	< 79~180
¹³⁰ Te	CUORE	288.8	0.31%	568.3	> 2.2E+25	< 90~305
¹³⁶ Xe	KamLAND-Zen	970	4.64%	147.6	> 2.3E+26	< 36~160

CDEX Collaboration

- Founded in 2009, 11 institutions, more than 100 people now
- Persistently focused on Dark Matter direct detection, extended to Ge-76 $0\nu\beta\beta$ search

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

CDEX Roadmap

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

CJPL-I

0vββ Results from CDEX

□ First 0vββ result from CDEX:

- Also the first ⁷⁶Ge $0\nu\beta\beta$ result in China
- CDEX-1A PPCGe (natural crystal), Exposure: 304 kg·day
- $T_{1/2}^{0\nu} \ge 6.4 \times 10^{22} \text{ yr}, 90\% \text{ C. L}$

0vββ Results from CDEX

New 0vββ result from CDEX (BEGe detector):

- 1.1 kg Natural BEGe detector; Exposure: 186.4 kg·day
- Apply PSD method for background reduction, background in ROI is two times lower than CDEX-1A
- First CDEX result from BEGe: $T_{1/2}^{0\nu} \ge 5.6 \times 10^{22}$ yr, 90% C. L

0vββ Results from CDEX

New 0vββ result from CDEX (PPCGe detector):

- CDEX-1B PPCGe (natural crystal), Exposure: 504.3 kg·day
- Apply PSD and NaI AC-veto for background reduction, achieves 23 times BG reduction in ROI
- Best CDEX $0\nu\beta\beta$ result: $T_{1/2}^{0\nu} \ge 2.2 \times 10^{23}$ yr, 90% C. L

B.T. Zhang et al, arXiv:2305.00894v2 (2023)

CDEX-300v Program

CDEX-300v: the first stage of CDEX ⁷⁶Ge 0vββ search project

+

Physics goal: $T_{1/2} > 10^{27}$ yr $< m_{\beta\beta} >: 30-70$ meVKey parameters: $0.5 \sim 1$ ton-yr exposure1E-4 cpkky BG in ROI*cpkky: counts/keV/kg/yr*

> Technical route:

Increasing exposure

Enriched Ge Array

✓ Enriched ⁷⁶Ge ✓ ~ 225 kg Ge

✓ Energy resolution

Controlling Background

LAr veto & LN₂ Shield

✓ LN₂ as passive shield
✓ LAr as active shield
✓ Work with HPGe PSD

Controlling Background

Material background control

- + ✓ Cosmogenic radioactivity in Ge
 ✓ Materials near Ge crystal
 - ✓ Radon in LAr & $LN_2...$

8

Experiment at CJPL-II:

- Sufficient experiment space: $\sim 25,000 \text{ m}^3$ in each hall, Total space of CJPL $> 300,000 \text{ m}^3$
- Low cosmic-ray background: Muon flux $\sim 10^{-10}$ cm⁻²·s⁻¹ (background negligible for CDEX-300v)

Overview of the Experiment setup

- LN₂ tank shared with CDEX-50
- Reentrant tube containing LAr submerged in LN₂
- Ge detector array immersed in LAr (veto) tube
- Ge detectors divided into ~19 strings (200 in total)

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

The LN₂ tank

- ➢ Total volume: 1976 m³
- > LN_2 volume: $\Phi 13m \times H13m$, $\sim 1725 m^3$
- \succ LN₂ as Passive Shield / cold source for LAr
- Five top flanges for detector deployment
 - $1 \times \varphi 1.5$ m, centrally (CDEX-300v)
 - $4 \times \varphi$ 750mm, on a 6 m diameter circle

Background:

- > > 4 m LN₂ shields most backgrounds from surroundings
- > Radon in LN_2 controlled by purification

The LAr System

Baseline design:

- > ~20 t LAr held by Cu / SS cryostat
- LAr constantly purified
- ➤ LAr cryostat immersed in LN₂
- LAr light read out by WLS Fiber + SiPM

The LAr Purification

- > Removing O_2 , H_2O ... from GAr (≤ 10 ppb)
 - Maintaining light yield of LAr
 - Reducing light absorption in LAr
- > Removing Rn by active carbon ($\sim \mu Bq/m^3$)
- Possible underground Argon (Ar-42 depleted)

LAr Cooling:

- Cooling purified GAr to LAr
- Heat exchanger + electrical condenser
- ➢ Backup LN₂ cooling module

LAr Test Facility:

Currently under construction, plan to start testing in December 2023.

- Stage-1: Operating & Purifying 200 L LAr in a closed cycle
- Stage-2: Deploying light readout to study light yield / transmission of LAr in different impurity levels
- Stage-3: Deploying Ge detectors to test veto performance

272am

S2/S3

D Baseline design of Ge detector array

- 200 Ge-76 enriched detectors: 19 strings, 10~11 det/string, Total mass ~225kg
- Top clean room for Ge detector and fiber installation

Procurement of Enriched Ge detector

• Technical chain established: Ge-76 enrichment \rightarrow Ge metal \rightarrow Crystal growth \rightarrow Detector fabrication

Ge Detectors:

- Enriched BEGe (Baseline)
 - Mass: $1 \sim 1.2 \text{ kg} (\text{Ge-}76 > 86\%)$
 - Size: $\varphi 80 \times 40 \text{ mm}$
 - Dead layer: 0.6 mm
 - FWHM : <0.15% @2MeV (~2.5keV)
 - Commercial / Home-made
- ICPC (Optional)
 - Mass: ~2 kg
 - Size: $\varphi 80 \times 80$ mm
 - Dead layer: 0.6 mm
 - Bigger Detector \rightarrow Less Electronics (BG)
 - Home-made

BEGe: Broad Energy Germanium

ICPC: Inverted Coaxial Point Contact

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

- Naked enriched BEGe detector immersed in LAr
- Free of traditional vacuum-related structure

R&D (reduce background from ⁴²Ar/⁴²K):

- ➢ Ge crystal sealed in Low-Background acrylic capsule and isolated from LAr
- Front Electronics on the outer surface of the acrylic shell

Detector R&D:

Home-made Ge detectors:

- Co-axial/BEGe/PPC/ICPC
- Cold finger / Naked immersion

R&D on underground fabrication ongoing...

D Material Background Control:

ALL materials to be screened and selected

Ge detector & FEE:

- Mitigation of cosmic activation on the ground
- Low-mass & pure detector structures
- Low background cables or flexible PCB
- CMOS ASIC Front-end Electronics
- Underground fabrication of Ge detectors
- > Underground Electro-forming Cu:
- U/Th activity $<10 \mu Bq/kg$
- Free of cosmogenic radioactivity

Background Estimation:

We have estimated the background in ROI based on the pre-Conceptual design

After active BG suppressions (LAr AC-veto & PSD), BG in ROI < 1E-4 cpkky

CDEX-300v Plans

- BEGe detectors test started in 2022 @ CJPL-I
- Test and operate LAr test facility at the end of 2023
- Hall C1 expected to be ready for experiment this fall
- Experimental setup in 2024
- First batch of Ge detector installation and test in 2024

Summary

Ο 0vββ decay is important for understanding the nature of neutrinos

CDEX-300v for ⁷⁶Ge 0vββ

- 225 kg enriched Ge detector system at CJPL-II
- physics goal: $T_{1/2} > 10^{27}$ yr, 90% C.L.
- first batch of detectors deployed in 2024

> R&D in progress

- Detector and electronics
- LAr purification and scintillation light readout
- Material screening and selection

Thanks for your attention!

Email: mahao@tsinghua.edu.cn

http://cdex.ep.tsinghua.edu.cn

中国锦屏地下实验室 China Jinping Underground Laboratory

清华大学・雅砻江流域水电开发有限公司

http://cjpl.tsinghua.edu.cn

四川凉山,锦屏山隧道中部 2**400米**地下,有一处安静地点——中国锦屏地下实验室 在这里,中国高校取得近**30项**暗物质研究成果; 世界最强流深地核天体物理加速器成功出束 则量灵敏度、统计精度、曝光量等均在国际领先

Back up

8

D Probe neutrino mass hierarchy:

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \cdot \left|g_A^2 \mathcal{M}^{0\nu}\right|^2 \cdot \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Fig from: C. Wiesinger (PhD Thiese). TECHNISCHE UNIVERSITÄT MÜNCHEN, 2020.

Neutrinoless double beta decay experiment

□ Experimental search for 0vββ decay:

A great lot of experiment effects have been put into searching for $0\nu\beta\beta$ decay

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \underbrace{G^{0\nu} \cdot \left|g_A^2 \mathcal{M}^{0\nu}\right|^2}_{\downarrow} \cdot \left(\frac{m_{\beta\beta}}{m_e}/m_e\right)^2$$

0vββ half life

Isotope related

Effective neutrino mass

C. Wiesinger (PhD Thiese). TUM, 2020.

iso	Experiment	Technology	Enrichment	Exposure [kg·yr]	Energy resolution at $Q_{\beta\beta}$	Background [cpROI·ton·yr]	Τ ^{0ν} [yr]	<m<sub>ββ> [meV]</m<sub>
⁷⁶ Ge	GERDA	HPGe	86%	127.2	0.05%	2.1	> 1.8E+26	< 79~180
⁸² Se	CUPID-0	ZnSe Calorimeters	96%	5.29	0.28%	141.4	> 3.5E+24	< 310~640
¹⁰⁰ Mo	CUPID-Mo	Li ₂ MoO ₄ Calorimeters	97%	1.17	0.11%	82.8	> 1.5E+24	< 310~540
¹³⁰ Te	CUORE	TeO ₂ Calorimeters	35%	288.8	0.31%	568.3	> 2.2E+25	< 90~305
¹³⁶ Xe	KamLAND-Zen	Xe-LS	90%	970	4.64%	147.6	> 2.3E+26	< 36~160
¹³⁶ Xe	EXO-200	Xe-TPC	81%	234.1	1.15%	270.0	> 3.5E+25	< 93~286

Ge cosmogenic background: Ge-68 & Co-60

Ge cosmogenic background from Ge-68:

Suppression by PSD in $2039\pm3\sigma$: ~30 times

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

Ge cosmogenic background from Go-60:

Suppression by PSD in 2039 \pm 3 σ : ~140 times

The 29th International Workshop on Weak Interactions and Neutrinos (WIN 2023)

Signal efficiency (PSD):

Efficiency for $0\nu\beta\beta$: $(87.8\pm0.14)\%$

D Experiment Key Parameters:

Experiment	CDEX-300v			
Detector mass	225 kg			
Ge-76 enrichment	≥86%			
Signal efficiency	76%			
Background level	1E-4 cpkky			
Energy resolution	2.5 keV FWHM			
Sensitivity goal	T ≥ 10 ²⁷ yr			

"" **" "**" **Background scenarios:**

• For 1E-4 cpkky + 2.5 keV FWHM + 1000 kg·yr:

Discovery:

 $\begin{aligned} P(X &= 0 \mid \lambda_b \leq 0.0027) \geq 99.73\% \\ P(X \geq 1 \mid \lambda_b \leq 0.0027, \lambda_s = 0.69) \geq 50\% \end{aligned}$

Expect background $(\lambda_b) = 0.42$ counts

Calculate method: M. Agostini, et al. Phys. Rev. D 96, 053001, 2017

Parameters

76%

2.5 keV

Efficiency

FWHM

Projected sensitivity for CDEX-300:

BI = 1E-4 cpkky; Exposure = $225 \text{ kg} \times 3 \text{ yr}$

Calculate method: M. Agostini, et al. Phys. Rev. D 96, 053001, 2017

Projected sensitivity for CDEX-300: Unbinned Profile likelihood ratio method

