Muon g - 2 theory overview

Luchang Jin

Ø DTA

STREETER

ELESSE

University of Connecticut

COMM

July 05, 2023

The 29th International Workshop on Weak Interactions and Neutrinos WIN2023 Sun Yat-sen University Zhuhai Campus

Outline

1. Introduction

- 2. Data driven approach
- 3. Lattice QCD
- 4. Hadronic light-by-light contribution (HLbL)
- 5. Hadronic vacuum polarization contribution (HVP)
- 6. Summary

Anomalous magnetic moments

- The quantity *a* is called the anomalous magnetic moments.
- Its value comes from quantum correction.

Muon anomalous magnetic moment (g-2)

 "So far we have analyzed less than 6% of the data that the experiment will eventually collect. Although these first results are telling us that there is an intriguing difference with the Standard Model, we will learn much more in the next couple of years." – Chris Polly, Fermilab scientist, co-spokesperson for the Fermilab muon g – 2 experiment.

New release of Muon g - 2 soon!

• From Alec Tewsley-Booth's talk at INT workshop, May 11, 2023.

• From David Hertzog's talk at USQCD all hands meeting, April 21, 2023.

Plans for Release of Run 2/3

- All ω_a measurements are now *relatively* unblinded;
 - 6 pre-selected methods have the greatest sensitivity and independence; the will be averaged to provide the best and most robust result
 - 2 Recons; 2 Asymmetry Weighted Fits; 2 Ratio-Asymmetry Fits
- The magnetic field analysis is very mature and thoroughly reviewed
- The various "Beam Dynamics" corrections are nearly complete
- After documents are blessed, we will vote to unblind.
- Public release follows within a few weeks

Muon g - 2 from the Standard Model

6 / 37

Muon g - 2 Theory Initiative White paper posted 10 June 2020.

132 authors from worldwide theory + experiment community. [Phys. Rept. 887 (2020) 1-166]

• Two methods: dispersive + data \leftrightarrow lattice QCD

From Aida El-Khadra's theory talk during the Fermilab g - 2 result announcement.

Outline

1. Introduction

2. Data driven approach

- 3. Lattice QCD
- 4. Hadronic light-by-light contribution (HLbL)
- 5. Hadronic vacuum polarization contribution (HVP)
- 6. Summary

Muon g - 2 HLbL: Data driven approach (WP2020)

Contribution	PdRV(09) [471]	N/JN(09) [472, 573]	J(17) [27]	Our estimate	
π^0, η, η' -poles	114(13)	99(16)	95.45(12.40)	93.8(4.0)	
π , K-loops/boxes	-19(19)	-19(13)	-20(5)	-16.4(2)	
S-wave $\pi\pi$ rescattering	-7(7)	-7(2)	-5.98(1.20)	-8(1)	
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)	
scalars	_	_	_	} - 1(3)	
tensors	_	_	1.1(1)		
axial vectors	15(10)	22(5)	7.55(2.71)	6(6)	
u, d, s-loops / short-distance	-	21(3)	20(4)	15(10)	
c-loop	2.3	_	2.3(2)	3(1)	
total	105(26)	116(39)	100.4(28.2)	92(19)	

Table 15: Comparison of two frequently used compilations for HLbL in units of 10^{-11} from 2009 and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

- Values in the table is in unit of 10^{-11} .
- Uncertainty of the analytically approach mostly come from the short distance part.

/ 37

8

Muon g - 2 HVP: Data driven approach (WP2020)

At leading order (LO), i.e., $\mathcal{O}(\alpha^2),$ the dispersion integral reads

$$a_{\mu}^{\text{HVP LO}} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{K(s)}{s} R(s) \, ds \,, \tag{1}$$

R(s) is the so-called (hadronic) R-ratio defined by

$$R(s) = \frac{\sigma^0(e^+e^- \to \text{hadrons}(+\gamma))}{\sigma_{\text{pt}}}, \quad \sigma_{\text{pt}} = \frac{4\pi\alpha^2}{3s}.$$
 (2)

K(s) is an analytically known kernel function

$$K(s) = \frac{x^2}{2}(2-x^2) + \frac{(1+x^2)(1+x)^2}{x^2} \left(\log(1+x) - x + \frac{x^2}{2} \right) + \frac{1+x}{1-x} x^2 \log x \,, \tag{3}$$

where $x = rac{1-eta_\mu}{1+eta_\mu}$, $eta_\mu = \sqrt{1-4m_\mu^2/s}$.

Muon g - 2 HVP: Data driven approach (WP2020)

10 / 37

- Based on analysis of DHMZ, KNT, G. Colangelo et al, M. Hoferichter et al using experimental inputs from CLEO, SND, BESIII, CMD-2, BABAR, KLOE, etc.
- The final error is evaluated as the quadratic sum of difference sources.
- The first error 2.8×10^{-10} refers to the experimental uncertainties, where 2π channel (1.9×10^{-10}) , 3π channel (1.5×10^{-10}) .
- The last systematic error are from the high energy region estimated from Quark-hadron duality violation (DV) or perturbative QCD (pQCD).
- The middle systematic error 2.8×10^{-10} mostly from the 2π channel. Estimated as half the difference between evaluations without BABAR and KLOE. This difference exceeds the difference between the DHMZ and KNT evaluations (1.8×10^{-10})

Muon g - 2 HVP: Data driven approach (WP2020)

• The middle systematic error 2.8×10^{-10} mostly from the 2π channel. Estimated as half the difference between evaluations without BABAR and KLOE. This difference exceeds the difference between the DHMZ and KNT evaluations (1.8×10^{-10})

Muon g - 2 HVP: Data driven approach (New CMD-3 results) 12 / 37

Figure 36: The $\pi^+\pi^-(\gamma)$ contribution to $a_{\mu}^{had,LO}$ from energy range $0.6 < \sqrt{s} < 0.88$ GeV obtained from this and other experiments.

Table 4: The $\pi^+\pi^-(\gamma)$ contribution to $a_{\mu}^{had,LO}$ from energy range $0.6 < \sqrt{s} < 0.88$ GeV obtained from this and other experiments.

 $a_{\mu}^{\pi^+\pi^-,LO}, 10^{-10}$

 368.8 ± 10.3

 366.5 ± 3.4

 364.7 ± 4.9

 360.6 ± 2.1

 370.1 ± 2.7

 361.8 ± 3.6

 370.0 ± 6.2

 366.7 ± 3.2

 379.3 ± 3.0

arXiv:2302.08834

Muon g - 2 HVP: Data driven approach (New CMD-3 results) 13 / 37

Figure 34: The relative difference of the ISR measurements to the CMD-3 fit.

Figure 35: The relative difference of the previous energy-scan measurements to the CMD-3 fit.

generally shows larger pion form factor in the whole energy range under discussion. The most significant difference to other energy scan measurements, including previous CMD-2 measurement, is observed at the left side of ρ -meson ($\sqrt{s} = 0.6 - 0.75$ GeV), where it reach up to 5%, well beyond the combined systematic and statistical errors of the new and previous results. The source of this difference is unknown at the moment.

arXiv:2302.08834

Outline

- 1. Introduction
- 2. Data driven approach

3. Lattice QCD

- 4. Hadronic light-by-light contribution (HLbL)
- 5. Hadronic vacuum polarization contribution (HVP)
- 6. Summary

Lattice QCD: Action

15 / 37

Figure credit: Stephen R. Sharpe.

Lattice QCD: Monte Carlo

$$\begin{split} \langle \mathcal{O}(U, q, \bar{q}) \rangle &= \frac{\int [\mathcal{D}U] \prod_{q} [\mathcal{D}q_{q}] [\mathcal{D}\bar{q}_{q}] e^{-S_{E}^{\text{latt}}} \mathcal{O}(U, q, \bar{q})}{\int [\mathcal{D}U] \prod_{q} [\mathcal{D}q_{q}] [\mathcal{D}\bar{q}_{q}] e^{-S_{E}^{\text{latt}}}} \\ &= \frac{\int [\mathcal{D}U] e^{-S_{\text{gauge}}^{\text{latt}}} \prod_{q} \det \left(D_{\mu}^{\text{latt}} \gamma_{\mu} + am_{q} \right) \tilde{\mathcal{O}}(U)}{\int [\mathcal{D}U] e^{-S_{\text{gauge}}^{\text{latt}}} \prod_{q} \det \left(D_{\mu}^{\text{latt}} \gamma_{\mu} + am_{q} \right)} \end{split}$$

Monte Carlo:

- The integration is performed for all the link variables: U. Dimension is $L^3 \times T \times 4 \times 8$.
- Sample points the following distribution:

$$e^{-S_{\text{gauge}}^{\text{latt}}(U)} \prod_{q} \det \left(D_{\mu}^{\text{latt}}(U) \gamma_{\mu} + a m_{q} \right)$$

• Therefore:

$$\langle \mathcal{O}(\textit{U},\textit{q},\bar{\textit{q}})
angle = rac{1}{N_{\mathsf{conf}}} \sum_{k=1}^{N_{\mathsf{conf}}} \tilde{\mathcal{O}}(\textit{U}^{(k)})$$

Parameters in lattice QCD calculations (e.g. isospin symmetric (m_u = m_d = m_l) and three flavor u, d, s theory):

Note that lattice spacing a is determined by g via the renormalization group equation.

• The experimental inputs needed to determine these parameters can be: m_{π}/m_{Ω} , m_{K}/m_{Ω} .

- RBC-UKQCD Domain wall fermion action and Iwasaki gauge action ensembles.
- At physical pion mass (almost).
- 481, 641, 961 with $a^{-1} = 1.73$, 2.36, 2.68 GeV, L = 5.47, 5.36, 7.06 fm.

Outline

- 1. Introduction
- 2. Data driven approach
- 3. Lattice QCD
- 4. Hadronic light-by-light contribution (HLbL)
- 5. Hadronic vacuum polarization contribution (HVP)
- 6. Summary

Muon g - 2 HLbL: diagrams

19 / 37

- Gluons and sea quark loops (not directly connected to photons) are included automatically to all orders!
- There are additional different permutations of photons not shown.
- The second row diagrams are suppressed by flavor SU(3) symmetry (and small charge factors, 1/N_c, etc). The contributions are numerically very small.

Muon g - 2 HLbL: Lattice QCD results

20 / 37

- RBC-UKQCD 23: Physical m_π and QED_∞.
 Mainly based on the "481" ensemble. Several new error reduction techniques are developed to reduce the statistical noise in the long distance region.
- Required precision for HLbL: 10% to match Fermilab's final results. (Very close now.)

Outline

- 1. Introduction
- 2. Data driven approach
- 3. Lattice QCD
- 4. Hadronic light-by-light contribution (HLbL)
- 5. Hadronic vacuum polarization contribution (HVP)
- 6. Summary

Muon g - 2 HVP: diagrams

- Gluons and sea quark loops (not directly connected to photons) are included automatically to all orders!
- Need to calculate and cross check all the contributions.

Muon g - 2 HVP: lattice approach

T. Blum 2003; D. Bernecker, H. Meyer 2011.

23 / 37

- From muon g − 2 theory initiative white paper (2020). Value in unit of 10⁻¹⁰
- Light quark connected diagram has the largest contribution and largest uncertainty.

Muon g - 2 HVP: overview

- Dispersive method via R-ratio (red points) is mature and reproducible.
- Lattice (blue points) errors are limited by statistics.
 Except for BMW, which beats

is limited by systematic error: BMW 20: 707.5(2.3)_{stat}(5.0)_{sy}

- Lattice-QCD calculations of comparable precision needed.
- Consistency is needed to claim new physics.

24 / 37

Muon g - 2 HVP: overview

- Dispersive method via R-ratio (red points) is mature and reproducible.
- Lattice (blue points) errors are limited by statistics.
 Except for BMW, which beats down the statistical error, result is limited by systematic error: BMW 20: 707.5(2.3)_{stat}(5.0)_{sys}
- Lattice-QCD calculations of comparable precision needed.
- Consistency is needed to claim new physics.

/ 37

25

Muon g - 2 HVP: uncertainties

T. Blum 2003; D. Bernecker, H. Meyer 2011.

$$C(t) = \frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2} \langle J_j^{em}(\vec{x}, t) J_j^{em}(0) \rangle_{QCD}$$
$$a_{\mu}^{HVP \ LO} = \sum_{t=0}^{+\infty} w(t)C(t)$$

- Statistical error is mostly from: Light quark connected diagram at $t\gtrsim 1.5~{
 m fm}$
 - More configurations (BMW 20 used \sim 20,000).
 - Use low modes averaging to gain full volume average. \checkmark
 - Bounding method on the long distance tail. \checkmark
 - Study the $\pi\pi$ system spectrum to calculate C(t) large t.
 - * Not used in any published work yet!
 - * On-going efforts with promising initial results.
- Systematic error is mostly from the **continuum extrapolation**.

26

′ 37

Muon g - 2 HVP: long distance part from lattice calculation 27 / 37

 Main idea is that: one does not have to calculate the long distance part of the correlation function directly.

$$C(t) = \frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2} \langle J_j(\vec{x}, t) J_j(0) \rangle$$

= $\sum_n \frac{V}{3} \sum_{j=0,1,2} \langle 0 | J_j(0) | n \rangle \langle n | J_j(0) | 0 \rangle e^{-E_n t}$

- The summation over n is limited to zero momentum states and states are normalized to "1".
- At large t, only lowest few states contribute. We only need the matrix elements $\langle n|J_i(0)|0\rangle$ and the corresponding energy E_n .
- Need to study the spectrum of the $\pi\pi$ system!
- Can reduce the statistical error beyond the gauge noise limit!

GEVP results to reconstruct long-distance behavior of local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance, missing excited states at short-distance

More states \implies better reconstruction, can replace C(t) at shorter distances

RBC-UKQCD by Aaron Meyer and Christoph Lehner Preliminary

RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

$$a_{\mu}^{\text{HVP LO}} = \sum_{t=0}^{+\infty} w(t)C(t)$$

$$w(t) = w^{\mathsf{SD}}(t) + w^{\mathsf{W}}(t) + w^{\mathsf{LD}}(t)$$

- Splitting sum into three parts allows crosschecks:
 - short distance \Leftarrow discretization effects
 - long distance \Leftarrow noisy $\pi\pi$ tail
 - intermediate (Window): sweet spot
- Can form windows from $R(e^+e^-)$ dispersive analysis too.

Combine "window" from lattice with dispersive analysis.

Compare "window" among lattice-QCD calculations

RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

$$a_{\mu}^{\text{HVP LO}} = \sum_{t=0}^{+\infty} w(t)C(t)$$

$$w(t) = w^{\mathsf{SD}}(t) + w^{\mathsf{W}}(t) + w^{\mathsf{LD}}(t)$$

Lattice \vdash

- Splitting sum into three parts allows crosschecks:
 - short distance \Leftarrow discretization effects
 - long distance \Leftarrow noisy $\pi\pi$ tail
 - intermediate (Window): sweet spot
- Can form windows from R(e⁺e⁻) dispersive analysis too.

Combine "window" from lattice with dispersive analysis.

 Compare "window" among lattice-QCD calculations

31 / 37

RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

$$a_{\mu}^{\text{HVP LO}} = \sum_{t=0}^{+\infty} w(t)C(t)$$

- $w(t) = w^{\mathsf{SD}}(t) + w^{\mathsf{W}}(t) + w^{\mathsf{LD}}(t)$
- Splitting sum into three parts allows crosschecks:
 - short distance \Leftarrow discretization effects
 - long distance \Leftarrow noisy $\pi\pi$ tail
 - intermediate (Window): sweet spot
- Can form windows from $R(e^+e^-)$ dispersive analysis too.

Combine "window" from lattice with dispersive analysis.

Compare "window" among lattice-QCD calculations

- Lattice QCD community has already reached consensus on the window contribution!
- The consensus has a noticeable tension with the dispersive results.

RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

$$a_{\mu}^{\text{HVP LO}} = \sum_{t=0}^{+\infty} w(t)C(t)$$

$$w(t) = w^{\mathsf{SD}}(t) + w^{\mathsf{W}}(t) + w^{\mathsf{LD}}(t)$$

- Splitting sum into three parts allows crosschecks:
 - short distance \Leftarrow discretization effects
 - long distance \Leftarrow noisy $\pi\pi$ tail
 - intermediate (Window): sweet spot
- Can form windows from R(e⁺e⁻) dispersive analysis too.
 Combine "window" from lattice with dispersive analysis.
- Compare "window" among lattice-QCD calculations

32 / 37

Lattice ⊢↔

• From Martin Hoferichter's talk at INT workshop, May 11, 2023.

Role of isospin breaking: phenomenological estimates

	SD window		int window		LD window		full HVP	
	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$
$\pi^{0}\gamma$	0.16(0)	-	1.52(2)	-	2.70(4)	-	4.38(6)	-
$\eta \gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$ ho{-}\omega$ mixing	-	0.05(0)	-	0.83(6)	-	2.79(11)	-	3.68(17)
FSR (2 <i>π</i>)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi 0}$ vs. $M_{\pi \pm}$ (2 π)	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	-7.67(22)	-
FSR (K^+K^-)	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass (K^+K^-)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass ($\bar{K}^0 K^0$)	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.14(1)	0.08(3)	1.61(12)	1.02(20)	-2.44(16)	2.92(17)	-0.68(29)	4.04(39)
BMWc 2020	-	-	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)
RBC/UKQCD 2018	-	-	0.0(2)	0.1(3)	-	-	-1.0(6.6)	10.6(8.0)
JLM 2021	-	-	-	-	-	-	-	3.32(89)

• Reasonable agreement with BMWc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021

- The current white paper result for the HVP is a community-vetted method average for the data-driven approach. It accounts for spreads in sub-contributions between individual results (KNT/DHMZ) that may not be visible in the agreement of looking at the final results for the HVP. Its error estimate accounts for the tension between BaBar and KLOE experimental inputs. New CMD3 results have larger tension.
- We are now in the fortunate situation that we have a first lattice result with sub-percent precision (BMW). It is clear that to safely assess systematic uncertainties, most notably the one related to the choice of the lattice regulator, calculations by other lattice groups with a similar precision will be essential. The importance of having more than one lattice calculations of the same quantity and obtained with different lattice discretizations is well understood inside the lattice community.
- On the way to a lattice QCD average for HVP, it is prudent to also look at individual sub-contributions and their agreement, similar to what was done for the data driven approach. For example, individual QED corrections should be cross checked (currently there are some tensions).

Muon g - 2 HVP: Some comments

• The previous tension in the standard iso-symmetric window results has already been resolved among lattice QCD calculations!

35 / 37

*: Use iso-symmetric, quark connected, light quark contribution from this work and remaining contributions from RBC-UKQCD 18 (W) or ETMC 22 (SD).

Outline

- 1. Introduction
- 2. Data driven approach
- 3. Lattice QCD
- 4. Hadronic light-by-light contribution (HLbL)
- 5. Hadronic vacuum polarization contribution (HVP)
- 6. Summary

Summary

• Hadronic light-by-light (HLbL) contribution:

We have reliable and consistent calculations using both lattice QCD and data driven dispersive approach. The results have good precision.

- Hadronic vacuum polarization (HVP) contribution:
 - Short distance (SD) part: Results are consistent and precise.
 - Middle window (W) part: Consensus is reached among lattice QCD calculations. However, there is more than 3σ tension between:
 - * lattice QCD consensus and previous data driven results,
 - * new CMD-3 and previous data driven results.

Lattice QCD consensus appears to be consistent with the new CMD-3 results.

– Long distance (LD) part and its QED corrections: Some tension ($\sim 2\sigma$) between BMW 20 and previous data driven results. BMW 20 appears to be consistent with the new CMD-3 results. Results from other lattice collaborations are coming.

More information is needed to draw firm conclusion right now.

Thank You!

- The left table shows result from RBC-UKQCD 18. The right figure shows the result from BMW 20.
- This discrepancy needs further study and more cross checks.

HVP: BMW 2021 - all channels

40 / 37

 $a_{\mu}^{\text{LO-HVP}}$ (×10¹⁰) = 707.5(2.3)_{stat}(5.0)_{syst}(5.5)_{tot}

• Staggered fermion has a special lattice artifacts: taste breaking effects.

Curves show different treatments of correcting the taste breaking effects.

HLbL: QCD box inside QED box

• The basic idea is to right the Feynman diagram in coordinate space, and then it is possible and natural to use infinite volume for QED and finite (by necessity) for QCD.

′ 37

42

 In a way, this is the HLbL version of the Bernecker-Meyer formula: coordinate space (sum over t), infinite-volume QED kernel, finite volume (by necessity) calculation of the correlator. Muon g - 2 HLbL: RBC-UKQCD 2019 - QED₁ results

Muon g - 2 HLbL: Mainz 2021 - Results

44 / 37

45 / 37

Muon g - 2 HLbL: RBC-UKQCD 2023 - QED $_{\infty}$ results

