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Neutrinos in the Universe

Big-Bang neutrinos ~ 
0.0004 eV 

Neutrinos from the Sun 
< 20 MeV

Atmospheric 
neutrinos ~ GeV

Neutrinos from accelerators  
 up to GeV (109 eV) 

Antineutrinos from nuclear 
reactors      < 10.0 MeV
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Early Days of Neutrinos

N → N’ + e-    some nuclei emit 
electrons!

1914, Chadwick 1930, Pauli

1956, Reines and Cowan, 
“Observation of the Free Antineutrino”

inverse beta decay
νe + p → e+ + n

1935, Goeppert Mayer 1937, Majorana

= ?
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Neutrino Physics is (almost) Impossible
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Pioneering Experiments

νe + 37Cl→ 37Ar + e-

1970 - 1994 SSM

only sensitive to νe

Ray Davis

Cl-Ar Solar Neutrino Experiment 
at Homestake

experimental talent
patience 
persistence
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From Anomalies to Precision Oscillation Physics

solar neutrino problem

Ga

Cl SK

1960 -1990
oscillation searches
1990 - 2000

atmospheric/beam 
neutrinos
θ23, Δm223

solar/reactor 
neutrinos
θ12, Δm212
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25 Years Ago - Discovery of Atmospheric Neutrino Oscillations

Neutrino 98
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Neutrino Mixing

E. Lisi

reactor 
solar 
long baseline
atmospheric

evidence for neutrino oscillations in many sources

3 flavor picture fits data well
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Neutrino Mixing - 3 Flavor Paradigm

K. Scholberg



10

Precision Oscillation Physics

arXiv: 2203.07214
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Open Questions

Where do neutrino masses come 
from?

What is the origin of leptonic
mixing?

Are neutrinos their own 
antiparticles?

v=v ?
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Major discoveries ahead
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What is the nature of neutrino mass? v=v ?
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Understanding Neutrino Mass from Double Beta Decay

Proposed in 1935 by Maria Goeppert-Mayer
Observed in several nuclei
T1/2 ~ 1019 – 1021 yrs

2νββ 

Proposed in 1937 by Ettore Majorana
Not observed yet
T1/2 ≥ 1025 y

0νββ 

€ 

Γ2ν =G2ν |M2ν |
2

€ 

Γ0ν =G0ν |M0ν |
2 mββ
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0νββ would imply
- lepton number non-conservation
- Majorana nature of neutrinos

Nuclei as a laboratory to study lepton number violation at low energies 
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Neutrinoless Double Beta Decay (0νββ)

2νββ
0νββ

Not to scale

Energy peak is necessary and sufficient signature to claim a discovery. 
Additional signatures from signal topology etc

Annual Reviews: 52:115-151

Sensitivity

αS0ν

Isotopic 
abundance

Efficiency
Mass

Runtime

Energy 
resolution

Background
Search for peak search at the Q value of the decay
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Isotope Choice

Desired Characteristics
• High isotopic abundance
• Enrichment possible
• Qββ above end point of β or γ 

radiation
• Large scale production possible
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Isotope Choice
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0νββ Searches

pushing limits towards 
inverted hierarchy Legend

CUORE/CUPID

EXO/nEXO
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LEGEND
1000 kg of enriched Ge detectors  (enriched to 92% 76Ge)

• 2.6 kg average mass

• Mounted in “strings” using components  

made from electroformed copper and  
scintillating plastic, PEN


• ASIC readout front-end electronics

• Underground-sourced LAr active shield

• Dual fiber-curtain LAr instrumentation  

• EFCu Reentrant tubes



EXO-200 at WIPP (Decommissioned in Dec. 2018): 

• EXO-200 first 100-kg class ββ experiment

• 175 kg liquid-Xe TPC with ~80% Xe-136 

• Discovered 2νββ in Xe-136

• Demonstrated excellent background identification 

through multiplicity and location of event in TPC 

	 ! this is essential for nEXO design 

nEXO: 

• 5-tonne liquid Xe TPC 

• Enriched in Xe-136 at ~90%

• SNOLAB cryopit preferred location by collaboration
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EXO

April 27, 2023https://www-project.slac.stanford.edu/exo/ 
https://nexo.llnl.gov/
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CUPID: CUORE Upgrade with Particle Identification
Single module: Li2100MoO4, 45x45x45 mm, 280 g

Detector: 57 towers of 14 floors with 2 crystals 
each, 1596 crystals

~240 kg of 100Mo with >95% enrichment

~1.6×1027 100Mo atoms 

Ge light detector as in CUPID-Mo, CUPID-0

Tower

Detector Module
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CUORE Detector
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KamLAND-Zen
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NEXT

NEXT aims to capture and image 
Ba2+ions produced in double beta 
decay of 136Xe.
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PandaX - xT

Dual Phase Xenon TPC
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SNO+

Presently running with liquid 
scintillator for other physics and 
evaluating backgrounds. Te 
projected for early 2025.
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THEIA - Hybrid Neutrino Detection
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Sensitivity of Future 0νββ Searches

Designing for discovery experiments
A discovery in the next 10-15 years possible

variety of isotopes and techniques 
important



28

What is the mass scale?
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Paths to the Neutrino Mass Scale

K. Valerius

0.8 eV
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Direct Neutrino Mass Searches

Tritium experiments define the mass limit
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KATRIN
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Project 8 - A New Approach to Measuring Neutrino Mass

Ee = 18.6 keV
B = 1 T
⇒ P ≈ 1 fWIn uniform magnetic field, a


charged particle will have a

helical trajectory


Accelerating electron will

radiate EM waves at

frequency:

Cyclotron Radiation Emission 
Spectroscopy (CRES)
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What is the ordering of neutrinos masses?

Is there CP-violation?

Is the standard picture 3 flavor paradigm 
correct?
- Sterile neutrinos?
- Non-standard effects?

vs
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Jiangmen Underground Neutrino Observatory (JUNO)

JUNO-Tao
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Short Baseline Neutrino Oscillation Searches
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Short Baseline Neutrino Oscillation Searches
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PROSPECT - Precision Oscillation and Spectrum Experiment

Antineutrino 
Detector

HFIR Core

Search for short-baseline oscillation at  <10m
Precision measurement of 235U reactor νe spectrum
Relative Spectrum Measurement
relative measurement of L/E and spectral shape distortions
unoscillated spectrum oscillated spectrum

Segmented, 
6Li-loaded Detector
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• Combine data into 16 energy, 

BEST Radiochemical Experiment

Pieter Mumm

National Institute of Standards and Technology


University of Kentucky Colloquium, 9/04/2020


• 3.4 MCi 51Cr source irradiates nested 
volumes of gallium

• Rin = 0.791±0.05 and Rout = 0.766±0.05 

• significant deficit implies large mixing

arXiv:2109.11482
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Constraints on  /   Disappearanceνe νe

Now Future 
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Long-Baseline Accelerator Experiments

K. Scholberg
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DUNE and Hyper-K

C. Marshall

DUNE

Hyper-K
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DUNE and Hyper-K

C. Marshall

DUNE

Hyper-K



43

THREE GENERATIONS OF WATER CHERENKOV DETECTOR IN KAMIOKA

Kamiokande

Birth of neutrino 
astrophysics

Super-Kamiokande

Discovery of neutrino 
oscillations

Hyper-Kamiokande

Explore new physics

(1983-1996) (1996 - ongoing) (start operation in 2027)

• Atmospheric and solar 
neutrino “anomaly”

• Supernova 1987A

• Proton decay: world best-limit
• Neutrino oscillation (atm/solar/

LBL)
➢ All mixing angles and ∆ 𝑚2𝑠

• Extended search for proton 
decay

• Precision measurement of 
neutrino oscillation including 
CPV and MO

• Neutrino astrophysics



Top of the Detector Cavern
(14th March 2023)
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Hyper-K

40m (D)
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DUNE - Deep Underground Neutrino Experiment May 2018
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DUNE and Mass Ordering

C. Marshall

DUNE  and  spectra can distinguish mass ordering in Phase Iνe νe
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DUNE and CP Violation

C. Marshall

DUNE  and  spectra can measure  and  octant in Phase IIνe νe δCP θ23



48

The Quest for CP Violation

C. Marshall
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Summary and Outlook

0νββ

ν experiments provide key insight into the nature of neutrinos and physics beyond the SM

Beta decay allow
direct neutrino mass 
measurements
Aim to reach mν <0.04 eV

Neutrinoless double beta 
(0νββ) powerful probe of lepton 
number violation (ΔL=2).
Would establish lepton number 
violation and demonstrate that 
neutrinos are Majorana.

Reactor and accelerator 
experiments will determine mass 
ordering and probe CP violation.

Precision oscillation measurements will test the 3 flavor 
paradigm.

Exciting years lie ahead! 
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