Opportunities for Discovery

Thanks to many colleagues for slides and input!

Neutrino Experiments

Karsten Heeger Yale University

July 3, 2023

Neutrinos in the Universe

Early Days of Neutrinos

1914, Chadwick

FIG. 5. Energy distribution curve of the beta-rays.

1935, Goeppert Mayer

1937, Majorana

My max. Photos spin of see 0393 Absohrift/15.12.5 M

Offener Brief an die Gruppe der Radicaktiven bei Genvereins-Tagung an Tibingen.

bachrift.

hysikelisches Institut iar Eidg. Technischen Hochschule

Zirich, 4. Des. 1930 Dioriastrasse

Liebe Radioaktive Damen und Herren;

Wie der Veberbringer dieser Zeilen, den ich huldvollet ansuhören bitte, Ihnen des nEheren auseinendersetsen wird, bin ich angesichts der "felschen" Statistik der N- und Li-6 Kerne, sowie des kontinuierlichen bete-Spektrums auf einen verweifelten Ausweg verfallen um den "Wecheelsets" (1) der Statistik und den Energienste mu retten. Mämlich die Möglichkeit, es könnten elektrisch neutrele Teiloben, die ich Neutronen nennen will, in den Iernen existieren, welche den Spin 1/2 beben und des Ausschliessungsprinzip befolgen und state von Lichtquanten unseerden noch dadurch anterscheiden, dass sie minist mit Lichtquanten unseerden noch dadurch anterscheiden, dass sie minist mit Lichtgeschwindigkeit laufen. Die Masse der Neutronen Manste von dersulben Grossenordnung wie die Elektronensesse sein und jedenfalls nicht grösser als 0,01 Protonennassas- Das kontinuisrliche bein- Spektrum wäre dann varständlich unter der Annahme, dass beim beis-Zerfall mit dem blektron jeweils noch ein Meutron emittiert wird, depart, dass die Summe der Energien von Mentron und Michtron konstant ist.

1956, Reines and Cowan, "Observation of the Free Antineutrino"

Neutrino Physics is (almost) Impossible

532

Bethe

The "Neutrino"

of the neutrino in nuclear transformations-one can conclude that there is no practically possible way of observing the neutrino.

NATURE

April 7, 1934

Peierls

 $\overline{v} + p \rightarrow e^+ + n$

(Inverse beta decay)

H. BETHE. R. PEIERLS.

Pioneering Experiments

Ray Davis

experimental talent patience persistence

25 Years Ago - Discovery of Atmospheric Neutrino Oscillations

V98, @Takayam June 1998

Atmospheric neutrino results from Super-Kamiokande & Kamiokando - Evidence for Yu oscillations -

T. Kajita Kamioka observatory, Univ. of Tokyo for the {Kamiokande Super-Kamiokande} Collaborations

Neutrino 98

Neutrino Mixing

evidence for neutrino oscillations in many sources

Energy (keV)

reactor solar long baseline atmospheric

3 flavor picture fits data well

$\mu \rightarrow e (\Delta m^2, \theta_{13}, \theta_{23})$

E. Lisi

Neutrino Mixing - 3 Flavor Paradigm

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

		Normal Ordering (best fit)		Inver
		bfp $\pm 1\sigma$	3σ range	bfp :
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	$\begin{array}{r} 0.304\substack{+0.012\\-0.012}\\ 33.45\substack{+0.77\\-0.75}\end{array}$	$\begin{array}{c} 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \end{array}$	$0.304 \\ 33.45$
	$\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{array}{r} 0.450^{+0.019}_{-0.016} \\ 42.1^{+1.1}_{-0.9} \end{array}$	$\begin{array}{c} 0.408 ightarrow 0.603 \ 39.7 ightarrow 50.9 \end{array}$	0.570^{+}_{-} 49.0
	$\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{array}{c} 0.02246^{+0.00062}_{-0.00062} \\ 8.62^{+0.12}_{-0.12} \end{array}$	$\begin{array}{c} 0.02060 \rightarrow 0.02435 \\ 8.25 \rightarrow 8.98 \end{array}$	0.02241 8.61 ⁺
	$\delta_{\rm CP}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.04$	7.42
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	-2.490
	$\Delta m^2_{3\ell} \equiv$	$\Delta m_{31}^2 > 0$ for	NO and $\Delta m^2_{3\ell} \equiv$	Δm_{32}^2

K. Scholberg

Precision Oscillation Physics

Open Questions

Where do neutrino masses come from?

What is the origin of leptonic mixing?

Are neutrinos their own antiparticles?

Major discoveries ahead

 m_{3}^{2} _

 m_2^2

 $m_1^2_{-}$

0

11

What is the nature of neutrino mass?

.

Understanding Neutrino Mass from Double Beta Decay

Nuclei as a laboratory to study lepton number violation at low energies

2νββ

Proposed in 1935 by Maria Goeppert-Mayer **Observed in several nuclei**

 $T_{1/2} \sim 10^{19} - 10^{21} \text{ yrs}$

$$\Gamma_{2\nu} = G_{2\nu} \mid M_{2\nu} \mid^2$$

Ονββ

Proposed in 1937 by Ettore Majorana Not observed yet

 $T_{1/2} \ge 10^{25} y$

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

0νββ would imply

- lepton number non-conservation
- Majorana nature of neutrinos

Neutrinoless Double Beta Decay (0vßß)

Energy peak is necessary and sufficient signature to claim a discovery. Additional signatures from signal topology etc

Isotope Choice

Desired Characteristics

- High isotopic abundance
- Enrichment possible
- Qββ above end point of β or γ radiation
- Large scale production possible

Isotope Choice

From: Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 Nuclear Science Advisory Committee Long Range Plan: arXiv:2304.03451iv:2304.03451

Ονββ Searches

LEGEND

1000 kg of enriched Ge detectors (enriched to 92% ⁷⁶Ge)

- 2.6 kg average mass
- Mounted in "strings" using components made from electroformed copper and scintillating plastic, PEN

• ASIC readout front-end electronics

EXO

EXO-200 at WIPP (Decommissioned in Dec. 2018):

- EXO-200 first 100-kg class ββ experiment
- 175 kg liquid-Xe TPC with ~80% Xe-136
- Discovered $2\nu\beta\beta$ in Xe-136
- Demonstrated excellent background identification through multiplicity and location of event in TPC

 \rightarrow this is essential for nEXO design

https://www-project.slac.stanford.edu/exo/

nEXO:

- 5-tonne liquid Xe TPC
- Enriched in Xe-136 at ~90%
- SNOLAB cryopit preferred location by collaboration

https://nexo.llnl.gov/

CUPID: CUORE Upgrade with Particle Identification

Single module: $Li_2^{100}MoO4$, 45x45x45 mm, 280 g Detector: 57 towers of 14 floors with 2 crystals each, 1596 crystals

- ~240 kg of ¹⁰⁰Mo with >95% enrichment
- ~1.6×10^{27 100}Mo atoms
- Ge light detector as in CUPID-Mo, CUPID-0

CUPID ¹⁰⁰Mo

heat + light (scintillating bolometer) **Detector Module**

Karsten Heeger, Yale University

CUORE Detector

0

0

1. Al

KamLAND-Zen

 $> 2 \times 10^{27} \, \mathrm{yr}$ (target sensitivity) $< 12 \sim 53 \, \mathrm{meV}$ (corresponding mass limit) 3σ discovery potential is not studied, but ~1x10²⁷ yr

Further technologies being developed imaging sensor (1/10 reduction of long-lived BG) high-p xenon deployment (2 times more xenon)

Then ?

It will not be a good choice for the single purpose, but this is multi-purpose detector.

w/ more than 20 ton xenon imaging sensor high-p xenon

For more xenon (possible source) enrichment.

	36 months	atmospheric
128 Xe/ 132 Xe	$2.81 \cdot 10^{-3}$	$7.13 \cdot 10^{-2}$
129 Xe/ 132 Xe	$4.7 \cdot 10^{-6}$	0.9832
130 Xe/ 132 Xe	$3.32 \cdot 10^{-4}$	0.1518
131 Xe/ 132 Xe	0.3756	0.7876
134 Xe/ 132 Xe	1.3433	0.3883
136 Xe/ 132 Xe	2.1176 44%	0.3298 8.9%

1 ton planned (scalable)

Extraction from nuclear spent fuel is considered. More than 100 ton seems to be possible at 44% concentration of Xe-136 without centrifugal

 $T^{1/2} > 2.3 \times 10^{26}$ yr (Combined Kam-Zen 400 and 800) <M_{BB}> is < 36 – 156 meV

- NEXT uses enriched ¹³⁶Xe gas at high pressure and provides tracks of individual electrons.
- There is also a program of extracting Ba⁺ through fluorescence in organic molecules aiming at NEXT-BOLD.

NEXT aims to capture and image Ba2+ions produced in double beta decay of 136Xe.

PandaX - xT

Now operating PandaX-4T (natural xenon)

Step-wise upgrade in the same experimental hall based on possessed xenon towards 43ton (active), 47-ton (total) natural xenon

780t Liquid Scintillator to be loaded with 0.5% ^{130}Te initially **Increase to 3% planned for future**

- 2km underground in SNOLAB, Canada
- Infrastructure repurposed from **SNO**:
 - New calibration systems
 - Upgraded DAQ and electronics
 - New hold-down ropes
 - Scintillator Plant + Tellurium
 - synthesis and purification
 - ~9300 PMTs
 - 18m diameter PMT Support Structure
 - 12m diameter Acrylic Vessel
 - 7kt ultra pure water shielding

SNO+ **5 years at 0.5% Te Loading: 1300 kg** ¹³⁰Te

m_{ββ} < 30-130 meV (99.7% CL)

Presently running with liquid scintillator for other physics and evaluating backgrounds. Te projected for early 2025.

THEIA - Hybrid Neutrino Detection

Combine Cherenkov + scintillation in a single, large detector Directional information from Cherenkov topology + excellent resolution from high-yield scintillation Can interrogate a uniquely broad program of physics, from sub-MeV to multi-GeV

Sensitivity of Future 0vßß Searches

Designing for discovery experiments A discovery in the next 10-15 years possible

What is the mass scale?

Paths to the Neutrino Mass Scale

	Cosmology	Search for 0vßß	β-decay & electron capture
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$	$m_{\beta}^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	~0.1 – 0.6 eV	~0.1 – 0.4 eV	2 eV 0.8 eV
Potential: near-term (long-term)	60 meV (15 meV)	50 – 200 meV (20 – 40 meV)	200 meV (40 – 100 meV)
Model dependence	Multi-parameter cosmological model	 Majorana nature of v, lepton number violation BSM contributions other than m(v)? Nuclear matrix elements 	Direct, only kinematics; no cancellations in incoherent sum

K. Valerius

Direct Neutrino Mass Searches

Tritium experiments define the mass limit

KATRIN

Project 8 - A New Approach to Measuring Neutrino Mass

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

Cyclotron Radiation Emission Spectroscopy (CRES)

What is the ordering of neutrinos masses?

Is there CP-violation?

Is the standard picture 3 flavor paradigm correct?

- Sterile neutrinos?
- Non-standard effects?

Jiangmen Underground Neutrino Observatory (JUNO)

arXiv:2104.02565

JUNO-Tao

- 35.4 m diameter acrylic sphere filled with 20 kton of liquid scintillator (LS)
- 17,612 20" PMTs (LPMT) and 25,600 3" PMTs (SPMT)

~30% detection efficiency (LPMT)

JUNO Relative Uncertainty vs. Leading Experiments

	Δm_{21}^2	Δm_{31}^2	$\sin^2 \theta_{12}$	$\sin^2\theta_{13}$
JUNO 100 days	0.8%	1%	1.9%	47.9%
JUNO 20 years	0.1%	0.2%	0.3%	7.3%
KamLAND	2.4%	s. <u>—</u> :	-	-
T2K	-	2.6%	-	-
SNO+SK	-	-	4.5%	· - ·
Daya Bay	-	-	-	3.4%

Short Baseline Neutrino Oscillation Searches

The SBN program tests the sterile neutrino hypothesis by covering the parameter regions allowed by past anomalies at 5σ significance.

Complementary measurements in different modes: important for interpretation in terms of sterile neutrino oscillation.

PROSPECT - Precision Oscillation and Spectrum Experiment

BEST Radiochemical Experiment

- 3.4 MCi ⁵¹Cr source irradiates nested \bullet volumes of gallium
- $R_{in} = 0.791 \pm 0.05$ and $R_{out} = 0.766 \pm 0.05$ \bullet
- significant deficit implies large mixing \bullet

arXiv:2109.11482

Constraints on $\nu_e / \overline{\nu_e}$ **Disappearance**

Long-Baseline Accelerator Experiments

Past

Current

KEK to Kamioka 250 km, 5 kW

MINOS (+) FNAL to Soudan 734 km, 400+ kW

CERN to LNGS 730 km, 400 kW

NOvA FNAL to Ash River 810 km, 400-700 kW

LBNF/DUNE

FNAL to Homestake 1300 km, 1.2 MW (→2+ MW)

Hyper-K J-PARC to Kamioka 295 km, 750 kW (→1.3 MW)

12K (II) J-PARC to Kamioka 295 km, 380-750 kW →>1 MW

~ 420.0 mi / 675.8 km apro

K. Scholberg

DUNE and Hyper-K

DUNE

- Very long baseline \rightarrow large matter effect \rightarrow unambiguous mass ordering and CPV
- Broadband neutrino beam \rightarrow high statistics over full oscillation period
- Reconstruct E_v over broad range \rightarrow imaging + calorimetry \rightarrow LArTPC technology
- Highly-capable near detector to constrain systematic uncertainties

Hyper-K

- Shorter baseline \rightarrow small matter effect
- Off-axis location & narrowband beam \rightarrow very, very high statistics at oscillation maximum, less feed-down
- Lower energy and mostly CCQE → very large water Cherenkov detector
- Highly-capable near detector to constrain systematic uncertainties

C. Marshall

DUNE and Hyper-K

THREE GENERATIONS OF WATER CHERENKOV DETECTOR IN KAMIOKA

Kamiokande (1983-1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-l (1996

- Proton decay: world best-limitNeutrino oscillation (atm/solar/
- Neutrino o
 LBL)
 - > All mixing angles and $\Delta m^2 s$

Discovery of neutrino oscillations

Super-Kamiokande

(1996 - ongoing)

Hyper-Kamiokande (start operation in 2027)

- Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- Neutrino astrophysics

Explore new physics

Hyper-K

¥ 1

Top of the Detector Cavern (14th March 2023)

DUNE - Deep Underground Neutrino Experiment

APA* Horizontal Drift *Anode Plane Assemblies

**Charge Readout Planes

Phase I: near + far site infrastructure, upgradeable 1.2 MW beam, 2x18 kt LArTPC, movable ND + m catcher, on-axis ND Phase II: two more FD modules, >2 MW beam, ND upgrades [new ideas!] Broad physics program

DUNE and Mass Ordering

v_e+v_e per 0.5 GeV

DUNE ν_e and $\overline{\nu_e}$ spectra can distinguish mass ordering in Phase I

C. Marshall

DUNE and CP Violation

DUNE ν_e and $\overline{\nu_e}$ spectra can measure δ_{CP} and θ_{23} octant in Phase II

Reconstructed E_v (GeV)

Varying δ_{CP} Data points show NO, NO $\delta_{CP} = -\pi/2$ NO $\delta_{CP} = \pi/2$ $_{\rm e}+\overline{\rm v}_{\rm e}$ per 0.5 GeV DUNE FD V. 900 E $\delta_{CP} = 0, \sin^2 \theta_{23} = 0.5$ Stat errors only $sin^{2}\theta_{23} = 0.5$ 800 E NO $\delta_{CP} = 0$ 700 E 600 F Neutrino mode 500 E 400 E 300 E 200 E 100 E **Phase II** Reconstructed E_v (GeV) NO $\delta_{CP} = -\pi/2$ GeV DUNE FD V. 350 Stat errors only - NO $\delta_{CP} = \pi/2$ 0.5 $\sin^2 \theta_{23} = 0.5$ NO $\delta_{CP} = 0$ 300 $v_e + \overline{v}_e$ per 250 E 200 E Antineutrino mode 150 100 E 50

C. Marshall

The Quest for CP Violation

- Assu begi II is
- If δ_{C} in 20
- If $\delta_{\rm C}$ in be
- If δ_{CF} DUN signi comb
- If δ_{CP} Hype

When will CP violation be established?

ming that ILINO determines the mass ordering at 3g by 2030 Hyper-K	data
Nature is very kind:	Phas
Hyper-K establishes CPV	. at 5
with mass ordering from JUNO (3σ)	
or DUNE (5 σ)	at 5 natio

with DUNE mass ordering)

C. Marshall

Summary and Outlook

v experiments provide key insight into the nature of neutrinos and physics beyond the SM

 ν_e

 ν_{μ}

 $\nu_{ au}$

Beta decay allow direct neutrino mass measurements Aim to reach m_v <0.04 eV

Reactor and accelerator experiments will determine mass ordering and probe CP violation. **Precision oscillation measurements** will test the 3 flavor paradigm.

Karsten Heeger, Yale University

Neutrinoless double beta ($0v\beta\beta$) powerful probe of lepton number violation ($\Delta L=2$).

Would establish lepton number violation and demonstrate that neutrinos are Majorana.

$$= \underbrace{ \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} }_{U_{\tau 3}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

 $U_{\rm PMNS}$

Exciting years lie ahead!

