On behalf of the IceCube Collaboration

Recent Results from IceCube

with GeV to PeV Neutrinos

Michigan State University

July 3rd, 2023

WIN 2023, SYSU Zhuhai, China

Shiqi Yu

What can we see with IceCube...

What I am covering today...

Neutrino astronomy

Neutrino physics

vµ Dísappearance

101

Energy (GeV)

10²

80%

60%

40%

20%

1.0

0.5

NGC 1068

Neutrino: Messenger of the Universe

Astronomical Messengers

Neutrinos:

Smoking gun of hadronic process

Pointing to their sources

Hard to detect: need giant detector!

Typical Events in IceCube

Angular resolution: < 1 deg

E_{reco}: muon energy (lower bound on neutrino energy)

Excellent for Northern sky analysis

Angular resolution ~ 10 deg Energy resolution ~1<u>5%</u>

Great to study Southern sky

Better angular resolution than cascades

Great in Southern sky

RESEARCH

RESEARCH ARTICLE

Evidence for neutrino emission from the nearby active galaxy NGC 1068

IceCube Collaboration*+

Northern Hemisphere

Earth absorption helps removing muon background

NGC 1068

All-sky scan found hot spot at NGC 1068 location.
In catalog search (110 sources), at NGC 1068:
79 candidates; spectral index = 3.2 ± 0.2
single source significance 5.2 σ (local)

1 in 100,000 background-only datasets have object ≥ 5.2 σ

 \rightarrow 4.2 σ evidence !

Signal Total Background Data 80 60 Events 40 20 $\hat{\psi}^2$ [deg² • NGC 1068 $^{-1}$

41 40

Right Ascension [deg]

Science 378,538-543(2022)

Why NGC 1068?

Spectrograms of dispersion 37–200 A/mm have been obtained of six extragalactic nebulae with highexcitation nuclear emission lines superposed on a normal G-type spectrum. All the stronger emission lines from λ 3727 to λ 6731 found in planetaries like NGC 7027 appear in the spectra of the two brightest spirals observed, NGC 1068 and NGC 4151.

Where could neutrinos be produced?

- starburst activity
- ? AGN outflows/winds
- faint jet
- ? AGN core region (e.g. corona)

Accelerator powered by large gravitational energy

proton • accelerator • target directional beam p, e[±] magnetic fields Image credit: F. Halzer → supermassive black hole

Accelerated cosmic rays lead to neutrinos and γ -rays: $p + p (or \gamma) \rightarrow ... + \pi^+ \rightarrow \nu$

 $\rightarrow \ldots + \pi^0 \rightarrow \gamma + \gamma$

 $\begin{array}{c} \mu^{+} & \mu^{+} & \overline{\nu}_{e} \\ \mu^{+} & \overline{\nu}_{e}$

active galactic nucleus (AGN)

 γ -rays production:

Leptonic process : Inverse compton effect with relativistic particles (e-) - Hadronic process: decay of π^0 13 Neutrinos could be produced in the optically thick corona in the vicinity of the black hole.

accretion disk

 Measured neutrino flux exceeds
 TeV γ-ray upper limits!
 ? γ-ray obscured environment: matter & radiation-rich
 ?! Corona gas and radiation

black hole

Accretion disk and corona are the known sources of AGN spectral energy distribution

Bright intrinsic X-ray emission at 2-10 keV

If the coronal models are correct, i.e. particles are accelerated within corona: population of Seyfert galaxies could explain part of => diffuse neutrino flux without creating tension with Fermi observations

Are there more galaxies similar to NGC 1068?

Seyfert Galaxies

Looking for similar sources to NGC 1068 in full sky:

- → Hot coronae and dense environment Seyferts;
- → Bright on intrinsic X-ray;
- \rightarrow TeV γ -ray obscured

Select from BASS (BAT AGN Spectroscopic Survey)

Northern Hemisphere

NGC1068

NGC4388

Southern Hemisphere

NGC4151

log₁₀(column density/cm²)

NGC6240

More Seyferts?

Catalog of 27 Seyfert galaxies (w/o NGC 1068) inconsistent with background @ 2.7o significance.

Stacking analysis (combining all sources w/o NGC 1068) consistent with background expectations.

Southern Hemisphere coming soon! →post-unblinding checks. 18

Vega the weaver girl

What's there if we look closer...

Deneb

Altair the cowherd

Great Wall of China

Image Credit: Steed Yu & NightChina.net

20

Image credit: Y. Makino NSF/IceCube

Southern Hemisphere

RESEARCH

RESEARCH ARTICLES

NEUTRINO ASTROPHYSICS

Observation of high-energy neutrinos from the Galactic plane

IceCube Collaboration*+

Southern Hemisphere

Look this

RESEARCH

RESEARCH ARTICLES

NEUTRINO ASTROPHYSICS

Observation of high-energy neutrinos from the Galactic plane

IceCube Collaboration*+

Image credit: Y. Makino NSF/IceCube

Galactic diffuse emission

Neutrino counterpart to diffuse γ-rays using different models

Smeared with typical neutrino signal event

COSMIC RAYS

SOURCE

\rightarrow 4.5 σ evidence

Galactic Longitude [/]

after accounting for multiple tests

Next question: where/what are the sources? ->Future detectors and improved models

> Improved sample (detection, calibration, statistics, reconstruction...)

Future

Improve theoretical models (multi-messengers, parameterization...)

More sources!

More statistics and better reconstruction sharpen the view of the cascade sky.

What else can IceCube do…

Someone needs to recycle the atmospheric neutrinos...

Study neutrino oscillations with **DeepCore**!

 Δm^2_{32}

 Δm_{21}^2

Each flavor (e, μ , τ) is a superposition of masses (1, 2, 3)

Oscillations are described by:

- Mixing angles (θ_{23} , θ_{13} , θ_{12}), δ_{CP}
- Squared mass differences: Δm_{32}^2 , Δm_{21}^2

normal ν_3 ν_2 ν_1 ν_e ν_μ ν_τ

v_{μ} Disappearance with DeepCore

 v_{μ} survival probability (two flavor approx.):

Atmospheric muon neutrinos from cosmic ray interactions:

Wide ranges of both energy (E) and baseline
 (L), and largest values.

Neutrino distance of travel (L) calculated using arrival direction (zenith).

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{32}^2 L}{E})$$

Low-energy (< 100 GeV) reconstruction is critical to oscillation analysis

DeepCore: denser configured sub-

detector, can observe GeV-scale neutrinos.

Machine-learning techniques are developed and employed

- Better reconstruction near DeepCore region
- ~3,000 times faster than the current LLH-based method

Analysis

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:
PID discriminates v_µ CC vs. other neutrino interactions;
27,352 tracks; 22,963 cascades.
Robust against systematic uncertainties;

 v_{μ} disappearance signal

Data taken over ~3,390 days between 2012-2021;
Total of 150,257 events;

High signal (v_{μ} CC) and low background (noise & atm. muon) rates (~0.6%):

 Low levels of selection eliminate atm. muons and noise backgrounds (shared with previous result)

Consistent with the previous IceCube results.
Big updates on MC models and calibration since

DeepCore 3-year results.

Compared to DeepCore 8-year result: New reconstruction, including mixed- and low-pid bins into analysis.

8 years result has been submitted to PRD arxiv: 2304.12236

The new result is compatible and complementary with the existing measurements:

Very high energy sample relative to other experiments and detector technology is

unique —> observed consistency is a strong validation!

The new result is compatible and complementary with the existing measurements:

Competitive on ∆m²₃₂ measurement.

Room for future improvements!

Flux model: calibration, etc

Future

Upcoming results of neutrino physics:

• mass ordering, non-standard interaction, etc…

The Upgrade detector:

More densely instrumented strings in the center
Better event resolution!
DOM: multiple PMT designs
Great for calibration studies!
Target deploying 2024/25

Summary and Outlook

<u>Astrophysics</u>

- Evidence of neutrino emissions from NGC
 1068 and are working on finding more extragalactic sources.
- → Observation of the Galactic Plane in neutrinos.
- Studying specific models with data is becoming feasible and important.
- → The future detectors with improved sensitivities will advance searches.

Neutrino physics

- Muon neutrino disappearance measurement is consistent with our previous results.
- → Compatible and complementary with the existing measurements.
 - Competitive constraint on ∆m²₃₂
- → More results/sensitivities coming soon!
 → Future improvements: calibration (Upgrade), MC models, reconstruction. etc.

Aachen Collaboration meeting 2023

Thank you!

Addison metering 2022 36

Overflow slides

Accretion disk and corona are the known sources of AGN spectral energy distribution

Bright X-ray emission at 2-10 keV

If the coronal models are correct, i.e. particles are accelerated within corona:

=> population of Seyfert galaxies could explain significant part of diffuse neutrino flux without creating tension with Fermi observations

All-sky scan shows no significant spots emitting neutrinos but clusters along galactic-plane.

No strong preference on which template is the best.

NGC 1068

better modeling of directional distributions of individual neutrinos in particular well reconstructed events (at TeV energies)

energy reconstruction: neural network provides more accurate and more precise energy estimates especially at TeV energies

GP reconstruction

energy reconstruction: neural network provides more accurate and more precise energy estimates in all energy range especially at TeV energies

A History of Neutrino Astronomy in Antarctica

