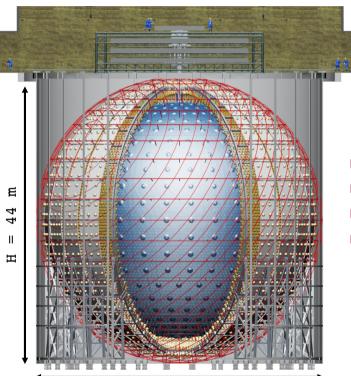


Yee Bob Hsiung
National Taiwan University, Taipei
on behalf of JUNO collaboration

Outline


- Introduction to JUNO experiment
- JUNO Detector Progress and Status
- Highlight of JUNO Physics Reach
- Outlook and stay tuned

Jiangmen Underground Neutrino Observatory

PPNP 123 (2022) 103927 JPG 43 (2016) 030401 arXiv: 1508.07166

D = 43.5 m

Primary physics goals:

V Mass Ordering determination

and precision measurement of V oscillation parameters

- ▶ Huge mass: 20 kton Liquid Scintillator (LS)
- ▶ Underground: ~650 m overburden (1800 m.w.e.)
- ▶ Unprecedented energy resolution: ~3% / √E (MeV)
- ▶ Energy scale precision: < 1%
- Currently under construction
 in Jiangmen at ~53 km from two
 reactor power plants
 (Total 26.6 GW thermal power)

▶ TAO (Taishan Antineutrino Observatory):

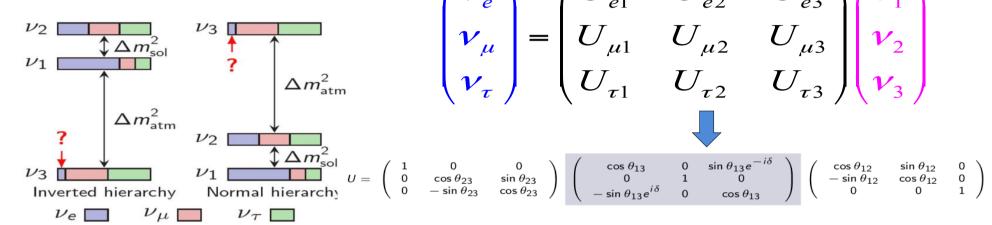
1 ton satellite LS detector at ~30 m from one reactor core to precisely measure the antineutrino energy spectrum

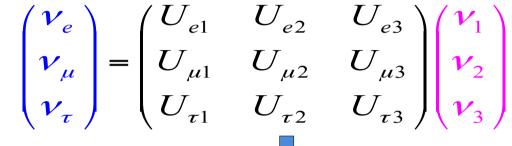
WIN2023 - JUNO - Yee Bob Hsiung

The JUNO Collaboration

74 institutions, ~650 members (As end of 2022)

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	Tsinghua U.	Germany	U. Tuebingen
Belgium	Universite libre de Bruxelles	China	UCAS	Italy	INFN Catania
Brazil	PUC	China	USTC	Italy	INFN di Frascati
Brazil	UEL	China	U. of South China	Italy	INFN-Ferrara
Chile	PCUC	China	Wu Yi U.	Italy	INFN-Milano
Chile	SAPHIR	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China		Italy	INFN-Padova
China	Beijing Normal U.	China	Xiamen University	Italy	INFN-Perugia
	CAGS	China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China	NUDT	Latvia	IECS
China	CIAE	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)
- "	DGUT	China 💮 🌷	ECUT-Nanchang City	Russia	INR Moscow
China	Guangxi U.	Croatia	PDZ/RBI	Russia	JINR
China	Harbin Institute of Technology	Czech	Charles U.	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
	NCEPU	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	RWTH Aachen U.	Thailand	SUT
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	FZJ-IKP	USA	UC Irvine
China	SYSU	Germany	U. Mainz		


The JUNO Collaboration


The 21th JUNO meeting in Kaiping, China — Feb. 2023

Neutrino Mixing

In a 3-v framework

$$\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \begin{pmatrix} \cos \theta \\ 0 \\ -\sin \theta \\ \end{pmatrix}$$

$$\left(\begin{array}{cccc} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{array} \right)$$

$$\begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

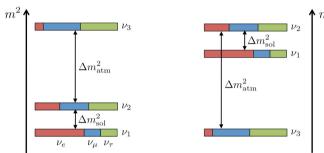
$$\Delta m_{sol}^2 : \Delta m_{21}^2$$

$$\Delta m_{sol}^2 : \Delta m_{21}^2 \qquad \Delta m_{atm}^2 : \Delta m_{31}^2, \Delta m_{32}^2$$

Values of θ_{12} , θ_{23} and θ_{13} have been determined by different methods of neutrino experiments.

NH:
$$|\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|, \quad |\Delta m_{31}^2| > |\Delta m_{32}^2| \qquad \Delta m_{31}^2 > 0$$

IH: $|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|, \quad |\Delta m_{31}^2| < |\Delta m_{32}^2| \qquad \Delta m_{31}^2 < 0$


Next generation neutrino experiments mainly focus on the determination of

mass hierarchy (MH) and measurement of CP Phase.

Neutrino Mass Ordering at Reactors

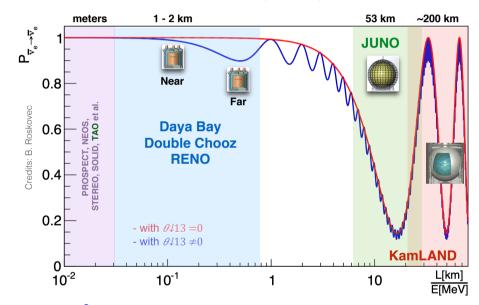
normal ordering (NO)

inverted ordering (NO)

NO:
$$|\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$$

IO:
$$|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$$

\overline{V}_{α} survival probability:

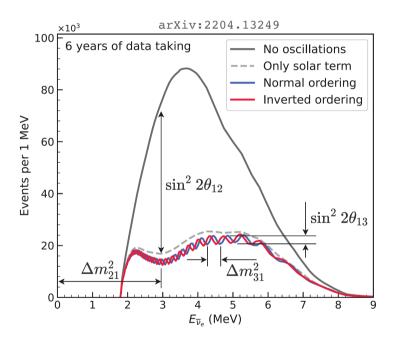

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32} \qquad 10^{-2}$$

$$P_{21} = \cos^{4}(\theta_{13})\sin^{2}(2\theta_{12})\sin^{2}(\Delta_{21}) \longrightarrow \text{SLOW } \Delta m_{\text{sol}}^{2}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^{2}L}{4E_{\nu}} \qquad P_{31} = \cos^{2}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{31})$$

$$P_{32} = \sin^{2}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{32}), \qquad FAST \ \Delta m_{\text{atm}}^{2}$$

Suggested by Petcov and Piai, PLB 533(2002)94 Learned et al, PRD 78(2008)071302


FAST Δm_{atm}²

Independent of θ_{23} and CP phase

Reactor Antineutrino Spectra at JUNO

Detector challenges > Large statistics

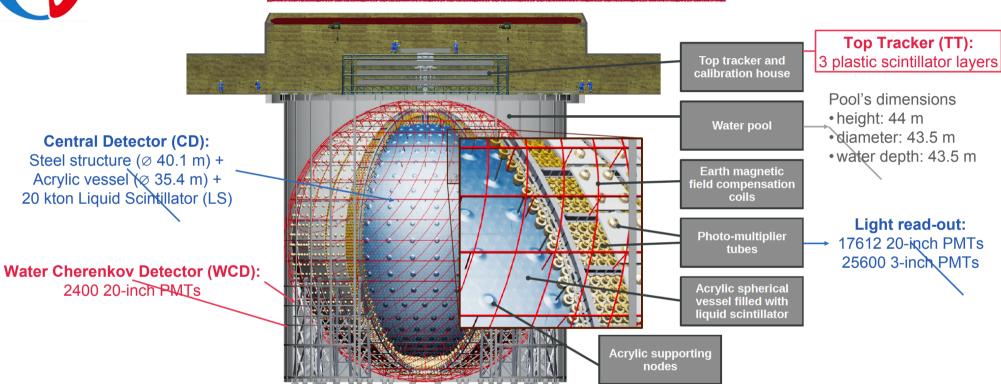
(matter effect contributes maximal ~4% correction at around 3 MeV. arXiv:1605.00900, arXiv:1910.12900)

- ✓ Large target mass (20 kton LS)
- ✓ Powerful reactor source (26.6 GW_{th})

▶ Good energy resolution

- ✓ Large PMT coverage (78%)
- ✓ High photon yield, higly transparent LS
- ✓ Highly efficient PMTs (PDE ~30%)

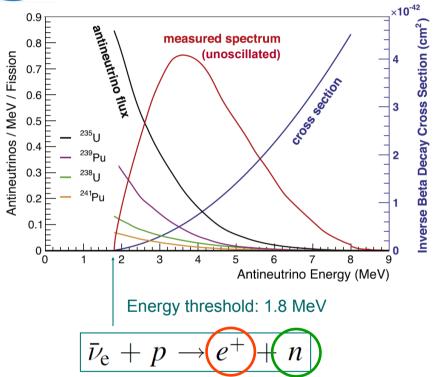
Small shape/scale uncertainties


- ✓ TAO satellite detector
- ✓ Redundant calibration system

Low background

- ✓ Good overburden (~650 m)
- ✓ Highly efficient veto system (>99.5%)
- ✓ High sensitivity material screening
- ✓ Careful control of installation cleanliness

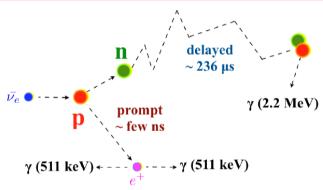
The JUNO Detector



The largest LS detector ever built!

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
LS mass	20 ton	~ 300 ton	~ 1 kton	20 kton
Coverage	~ 12%	~ 34%	~ 34%	~ 78%
Energy resolution	~ 8% /√E	~ 5% /√E	~ 6% /√E	~ 3% /√E
Light yield	~ 160 p.e. /MeV	~ 500 p.e. /MeV	~ 250 p.e. /MeV	> 1345 p.e. /MeV

Reactor Antineutrino Detection



• E_{vis} (e+) \approx E (V_e) - 0.78 MeV

Antineutrinos from reactors

Inverse Beta Decay (IBD) reaction

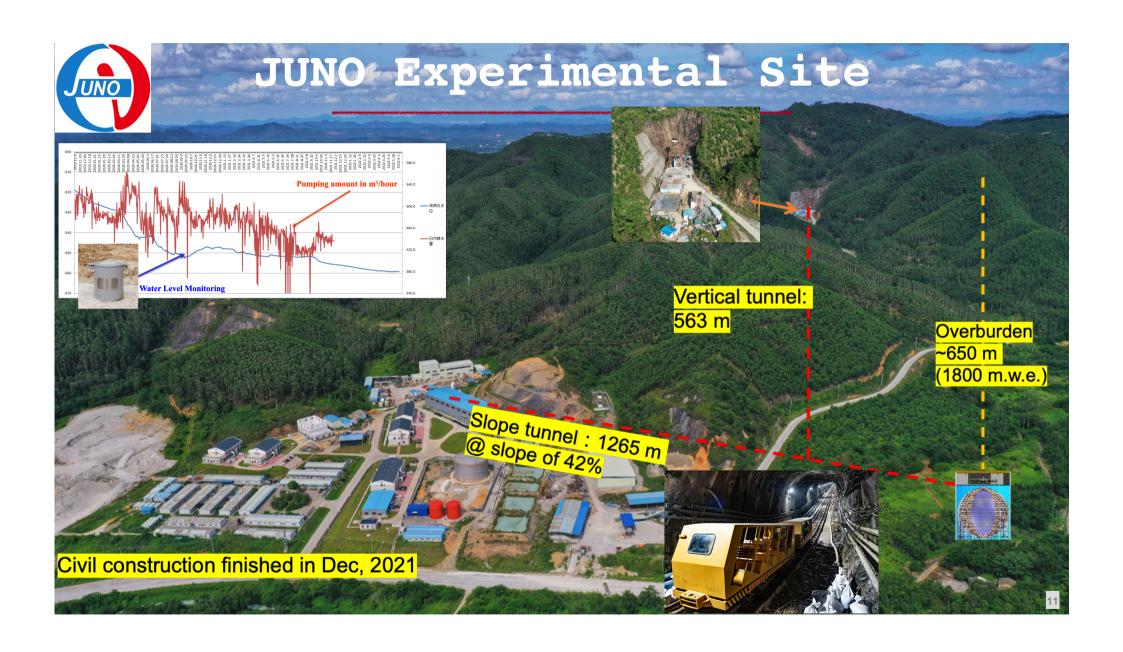
 Space-Time coincidences between prompt and delayed signals to reject uncorrelated background

JUNO: A Neutrino Observatory

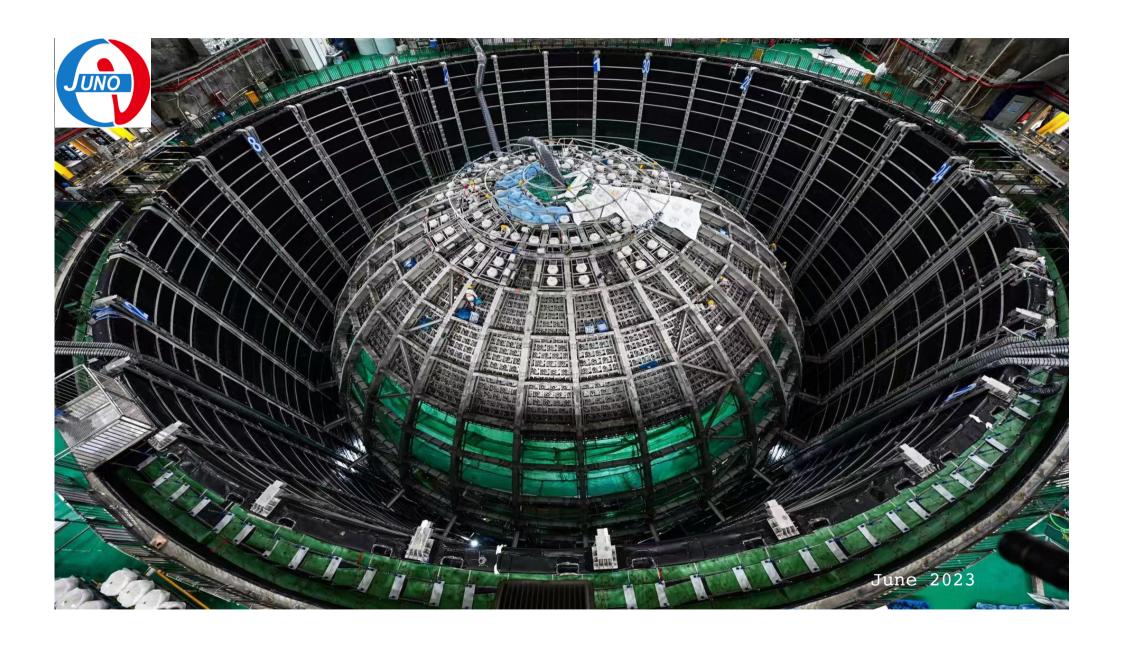
Reactor anti-v Atmospheric v Solar v Supernovae (SN) v Geoneutrinos Core Collapse SN 8B: ~50/day ~400 / year ~60 / day Several / day @ 10 kpc: CNO: ~1000/day thousands in few sec. ⁷Be: ~10000/day Diffuse SN signal: few / year

Neutrino oscillation & properties

Neutrinos as a probe

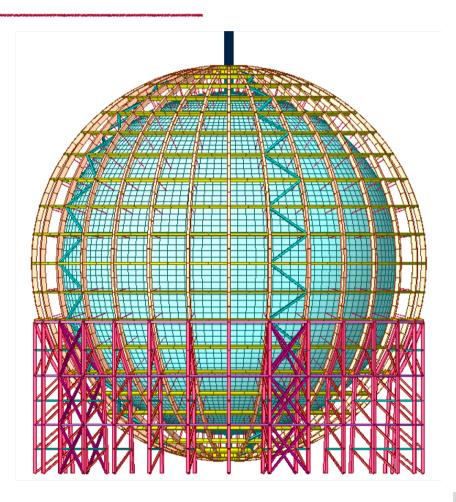

New physics

Proton decay


Neutrino magnetic
moment

Sterile neutrinos
Non standard
interactions

Lorentz invariance
Others

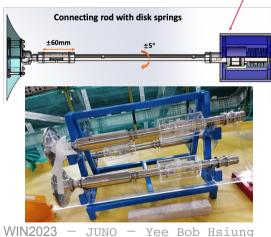

Central Detector status

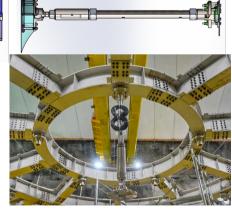
- ▶ Stainless Steel (SS) structure Completely assembled (except bottom layers to grant access)
- ▶ Acrylic Vessel (AV)

Construction on-site started at the end of June 2022 → chimney and upper 11 layers already in place (reach equator)

▶ Liquid Scintillator (LS)

Purification plants are constructed onsite under initial flushing/testing

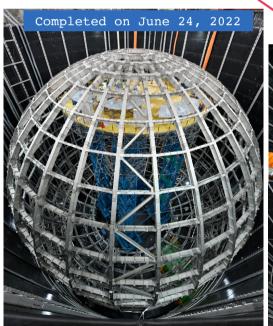




CD - Stainless Steel structure

- Supports the load of AV, LS, PMTs, front-end electronics, light separation plate, EM coils, etc.
- Sustains the upward buoyancy
- Divided into 30 longitudinal and 23 latitudinal layers
- Made of low background SS304

• 590 connecting rods to uphold the AV

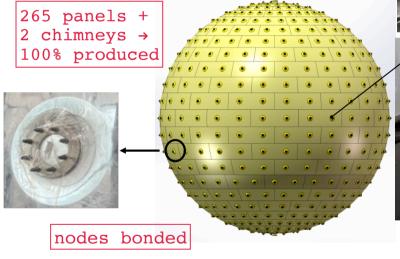


Connecting rod with locking mechanism

Assembly precision must be < 3 mm to maximize PMT number

Lift platform for acrylic vessel installation

CD - Acrylic vessel

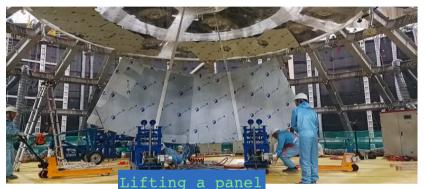

• Contains 20 kton of LS

• Inner diameter: (35.40±0.04) m

Thickness: (124±4) mm

• Light transparency: > 96% @LS

• Radiopurity: U/Th/K < 1 ppt




CD - Acrylic vessel

On-site construction, July-August 2022

CD - Liquid Scintillator

Linear Alkyl Benzene (LAB) + 2.5 g/L PPO + 3 mg/L bis-MSB

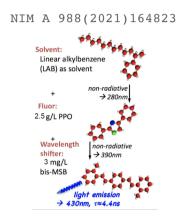
JUNO LS:

JHEP 03(2021)004

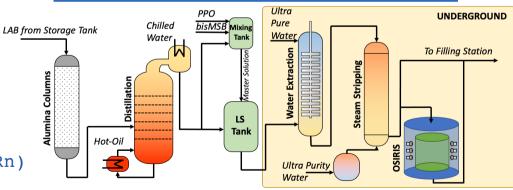
- High light yield: >1345* p.e./MeV
- Long attenuation length: > 20 m
- Extremely high radiopurity

Purification of LAB in 4 steps:

- Al₂O₃ filtration column
 - → improvement of optical properties
- Distillation
 - ⇒ removal of heavy metals
 - ⇒ improvement of transparency
- Water Extraction (underground)
 - ⇒ removal of heavy elements U/Th/K
- Steam / Nitrogen Stripping (underground)
 - ⇒ removal of volatile impurities (Ar/Kr/Rn)


Required radiopurity:

- ⇒ IBD (reactor ν): 238 U / 232 Th < 10^{-15} g/g 40 K < 10^{-16} g/g 210 Pb < 10^{-22} g/g
- → Ideal (solar ν):


 ²³⁸U / ²³²Th < 10⁻¹⁷ g/g

 ⁴⁰K < 10⁻¹⁸ g/g

 ²¹⁰Pb < 10⁻²⁴ g/g

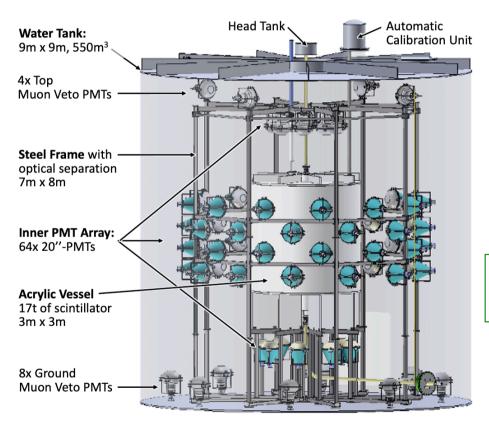
an industrial scale purification process

^{*}Recent studies suggest up to 20% increase in the light level

Radiopurity control strategy

LS: ongoing installation of different purification systems

WIN2023 - JUNO - Yee Bob Hsiung


20

OSIRIS Detector

Online Scintillator Internal Radioactivity Investigation System

EPJC 81 (2021) 973

A 20 ton detector to monitor LS radiopurity during purification plants commissioning and JUNO detector filling

- Exploit fast coincidences in ²³⁸U and ²³²Th chains
- 17 ton LS volume (\emptyset =3 m, H=3 m)
- 280 p.e./MeV; energy resolution: $\sigma \sim 6\%$ at 1 MeV
- Instrumentation:

64x 20" PMTs for scintillator (9% coverage) 12x 20" PMTs for muon veto

- Few days for a sensitivity $\sim 10^{-15}$ g/g (U/Th)
- 2-3 weeks for a sensitivity $\sim 10^{-17}$ g/g (U/Th)
- Other measurable isotopes: ¹⁴C, ²¹⁰Po, ⁸⁵Kr

arXiv: 2109.10782

- ◆ Possible upgrade to Serappis (SEarch for RAre PP-neutrinos In Scintillator)
 - → A precision measurement of solar pp neutrinos on the few percent level

Radiopurity Control Strategy

JUNO detector filling

- **♦LS** recirculation is not feasible at JUNO (20 kton!)
 - **→** Target radiopurity must be met since the beginning

◆Planned strategy:

- ▶ Leakage control (single component < 10⁻⁶ mbar · L/s)
- ▶ Acrylic vessel cleaning before filling
- ▶ Clean environment
- Water-exchange filling scheme

Best compromise between engineering risks and background contamination risks

→ 1st step

~2 months

Pure water

Value pool

LS purification room

Overflow tank

→ 2nd step

~6 months

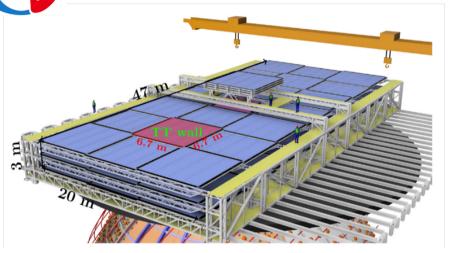
Pure water

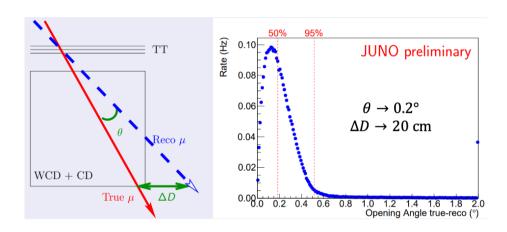

22

Schematic of the filling sequence

Veto Water Cherenkov Detector

~650 m rock overburden (1800 m.w.e.) \rightarrow residual μ rate 4 Hz (mean μ energy: 207 GeV)




35 kton of ultrapure water serving as passive shield and Water Cherenkov detector

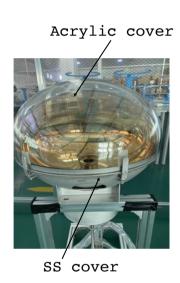
- 2400 20-inch MCP PMTs, detection efficiency of cosmic muons larger than 99.5%
- Keep the temperature uniform and stable at (21±1) °C
- Quality: ²²²Rn < 10 mBq/m³, attenuation length 30~40 m
- 5 mm liner covering the pool wall as Rn barrier

JUNO

Veto - Top tracker

Plastic scintillators refurbished from the OPERA experiment:

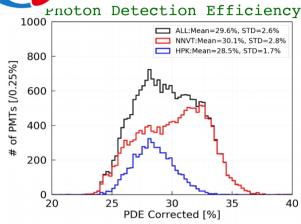
- Covering about 50% of the top of the water pool
- Three scintillator layers to reduce accidental coincidences
- All scintillator panels arrived on-site in 2019
- Precision muon tracking
- Study of cosmogenic background

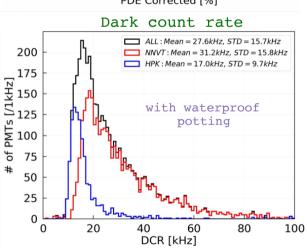


Photomultiplier Tubes

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Clearance between PMTs: 3 mm
 assembly precision: < 1 mm</pre>

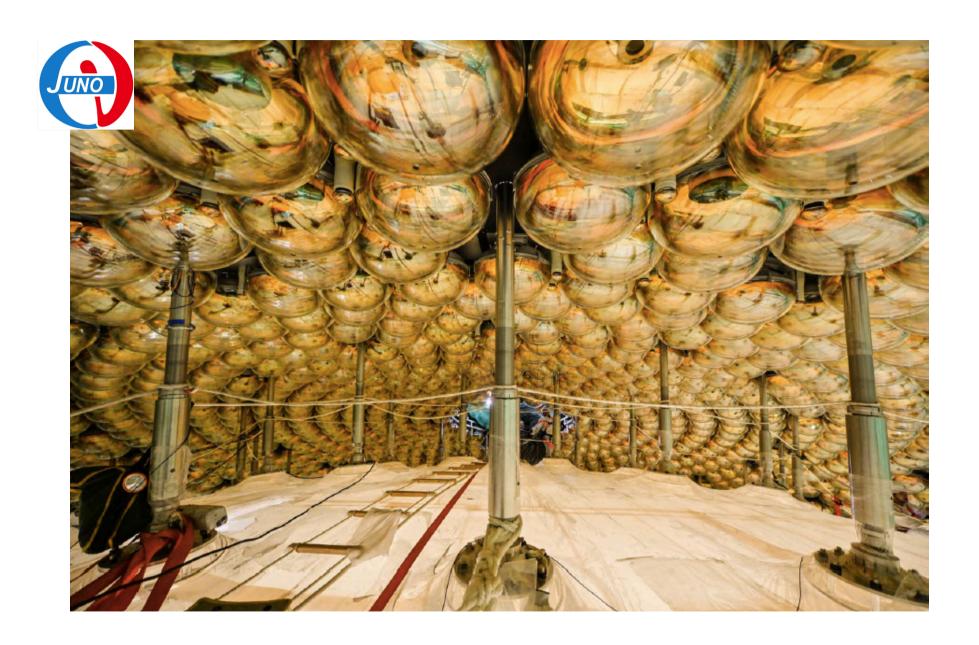


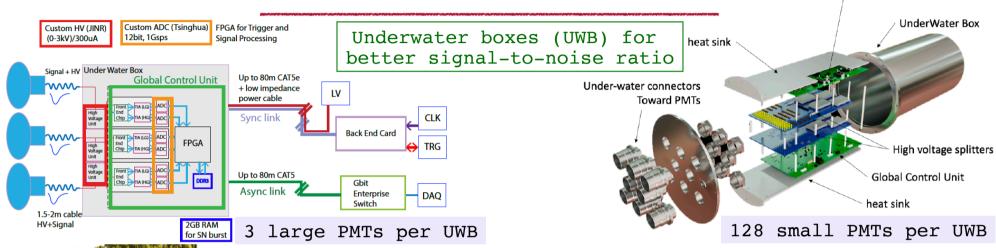


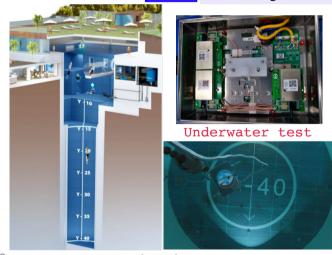
- ◆ 17612 large PMTs (20-inch)
 - ♦15012 MCP-PMTs from NNVT*
- ♦5000 dynode PMTs from Hamamatsu
- ◆ 25600 small PMTs (3-inch) from HZC

*Northern Night Vision Technology 25

Photomultiplier Tubes




All PMTs produced, tested, and instrumented with waterproof potting


		LPMT (20	-inch)	SPMT (3-inch)	
Parame	Hamamatsu	NNVT	HZC		
Quantity		5000	15012	25600	
Charge Collection		Dynode	MCP	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count	Bare	15.3	49.3	0.5	
Rate [kHz]	Potted	17.0	31.2		
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for	[0, 100] PEs		[0, 2] PEs		
Covera	75%		3%		
Refere	arXiv: 220	5.08629	NIM.A 1005 (2021) 165347		

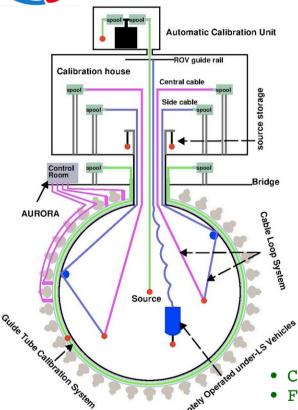
12612 NNVT PMTs with the highest PDE are selected for the CD; the remaining ones are used in the WCD

JUNO PMT Electronics

Large PMTs:

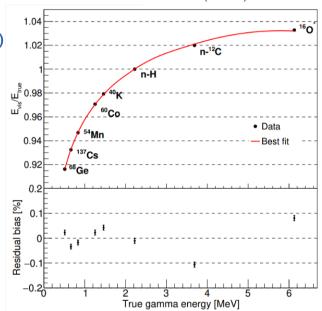
- 1 GHz sampling
- Dynamic range: 1 4000 PE
- Noise: < 10% @ 1 PE
- Resolution: 10% at 1 PE, 1% at 100 PE
- Failure rate: < 0.5% over 6 years

Small PMTs:

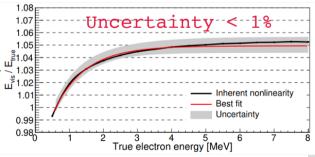

• Always in **photon counting mode** in 1~10 MeV range

Electronics assembly ongoing

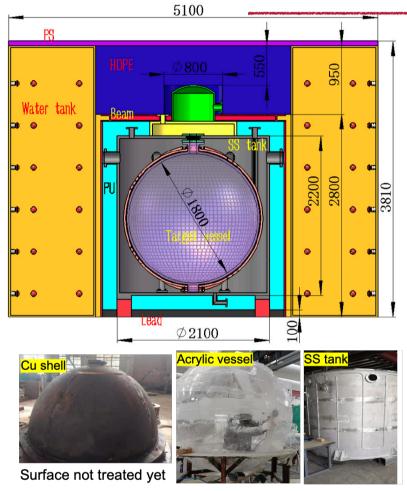
Front-End board



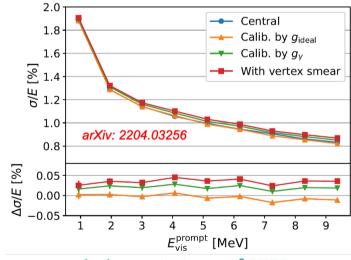
Calibration system


Strategy:

- Many sources (LS non-linearity)
- Tunable photon source (electronics non-linearity)
- Many locations (detector nonuniformity)
 - Different **tools** deployed for detector calibration:
 - 1D: Automatic Calibration Unit (ACU)
 - 2D: Cable Loop System (CLS) and Guide Tube Calibration System (GTCS)
 - 3D: Remotely Operated Vehicle (ROV)
 - Auxiliary system: Calibration House, Ultrasonic Sensor System (USS) CCD and A unit for Researching Online LSc tRAnsparency (AURORA)



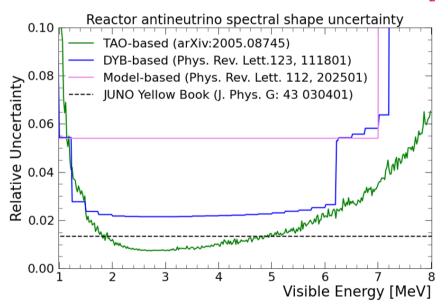
JHEP 03(2021)004

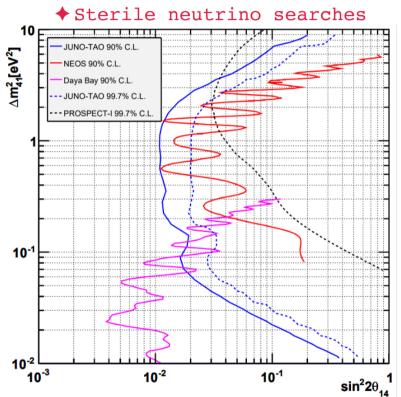

- Calibration house and ACU produced 1.03
- Final reliability tests ongoing
- Installation of different systems is being prepared on-site

JUNO-TAO detector

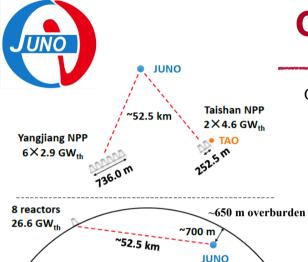
- 2.8 ton Gd-LS (1 ton fiducial volume) in acrylic vessel
- 10 m² SiPM with **50% PDE** for light detection on a spherical copper shell (~94% coverage)
- Operated at -50 °C
- 4500 p.e./MeV
- 30 m from Taishan core (4.6 GWth)
- 30x JUNO event rate
- High energy resolution:

1:1 prototype @IHEP

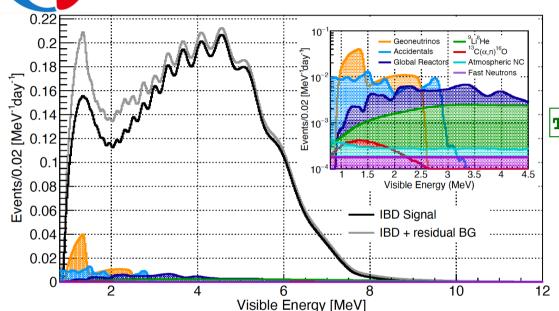

arXiv: 2005.08745



JUNO-TAO detector


Physics potential

◆ Precise measurement of antineutrino spectra


Oscillation Analysis

Original JUNO estimates: JPG 43 (2016) 030401 ("Physics Book")

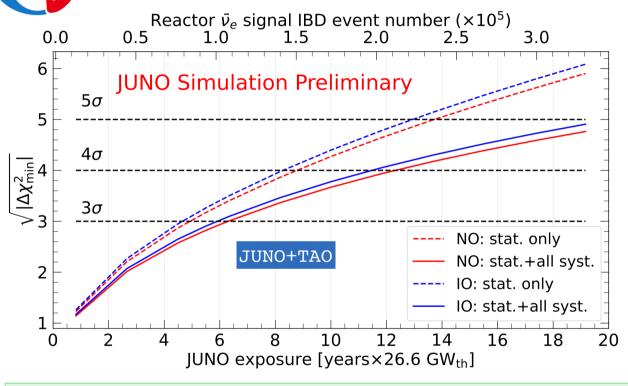
- 1. Only 2 reactor cores at Taishan → **26**%↓ less power (from 35.8 to 26.6 GWth)
- 2. JUNO experimental hall ~30 m shallower → 33%↑ higher cosmic muon flux (from 3 to 4 Hz)
- 1. Improved energy resolution, from 3% to 2.9% at 1 MeV (3%↑)
 - ♣ Increased PMT photon detection efficiency (after mass testing)
 - ❖ Improved understanding of the PMT optical model
 - ❖ More accurate simulation of the detector geometry
- 2. Improved muon veto efficiency, from 83% to 91.6% (10%↑)
- 3. Improved reactor spectral shape uncertainty from combined analysis with TAO
- 4. Updated values on the expected backgrounds and radiopurity of the construction materials

Signal and background

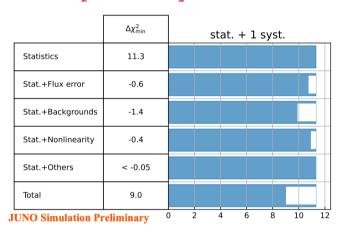
Accidental background mainly due to natural radioactivity in detector components.

Background reduction strategy:

- careful material screening and selection
- meticulous Monte Carlo simulations
- accurate detector production handling


	Efficiency (%)	IBD Rate (day^{-1})
All IBDs	100	57.4
After Selection	82.2	47.1

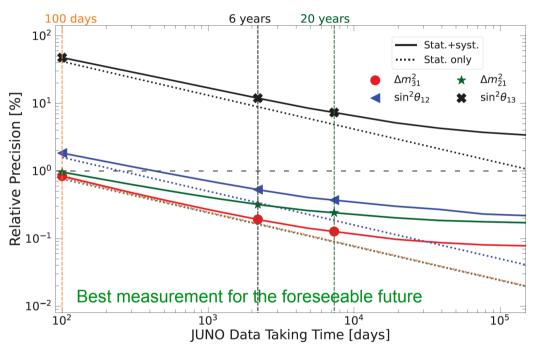
Total background rate: 4.11 /day (~9%)


Main selection cuts:

- Fiducial volume: R_{LS} < 17.2 m
- Energy threshold: $E_{vis} > 0.7 \text{ MeV}$
- Time correlation: $\Delta T_{p-d} < 1 \text{ ms}$
- Spatial correlation: $\Delta R_{p-d} < 1.5 \text{ m}$
- Muon veto (Temporal Spatial)

Neutrino Mass Ordering

Impact of systematics


Paper in preparation

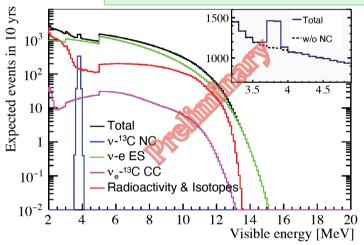
JUNO sensitivity on neutrino mass ordering: 3σ (reactor only) in ~6y with 26.6 GW_{th}

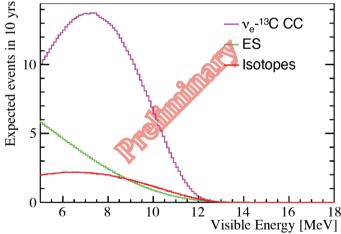
Estimation with combined sensitivity reactor + atmospheric neutrino analysis is under preparation

Neutrino Oscillation parameters

- Percent precision on $\Delta m^2_{31}/\Delta m^2_{21}$ in ~100d
- Precision on $\sin^2\theta_{12}$, Δm^2_{31} , $\Delta m^2_{21} < 0.5\%$ in 6y using reactor neutrinos
- Measurement of $\sin^2 \theta_{12}$, Δm^2_{21} also with ⁸B solar neutrino (next slide)
- Solar neutrino oscillation parameters with neutrinos and antineutrinos in only one detector!

arXiv 2204.13249


→ accepted for publication
by Chinese Physics C


Solar neutrinos (E_{vis} >2 MeV)

Model independent measurement of ⁸B solar neutrinos at JUNO

~200 tons 13 C in JUNO: observation of 8 B solar ν via NC and CC on 13 C $-v_{o}$ - 1500 C $-v_{o}$ - 13 C CC $-v_{o}$ - 13 C CC $-v_{o}$ - 13 C CC $+v_{o}$ - $+v_{o}$ - 13 C CC $+v_{o}$ - $+v_{o}$ -

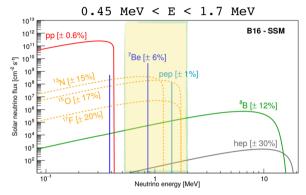
Single visible signal channel

Prompt signal of the prompt-delayed pair signal channel

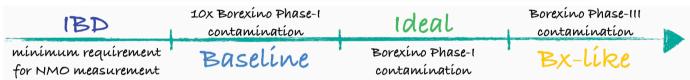
ES: Chin.Phys.C 45(2021)023004 ES+NC+CC: in preparation

Expected precision in 10 years:

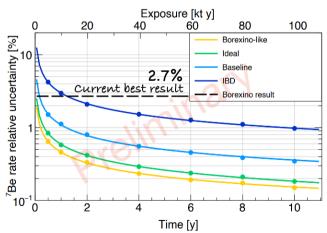
- 8B flux: 5% JUNO 3% JUNO+SNO
- $\sin^2 \theta_{12}$: +9%/_8%
- Δm^2_{21} : +27%/_17%

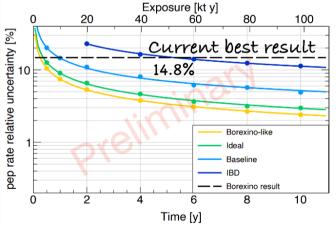

Unprecedented threshold of 2 MeV for ES

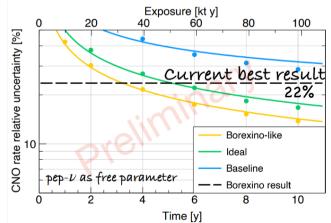
Channels	Threshold	Signal	Event nu	mbers	
	$[\mathrm{MeV}]$		[200 kt×yrs]	after cuts	
CC $\nu_e + {}^{13}\text{ C} \to e^- + {}^{13}\text{ N}(\frac{1}{2}^-; \text{gnd})$	$2.2~{ m MeV}$	$e^- + ^{13}$ N decay	3929	647 -	Correlated events
$NC \left[\nu_x + ^{13}C \to \nu_x + ^{13}C(\frac{3}{2}^-; 3.685 \text{MeV}) \right]$	$3.685~\mathrm{MeV}$	γ	3032	738	☐ Singles events
ES $\nu_x + e \rightarrow \nu_x + e$	0	e^-	3.0×10^5	6.0×10^4	

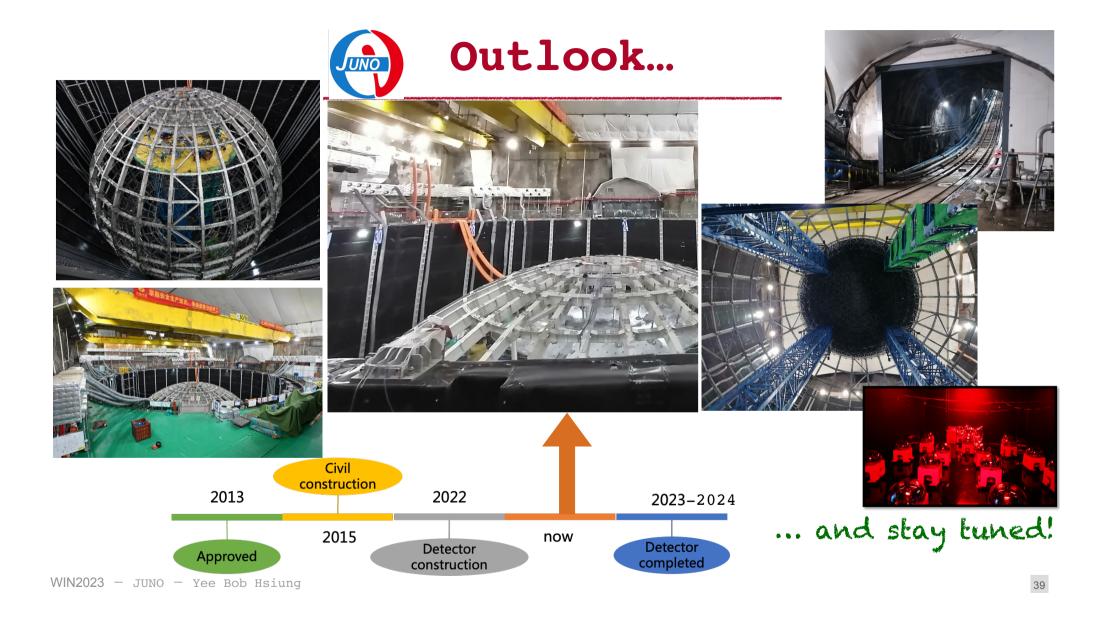


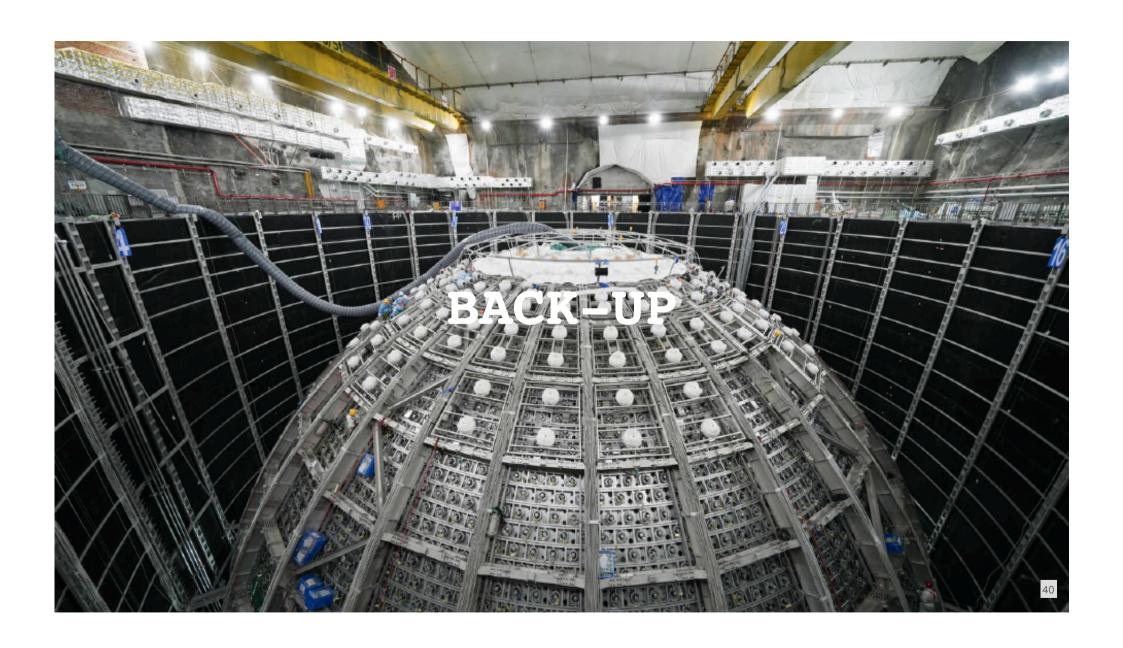
Solar neutrinos (E_{vis} <2 MeV)

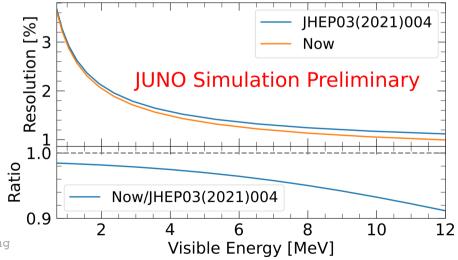

Intermediate energy solar neutrinos: ⁷Be, pep, CNO




Different radiopurity scenarios considered:

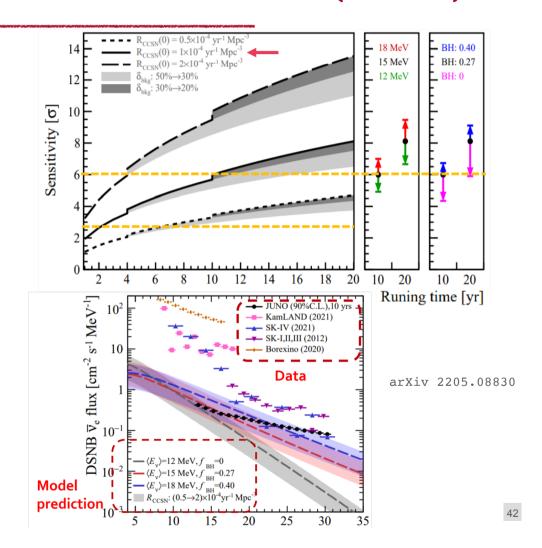



Paper in preparation



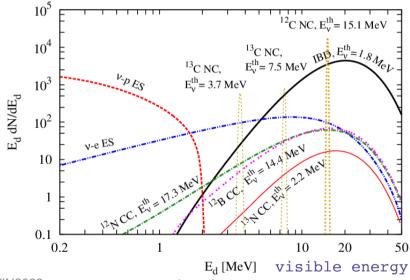
Energy resolution

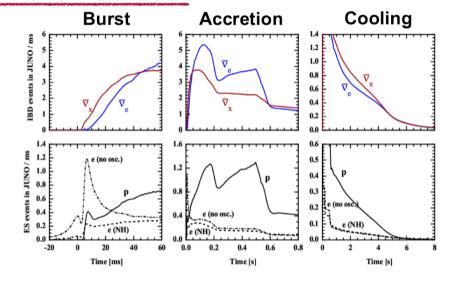
Change	Light yield in detector center [PEs/MeV]	Energy resolution	
Previous estimation JHEP03(2021)004	1345	3.0% @ 1MeV	
Photon Detection Efficiency (27%→30%) arXiv: 2205.08629	+11% ↑		
New PMT Optical Model EPJC 82 329 (2022)	+8% ↑	2.9% @ 1MeV	
New Central Detector Geometries	+3% ↑		


Diffused Supernova Neutrinos(DSNB)

- Integrated flux of all Supernova (SN) explosions in the visible Universe
- Not yet observed
- Expected few ν_e/y
- Main backgrounds:
 - ♦IBD from reactor ν (E > 10 MeV)
 - ♦NC interactions from atmospheric ν

Sensitivity improvement by:

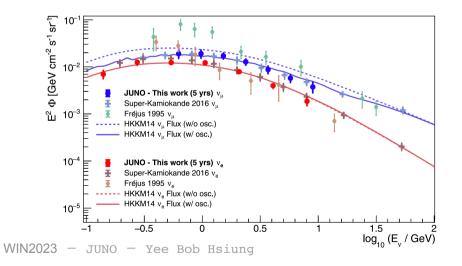

- Accurate background evaluation (reduction from 0.7/y to 0.54/y)
- Increased signal efficiency from 50% to 80% thanks to pulse shape discrimination
- Better DSNB signal model

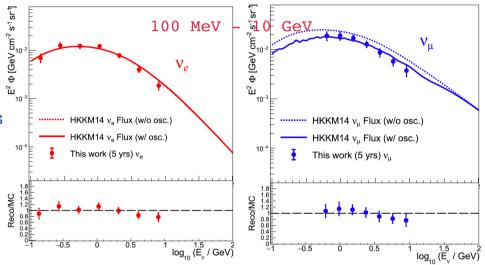

DSNB discovery potential: 3σ in 3 yrs with reference model

Supernova (SN) neutrinos

- Core collapse SN emits 99% of energy in form of V
- Galactic core-collapse SN rate:
- ~ 3 per century
- JUNO will observe the 3 SN phases: determination of flavour content, energy spectrum, signal time evolution
- 200 keV energy threshold

Detection channels in JUNO


Channel	Type	Even	Events for different $\langle E_{\nu} \rangle$ values		
		12 MeV	14 MeV	16 MeV	
$\overline{ u_{ m e} + p ightarrow e^+ + n}$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}	
$\nu + p \rightarrow \nu + p$	NC	0.6×10^{3}	1.2×10^{3}	2.0×10^{3}	
$\nu + e \rightarrow \nu + e$	ES	3.6×10^{2}	3.6×10^{2}	3.6×10^{2}	
$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$	NC	1.7×10^{2}	3.2×10^{2}	5.2×10^{2}	
$ u_{ m e} + {}^{12}{ m C} ightarrow e^- + {}^{12}{ m N}$	CC	0.5×10^{2}	0.9×10^{2}	1.6×10^{2}	
$\overline{\nu}_{\rm e} + {}^{12}{ m C} \rightarrow e^+ + {}^{12}{ m B}$	CC	0.6×10^2	1.1×10^2	1.6×10^{2}	

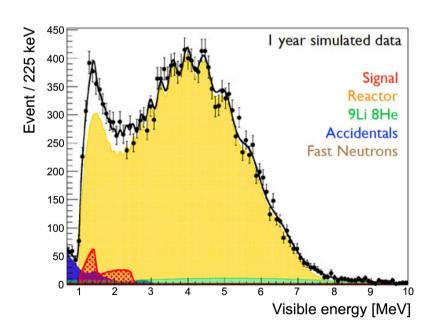


Atmospheric neutrinos

EPJC (2021) 81:887

- First measurement with LS: can give important inputs in the 100 MeV 10 GeV energy range, where current measurements show discrepancies
- Analysis focus on fully contained CC events
 - → Muon/electron flavour distinction based on hit time (by 3-inch PMTs)
 - $\rightarrow \nu_{\rm e}$ and ν_{μ} spectra reconstructed with precision of 10% to 25% in 5 years

- ullet Sensitive to NMO and $artheta_{23}$
- NMO determination through matter effects
- Sensitivity to NMO complementary to that of reactor neutrinos ⇒ possible improvement of the sensitivity by a combined analysis is under study



Geoneutrinos

PPNP 123 (2022) 103927 JPG 43 (2016) 030401

Geo-V as a tool to explore the composition of the Earth and to estimate the amount of radiogenic power driving the Earth's engine

$$\begin{array}{cccc}
 & ^{238}\text{U} & \rightarrow & ^{206}\text{Pb} + 8\alpha + 6\beta^{-} + 6\bar{\nu}_{e} \\
 & ^{232}\text{Th} & \rightarrow & ^{208}\text{Pb} + 6\alpha + 4\beta^{-} + 4\bar{\nu}_{e} \\
 & ^{40}\text{K} & \rightarrow & ^{40}\text{Ca} + \beta^{-} + \bar{\nu}_{e}
\end{array}$$

- Expected ~400 IBD/y, larger than all accumulated geo-V events until now: (KamLAND+Borexino) ~230 events
- Challenge: reactor-V background,
 ~40 times larger
- Precision on the measured flux will go from 13% in 1 year to 5% in 10 years (current precision ~16-18%)
- Sensitive to Th/U ratio at percent level
- Interdisciplinary team of physicists and geologists at work to develop a local refined crust model (required to get information on the mantle)

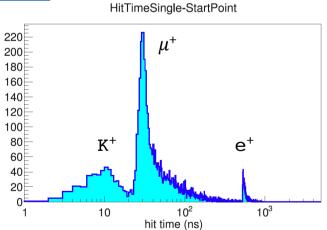
Proton decay

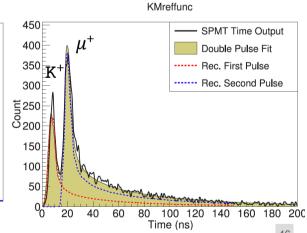
PE

• Two possible decay channels:

$$p \rightarrow \pi^0 + e^+$$
 (favored by GUT)
 $p \rightarrow K^+ + v$ (favored by SUSY)

- Current best limits set by the Super-Kamiokande experiment
- · Kaon is invisible in a water Cherenkov detector
- JUNO will focus on the K decay mode to take advantage of the LS technique

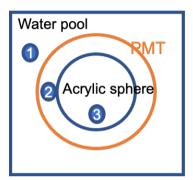

Number of 10^{4} 102 10 10^{3} Hit Time [ns] Triple coincidence signals: 1st: $T_{K^+}=105~{
m MeV}
ightarrow au_{K^+}=12.38~{
m ns}$ 2nd: $T_{\mu^+} = 152~{
m MeV}/E_{\pi^+\pi^0} = 494~{
m MeV}$

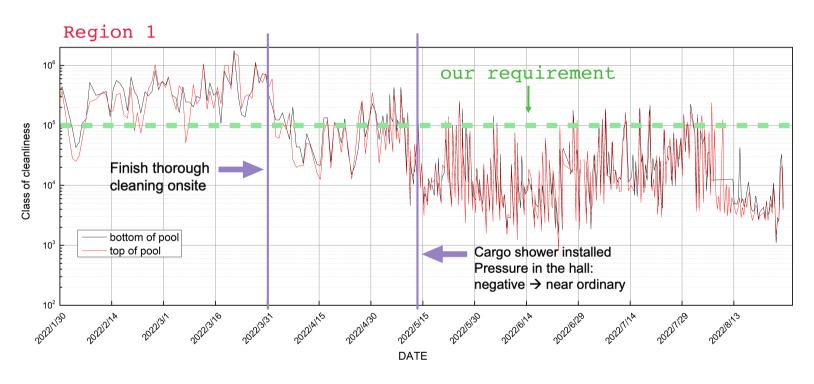

 3^{rd} : $2.2\mu s \rightarrow Michel electron$

2.2 µs

Expected sensitivity: 8.34×10^{33} y (90% CL) in 10 y on the proton half-life

> PPNP 123 (2022) 103927 JPG 43 (2016) 030401

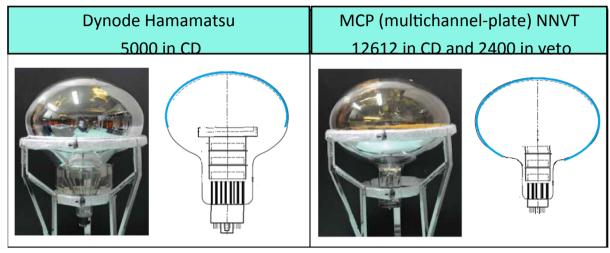


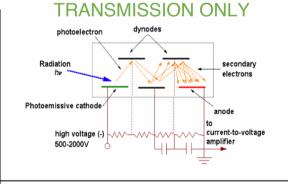


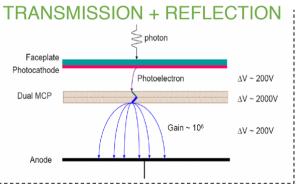
Radiopurity control strategy

Environmental control

Region	Level
1	Class 100,000
2	Class 10,000
3	Class 1000




Temperature: 21°C±1°C



Large PMTs

Two types of 20-inch PMTs

