Higgs fermions couplings at the CMS experiment

2023/07/04

Zhiyuan Jordan Li Peking University

On behalf of the CMS Collaboration

Overview

Why do we make Higgs fermion coupling measurements?

- Several open questions in particle physics call for a deeper understanding of the Higgs boson:
 - Dark matter, Asymmetry of matter vs antimatter in the universe, Hierarchy of fermion masses...
- Test compatibility with SM
 - Precise measurements of the main H production XS and decay BR
- Measurement of H coupling to fermions probes possible BSM effects inducing deviations from SM

Status

- In this presentation H fermions coupling measurements with CMS Run 2 data and perspectives for HL-LHC
- Run 3 ongoing → stay tuned for new exciting results!

(2022)

Higgs production

Higgs decay

- Higgs boson first discovered mainly from the analysis of its decay into the bosonic channels: ٠ $H \rightarrow ZZ^* (\rightarrow 4\ell)$ and $H \rightarrow \gamma \gamma$
 - The latter provides indirect measurement of couplings to quarks (via virtual loops).
- Higgs decays into third generation fermions: $H \rightarrow \tau \tau$ and $H \rightarrow$ bb allow precise test the Yuwaka coupling.
- Evidence of interactions with muons are emerging ٠

gg

XS and BR compatibility with the SM

Observed with 5σ significance Evidence at 3σ icance

- Good compatibility with SM
- Evidence of H-> $\mu\mu$ at 3 σ significance (and excess in μ_{tH} , $\mu^{Z\gamma}$): interesting to see with Run 3 data
- Inclusive H cross section:
- μ = 1.002 ± 0.057 [± 0.036 (theory) ± 0.033 (exp.) ± 0.029 (stat.)]
- Systematic uncertainties becoming crucial

 Need for reducing exp. uncertainties with new or improved approaches and more precise theory predictions

CMS Searches for fermionic decay

Analyses	Integrated lumi (fb $^{-1}$)	Reference
H(bb)	<u>36(ttH)</u> 77(VH) <u>91 (VBF)</u> <u>138(ggH)</u>	<u>JHEP03(2019)026</u> Phys. Rev. Lett. 121, 121801 <u>HIG-22-009</u> JHEP12(2020)085
<u>Η(ττ)</u>	138	<u>CMS-HIG-19-010</u>
H(cc) Boosted H(cc)	138 138	HIG-21-008 HIG-21-012
<u>Η(μμ)</u>	138	<u>JHEP01(2021)148</u>
<u>H(ee)</u>	138	<u>HIG-21-015</u>
<u>H(eµ)</u>	138	<u>HIG-22-0002</u>

- Fruitful results produced by CMS!
- We will focus on second generation interactions in the following, and highlighting the most recent results

kappa framework and Higgs couplings

Recent highlights: H–>cc

р

- VH production with W/Z boson decaying leptonically
- Expected BR: ~3%
- Two regimes:
 - Low momentum: resolved charm quark jets
 - Boosted (p T > 300 GeV): merged, single jet
- Novel charm jet identification and analysis methods using ML (GNN)
- Validated by searching for $Z \rightarrow cc$ in VZ events

Recent highlights: H–>cc

- Observed (expected) upper limit on $\sigma(VH)$ B(H $\rightarrow cc)$ is 0.94 $(0.50^{+0.22}_{-0.15}$) pb at 95% CL
 - Corresponding to 14 $(7.6^{+3.4}_{-2.3})$ x SM
- For Higgs-charm Yukawa coupling modifier (κ_c), observed expected) 95% CL interval is 1.1 < $|\kappa_c| < 5.5$ ($|\kappa_c| < 3.4$)
- Most stringent constraint to date

Recent highlights: boosted H–>cc

- Boosted H→cc reconstructed as a single large-radius jet Identified using a deep neural network charm tagging technique
- Validated by measurement of Z→cc, observed with signal strength of: 1.00^{+0.17}_{-0.14} (syst) ± 0.08 (theo) ± 0.06 stat (stat)
- Observed (expected) upper limit on $\sigma(H) B(H \rightarrow cc)$ is 47 (39) x SM

HIG-21-012, submitted PRL

Recent highlights: $H \rightarrow \mu \mu$

<u>JHEP 01 (2021)</u> <u>148</u>

- Production: ggF, VBF, ttH and VH
- Selections applied in order of ttH, VH, VBF and ggH.
 - ttH: at least one medium or two loose b-tagged jets
 - VH: WH: 3µ or 2µ1e, ZH: 4µ or 2µ2e
 - VBF: 2 jets with VBF-like kinematic
 - ggH: events not selected by the other channels
- Expected BR: 2.17 × 10⁻⁴
- Categories designed based on production processes
- Multivariate analysis (BDTs, DNN) is used in all channels

Recent highlights: $H \rightarrow \mu \mu$

JHEP 01 (2021) 148

- Measured signal strength, relative to SM: $1.19^{+0.40}_{-0.39}$ (stat) $0^{+0.15}_{-0.14}$ (syst)
- First evidence for $H \rightarrow \mu\mu$: 3.0 (2.5) σ observed (expected)

HIG-22-0002, submitted to PRD

 m_{eu} in ggH/VBF categories

- The lepton-flavor violating (LFV) decays $H \rightarrow e\mu$, $H \rightarrow e\tau$, or $H \rightarrow \mu\tau$ are forbidden in the SM but may arise in BSM theories with ٠ more than one Higgs boson doublet
- Search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range ٠ 110-160 GeV to an $e^{\pm}\mu^{\mp}$ using 138 fb⁻¹
- Events are first divided into two broad categories to enhance the signal from either the ggH or the VBF ٠
 - Then further split using output of boosted decision trees (BDTs)

Recent highlights: LF violating $H \rightarrow e\mu$

- - The most stringent direct limit set thus far.
- The observed (expected) upper limits on the cross sections of $pp \rightarrow X \rightarrow e\mu$ are set in the mX range 110-160 GeV at 95% confidence level. •
- Largest excess: local (global) significance of 3.8 (2.8) σ at an $m_{e\mu}$ around 146 GeV. ٠
 - This is the first result of a direct search for $X \rightarrow e\mu$, with mX below twice the W boson mass.

Recent highlights: VBF H->bb

HIG-22-009

- VBF H->bb search using 91 fb⁻¹ (2016+2018) at 13 TeV.
 - 2017: No trigger path suitable for this analysis ٠
- Treating ggF as a background and constraining its rate to SM ٠
- The analysis employs BDT to discriminate signal against major background processes QCD multijet production and Z + jets events
- Based on the BDT: multiple event categories are introduced, targeting VBF, ggF and Z + jets

15

Recent highlights: VBF H->bb

HIG-22-009

- Observed (expected) significance of μ_{qqH} : 2.4 (2.7) σ , $\mu_{qqH} = 0.97^{+0.53}_{-0.45}$
- Inclusive measurement of H production followed by decaying into 2b: Observed (expected) significance 2.5 (2.9) σ , $\mu_{qqH} = 0.92^{+0.45}_{-0.39}$

- H measurements are essential to LHC physics program
- XS and BR: overall good compatibility with SM predictions
 - Precision better than 10% for most of the considered coupling modifiers
 - Statistical uncertainties comparable to systematics ones for main H production and decay channels
- CMS have also made impressive progress in rare decay searches
- Improvements not only come from a larger data set, but also from using innovative analysis techniques
- Run 3 will consolidate the evidence in some decay channels and will bring further improvement in sensitivity

