

Search for BSM Higgs physics at CMS

Feng Wangdong Zhang (University of California Davis)

On behalf of CMS Collaboration

Why Higgs Physics?

- The most important particle in the HEP program?
- The portal connected multiple modern puzzling questions
- Many observables map to different questions related to Higgs boson
- Any deviations in Higgs feature indicate NEW PHYSICS

Higgs Production at the LHC

Higgs coupling & decays

- Gauge coupling to weak force mediators
- Yukawa coupling (eg. fermions)

SM/BSM Higgs coupling & decays

Nature 607 (2022) 60

+0.03

3.5

+0.05

з

Parameter value

1.5

1

2

2.5

invisible and undetected decays are not excluded

0

0.5

Outline

- Invisible Higgs decays
- Higgs exotic decays
- Higgs self-coupling & pair searches

Higgs invisible decays

Invisible Higgs decays: a portal to dark matter

VBF (most sensitive)

VH

Invisible Higgs decays: branching ratio constraints

arXiv:2303.01214(Submitted to EPJC)

- Improvement in sensitivity of 20% than single VBF channel
- Improvement of 5% relate to the combination of all RunII results
- The most stringent from direct searches at CMS to date

Invisible Higgs decays: a portal to WIMP

- Significant complementarity between LHC and direct detection experiments
- Effective Field Theory framework and UV-complete model both constrain the WIMP-nucleon cross section down below 10⁻⁵⁰ cm²

arXiv:2303.01214(Submitted to EPJC)

Exotic Higgs searches

- Final state bb has the largest branching fraction from pseudo-scalar boson decays
- Improvement of sensitivity over earlier CMS results by a factor of 2

$H \rightarrow aa \rightarrow \tau \tau bb$ combined with $H \rightarrow aa \rightarrow \mu \mu bb$

- Most of type-2 models:
 - branching ratio of H→aa above
 23% are excluded for 15 < M(a) <
 60 GeV at 95% confidence level

$H \rightarrow Za \rightarrow II\gamma\gamma$

CMS-PAS-22-003

 Constraints are set on the axion-likeparticle model parameter, which describe the coupling between the H and Z, and ALP

- First search on this final state
- It provides complementary channel for search for axion-like particles (ALPs)
- It could be extended to lower ALP mass in future

Summary: $H \rightarrow aa$

CMS-HDMS-Run2

Higgs self coupling & pair searches

- Two Higgs doublet models
- Minimal supersymmetric extension of SM
- Composite Higgs models
- Twin Higgs models (partially explain the hierarchy problem)

Higgs self coupling: examples

Higgs pair searches: examples

Higgs pair searches (non-resonant)

CMS-HIG-PublicResults

CMS-PAS-HIG-21-005

 Multiple channels of Higgs pair decays have been searched using advanced DNN technique

VV coupling with Higgs pair searches (non-resonant)

CMS-PAS-HIG-22-006

- First analysis to include a fully hadronic channel in the search for non resonant VHH in the HH → bbbb channel
- Each Higgs boson decays into bb pair (branching fraction: 33.9 ± 0.9%)

VV coupling with Higgs pair searches

CMS-PAS-HIG-22-006

• It could provide us an important information on the EWSB

Higgs pair searches (resonant)

CMS-HIG-PublicResults

- Discontinuities are caused by the partial availability of different analysis limits
- Two hypotheses from Higgs Effective Field Theory:
 - spin-0 (radion) & spin-2 (graviton)

A few words about the history and future...

- LHC RunIII with 13.6 TeV has started despite the energy crisis
- It is expected to collect physics data about 1.5 times than RunII

Higgs bosons produced per experiment, per run

The road to di-Higgs observation?

CMS-PAS-FTR-21-003

- BR(H \rightarrow bb) = 58%: Main HH channels require one H \rightarrow bb: bbbb, bbyy, bbtts
- First study on these new channels using DELPHES package

Summary & Outlook

- CMS have made a lot of progress in Higgs physics using full Run II datasets
 - Searches on BSM Higgs boson decays & production show no significant excess from SM predictions
 - In general, more stringent constraints were set using full RunII data than RunI
- More results to come with the RunII & RunIII & HL-LHC datasets

18 million Higgs bosons projected in RunIII

Backup

LHC / HL-LHC Plan

LHC & HL-LHC luminosity evolution

Year

Systematic uncertainties at HL-LHC

- Projections are based on educated estimates, especially regarding systematic uncertainties
 - Experimental uncertainties expected to decrease
 - Clever use of larger datasets and new detectors
 - 1% goal for luminosity uncertainty
- Theoretical uncertainties halved with respect to current values
 - Improvements expected in perturbative corrections, PDFs, α_S
- Larger available dataset
 - Will help to define more control regions or allow to optimise differently the analysis strategy in general
- Many analysis uncertainties will shrink
 - Use of profiling / better control regions
- MC statistical uncertainties expected to be negligible
 - Requires huge improvements for generators
 - Requires improvements to our simulation and reconstruction software, in order to fit within our CPU and disk storage limits

Higgs decays to $\mu^+\mu^-$ pair

The local significance of the largest excess at 95.4 GeV is about 2.9σ

Double Higgs production

Search for ttHH at HL-LHC

Search for ttHH at HL-LHC

CMS-PAS-FTR-21-010

$\mathsf{H} \to \mathsf{A} \mathsf{A} \to \gamma \gamma \gamma \gamma$

CMS-HIG-21-016 (submitted to PRL)

$ZH \rightarrow cccc$

CMS-HIG-21-012 (submitted to PRL)

An observed (expected) upper limit on the inclusive Higgs boson cross section times cc decay. branching ratio of 45 (38) times the standard model expectation is set at the 95% confidence level

Higgs pair searches (non-resonant)

CMS-HIG-PublicResults

95% confidence intervals on κ_{λ} superimposed by the best fit value on this parameter. The blue (black) hashed band indicates the observed (expected) excluded regions, respectively. The band around the best fit value corresponds to the one sigma interval. The bb bb resolved and bb bb boosted results are derived using a phase space with a minor overlap of signal events.

Twin Higgs model for partially explaining hierarchy problem

 The twin Higgs model assumes that the particles of the standard model (left) have mirror counterparts in a hidden sector (right). The two sets of particles could communicate through a coupling between our standard-model Higgs and the mirror Higgs

The road to di-Higgs observation (2)?

CMS-PAS-FTR-21-010

- A new way to explore the top-Higgs sector in an interplay with the double Higgs production both for BSM Higgs
- An access to the measurement of the triple Higgs coupling complementary to the double Higgs production, and to the top quark Yukawa coupling

The road to di-charged Higgs observation? CMS-PAS-FTR-22-006

 These results indicate that the HL-LHC will be able to rule out masses up to at least 1400 GeV at 95% CL

Higgs mass	300	500	700	900	1100	1300	1500	1700
H^{++}	15552	2231	412	104	30	9.1	2.8	1.0
$t\overline{t}$.61	.09	.02	0	0	0	0	0
Drell-Yan	0	0	0	0	0	0	0	0
QCD	1.2	.52	.30	.20	.14	.11	.09	.07
Higgs mass	300	500	700	900	1100	1300	1500	1700
H^{++}	18581	2758	478	125	31	10	2.8	1.0
$t\overline{t}$	3.4	.48	.13	.05	.02	.01	.01	0
Drell-Yan	6.6	1.6	.70	.38	.24	.16	.11	.08
OCD	17	5.5	2.7	1.6	1.1	.78	.59	.46

Theoretical background

- Two-Higgs-Doublet Model (2HDM)
 - Type-2 : minimal supersymmetry model (MSSM)
- Further extension: a scalar singlet (2HDM + S)
 - Type-2 : Next-to-minimal-supersymmetry-model (NMSSM)
- Symmetry breaking \rightarrow 5 predicted physical states:
 - Neutral scalars: h₁, h₂, h₃
 - Neutral pseudo-scalars: a₁, a₂
 - Charged scalars: H[±]

	Type-1	Type-2	Type-3 (lepton-specific)	Type-4 (flipped)
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Charged leptons	Φ_2	Φ_1	Φ_1	Φ_2

Interplay between experimental observables and fundamental questions

