

Dark Matter Direct Detection Experiments

Speaker : Qing Lin

University of Science and Technology of China

WIN2023 (Zhuhai) @ 2023.07.07

03

DM Search and Neutrino

Disclaimer: Apology for omittance!

** Most materials are borrowed from public talks, especially from Prof J. Liu and Prof. Q. Yue's.**

WIN2023 @ Zhuhai

Many Possibilities

Samuel Velasco/Quanta Magazine

Detection Scenarios

Current view of local DM

- **100000000** (1e8) DM particle crossing single human body (~1e29 atoms) every second!
- Every year DM interacts with human body less than 1 (current experimental results).
- Every day, there are 100000000 (1e8) energy depositions in human body caused by cosmic rays and background gamma radiation.

Detector Requirements

Low threshold

Low background

Large volume

02 Past and Current Experiments

Current Status: Hide and Seek

Heavy DM

Detection Techniques

DAMA/LIBRA (Scintillator)

- NaI crystal coupled with PMT at both ends.
- Crystal array embedded in copper cage, then shielded by PE and lead.
- No PID, bkg high;
- ✓ Annual Modulation Signal

Annual modulation validation working force

ANAIS-112

- ANAIS-112's 3-year results support the absence of annual modulation;
- The results are incompatible with DAMA/LIBRA at 3.3 (2.6) σ for energy window of 1-6 (2-6) keV.

Point contact Ge: CDEX

Ultra-low temperature: Bolometer

- High sensitivity to GeV WIMP.

Great background rejection power. \geq

Noble Liquid

PandaX-4T XENONnT LZ

	Xe Xenon	Ar		
Scalability	Good	Good		
Density	3 kg/L	1.4 kg/L		
А	133	40		
Long-lived bkg	Xe136 Negligible	Ar39 (1 Bq/kg in ^{nat} Ar, T _{half} =269yr)		
Bkg rej.	S2/S1, 3D pos.	S2/S1, Pulse shape, 3D pos.		
Scintillation light	178 nm	128 nm (need WLS)		
Cost	¥15000/kg	¥20/kg for ^{nat} Ar		
	A ANDRI 1	· · · 1 1 1 · 1 · 4		

XMASS

- High sensitivity to >10GeV DM due to its good scalability and bkg discrimination;
- □ Liquid xenon dual-phase TPC currently has the worldleading sensitivity to >10GeV DM.

Liquid Xenon Dual phase Time Projection Chamber

 10^{2}

WIMP Mass M_{DM} [GeV/c²]

 10^{-4}

 10^{-43}

 10^{-47}

10

tion

cro 10^{-46}

^o 10⁻ NIU-MI 10⁻⁴ 10⁻⁴

Liquid Argon Dual phase Time Projection Chamber

- 2022 construction, 2025 data taking;
- □ 50tonne total mass;
- 20t fiducial mass for 10-year exposure;
- More details in parallel talks: □ The DarkSide-20k experiment, Tianyu Zhu **Opportunities to light dark matter searches with the DarkSide-LowMass** detector, Maxim Gromov Characterisation: DArT Measurement of the 39Ar depletion factor UAr transported via boat for final purification at Aria Production: Urania Commercial-scale plant to extract UAr Located in Southwestern Colorado UAr extracted from CO₂ well gas at the tonne scale **Purification: Aria** 350 m tall cryogenic distillation column to purify UAr and isotopically separate argon and other elements Located in refurbished carbon mine shaft in Sardinia, Italy Will chemically purify the UAr for DS-20k to detector grade
 - UAr mined from Urania;
 - □ Further distillated at Aria

facility;

Directional Detector: Gaseous TPC

Ultimate background: neutrinos

- Low-pressure gaseous TPC;
- Highly pixelized charge readout for high track resolution;
- Directionality can help go beyond neutrion floor to some extent.

02 Past and Current Experiments

DM detector for neutrino detection

Coherent Elastic Neutrino-Nucleus Scattering caused by Cosmic Neutrinos (Solar, Supernova etc.)

Neutrinoless double beta decay search.

Search for Solar B8 neutrino

18

XENON1T

PRL 126, 091301 (2021)

PRL 130, 021802 (2023)

S1 hit properties				Science dat	a
Hit category LHA		AC	ER	Total BG	CE _ν NS
2 Hits, 1+ in TA 2 Hits, 0 in TA 3 Hits	≥2 PE <2 PE ≥2 PE <2 PE ≥2 PE ≥2 PE	0.09 3.54 0.03 1.47 0.00	0.01 0.04 0.03 0.09 0.01	0.10 3.58 0.06 1.58 0.02	0.13 0.44 0.23 0.79 0.17
Total	<2 PE	0.01 5.14	0.03	5.38	0.36 2.11

N	$V_{ m hit}$	$S2 ext{ range} $ [PE]	BDT	ER	NR	Surf	AC	Total BKG	⁸ B	Obs
	2	65-230	pre post	$\begin{array}{c} 0.04 \\ 0.02 \end{array}$	$\begin{array}{c} 0.10\\ 0.04 \end{array}$	0.14 0.03	$\begin{array}{c} 62.43 \\ 1.41 \end{array}$	$\begin{array}{c} 62.71 \\ 1.50 \end{array}$	$\begin{array}{c} 2.32\\ 1.42 \end{array}$	59 1
	3	65-190	pre post	$\begin{array}{c} 0.01 \\ 0.00 \end{array}$	$\begin{array}{c} 0.05\\ 0.02 \end{array}$	0.08 0.03	$\begin{array}{c} 0.79 \\ 0.02 \end{array}$	$\begin{array}{c} 0.93 \\ 0.07 \end{array}$	$\begin{array}{c} 0.42 \\ 0.29 \end{array}$	2 0

Parallel talk: Search for solar neutrino and low-mass dark matter with PandaX-4T, Wenbo Ma

Search for Reactor neutrino CEvNS

many novel low-background, low-threshold technologies!!

Figueroa-Feliciano (Magnificent CEvNS 2023)

Search for 0nbb

Counts / 10 keV

ъ

Res.

ke∕

10

Ь

Res.

3000

150 Counts /

100

50

500

100

50

Summary

- Efforts have been paid heavily on >10GeV heavy DM and <10GeV light DM searches; No positive signal found yet;
- Bolometer and semi-conductor are leading the search for light DM;
- □ Liquid xenon time projection chamber is leading the search of >10GeV DM;
- DM detectors are getting used in neutrino measurements.

Thank you for listening!

Backup

Bubble Chamber: PICO

https://www.picoexperiment.com/pico-60/

Discrimination against neutron through single

No bkg from gamma, e and muons;

and multiple scatter images;

8

02 / Past and Current Experiments

DM-e scattering and Migdal effect

DM-electron scattering

Essig, Mardon, Volansky, PRD 85, 076007 (2012)

Migdal Effect M. Ibe et al., Journal of High Energy Physics 2018.3 (2018) XENON collaboration, PRL 123, 241803 (2019)

Capable of Probing light dark matter due to high momentum transfer

Diurnal Modulation

Expected diurnal modulation due to traveling length's day-night difference for transpassing boosted DM.

Skipper CCD technique: SENSEI

- > 0.01 g Si Skipper CCD;
- Reduce noise through nondestructively measure charge multiple times;
- Single electron sensitivity with resolution to 6.7%.

Helium Detector

Phys. Rev. D 100, 092007 (2019)

- Very low W value for roton and phonon;
- Quasiparticle propagate ballistically, including directionality;
- Background dominated by gamma and neutrino coherent scattering;

Nature Phys. 17, 1402–1407 (2021).

arXiv: 2306.09726

21

PRX QUANTUM **3**, 010330 (2022)

Quantum sensors
