

Progress in the precision measurements of W mass, V pT, and $\alpha_{\rm S}$

Yusheng Wu

University of Science and Technology of China For ATLAS and CMS collaborations

WIN2023, Zhuhai, July 3 – July 8, 2023

Measurement of phenomena at smallest scales

Collider endeavors on precision comparisons between observations and predictions:

- >> precisely test the Standard Model (cross-sections, parameters, ...)
- >> search for new physics phenomena (resonances, deviations)

>>> knock on the door to potentially answer outstanding questions

(dark matter, matter-anti-matter asymmetry, v masses, hierarchies, ...)

Predictions and measurements

SM parameters

19 free parameters

or 26 parameters (including neutrino sector with masses)

Parameters	Relative Error (PDG)
α , $\sin^2 \theta_w$, α_S	10 ⁻¹⁰ , 10 ⁻⁴ , 10 ⁻²
m_W (m_Z), m_H	10 ⁻⁴ (10 ⁻⁵), 10 ⁻³
m_u, m_d, m_s	10 ⁻¹ , 10 ⁻¹ , 10 ⁻¹
$m_e, m_\mu, m_ au$	10 ⁻¹⁰ , 10 ⁻⁸ , 10 ⁻⁴
$m_c, m_b, \frac{m_t}{m_t}$	10 ⁻² , 10 ⁻² , 10 ⁻²
CKM 3 mixing angles & 1 CP-violating phase	10 ⁻⁴ - 10 ⁻²
Strong CP violating phase	< 10 ⁻⁹

Those sensitive for EW & TeV scale colliders to measure are marked in red

Measuring these parameters at different exp. offers

- stringent test of SM internal consistency
- high sensitivity to new physics
- probe of running nature of fundamental couplings

LHC measurements

Covered measurements relevant to m_W and α_S from ATLAS and CMS

ATLAS: W mass measurement with 7 TeV pp collision data ATLAS-CONF-2023-004 improved upon original result in EPJC 78 (2018) 110

ATLAS: Measurement of W/Z pT with low pile-up data at 5 and 13 TeV ATLAS-CONF-2023-028

ATLAS: Measurement of Z pT at 8 TeV ATLAS-CONF-2023-013

CMS: Measurement of Z pT at 13 TeV

arXiv:2205.04897

CMS: α_S measurement with inclusive jet cross-sections at 13 TeV JHEP 02 (2022) 142

ATLAS: α_S measurement with multi-jets at 13 TeV arXiv:2301.09351

ATLAS: α_S measurement with Z pT at 13 TeV ATLAS-CONF-2023-015

LHC, ATLAS and CMS

Two general-purpose detectors with excellent performance and broad physics potentials:

Higgs and other SM measurements, direct search for new physics at EW and TeV scales, ...

Data taking and processing

Tremendous efforts from LHC, detector teams to make the data collection smooth

Physics successes owing to precise understanding of e, μ , jets, E_T^{miss} , and tagging of heavy-flavor jets

Per-mil to percentage precision achieved in many

7/7/2023

W mass measurement

EPJC 78 (2018) 110 ATLAS-CONF-2023-004

Walk through the methodology in the original paper and flash through the updates

Story of being precise ...

- ✓ Abundant and clean W \rightarrow ev and $\mu\nu$ events (> 10M)
- \checkmark Sensitive variables p_T^{Iepton} and m_TW to measure mW
 - \circ $\,$ Templates with varying mW fit to data $\,$
- ✓ Target of O(10) MeV precision requires per-mil precision in predicting and measuring $p_T^{\ I}$ and m_T
 - \circ $\,$ Correcting MC simulation to start-of-art predictions
 - Calibrating physics objects to best possible precisions
- ✓ Z events for calibrations and verifying corrections and methodology
 - \circ $\,$ more precise mZ, and similar process to W

Modelling and Corrections

Needs precise modelling upon all corners:

from matrix-element all the way to final state particles

W, Z process initially modelled with Powheg+Pythia8: NLO QCD + QED final state radiation + LL QCD resummation

Correct to start-of-art predictions based on **Drell-Yan factorisation formula**

Corrections on variables insensitive to mW **>** reliable modelling, minimum biases to mW

Improved modelling

Modelling variation in m_TW under control

Validating y modelling with measurement

200

Modelling uncertainties

Demonstrating the impact on mW measurement directly

Decay channel	И	$V \rightarrow ev$	$W \rightarrow \mu \nu$		
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}	
δm_W [MeV]					
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1	
Pure weak and IFI corrections	3.3	2.5	3.5	2.5	
FSR (pair production)	3.6	0.8	4.4	0.8	
Total	4.9	2.6	5.6	2.6	

Higher-order electroweak (with <u>WINHAC</u> and <u>SANC</u>)

Real FSR included in simulation \rightarrow negligible unc. Loop, interference (ISR-FSR), FSR pair production not included in simulation \rightarrow full size evaluated and assigned unc.

QCD

W-boson charge	W	7+	<i>W</i> ⁻		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

PDF unc. dominates

 \rightarrow CT10nnlo internal errors, alternative sets

Parton shower unc. important

 \rightarrow affect pT modelling; uncertainty reduction in ratios

($Z_{data}^{*} W_{MC} / Z_{MC}$)

Angular coefficients Ai also important

→ Rely on Z measurement errors/discrepancies

QCD scale variation in matrix element negligible

Detector response

Key observables are $p_T^{\ I}$ and m_T

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} p_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)}$$
$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right)$$

- Rely on precise measurement or response to \mathbf{p}_{T}^{I} and \mathbf{p}_{T}^{miss}
- Calorimeter clusters used to reconstruct recoiling energy u_T to improve p_T^{miss} resolution

Lepton p, E scale and resolution, efficiencies, determined via Tag & Probe method in **Z** events, corrected in simulation Calibrated activities along-side **Z** events

Calibrated e, μ

Corrections (in p_T , η , ϕ) validated in Z data

- → Small uncertainties compatible to statistical error of Z data (per-mil)
- ➔ Impact on mW could be O(10) MeV

Benefit from larger samples in the future

Calibrated u_{T}

u_{T} sensitive to effects of extra pp collisions (pile-up)

- → Prefer to work in low pile-up environment
- → Use Z events to correct for event activities and then for $\mathbf{u}_{\mathbf{T}}$ energy scale and resolution

 u_T modelling affects mW measured from m_T O(10) MeV due to event activity correction, and Z→W extrapolation

Measurement Regions

Full procedure validated with Z events (treated one lepton missing) – see backup

Data and predictions for W events after all corrections

Backgrounds mainly Z, multijet (data-driven) \rightarrow imposing 5-10 MeV unc. to mT

Measured W mass

Final results given by combined m_T and p_T^{I} fits

 \rightarrow Stat. improvement, syst. cancellation w.r.t. individual fit

Extensive test of stability, consistency has been performed

Systematics in a nutshell

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T}, W^+, e - μ	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^{-}, e^{-\mu}$	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\mathrm{T}}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^+, e$ - μ	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\hat{\ell}}, W^{-}, e$ - μ	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\mathrm{T}}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
m_{T} - p_{T}^{ℓ} , W^+ , e	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
m_{T} - $p_{\mathrm{T}}^{\dot{\ell}}, W^{-}, e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}},W^{\pm},e$	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T},W^{\pm},\mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - $p_{\mathrm{T}}^{\ell}, W^+, \mu$	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}}, W^{-}, \mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
$m_{ m T}$ - $p_{ m T}^{\hat{\ell}},W^{\pm},\mu$	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^\ell$, W^+ , e - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}}, W^{-}, e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Cannot miss any corners of potential effects

Updated W mass NEW!

Chi2 fit method don't exploit data directly to improve modelling of systematics

-

 $\rightarrow \tau^+ v_-$

45

Backgrounds

Pre-fit ratio

Muon

50

p^ℓ_T [GeV]

/// Stat ⊕ Syst

- Change to likelihood fit method
- Same modelling as in original paper, except for updated PDF to CT18NNLO

40

Can visualize post/pre-fit behaviors

Check PDFs on the markets

Statistical interplays start to happen

7/7/2023

35

Events/1GeV

0.5

0.4

0.2

0.1

.02

30

Data / Pred.

ATLAS Preliminary

 $\sqrt{s} = 7 \text{ TeV}, 4.1 \text{ fb}^{-1}$

 μ^+ -channel, post-fit

Updated W mass NEW!

 $m_W = 80360 \pm 5(\text{stat.}) \pm 15(\text{syst.}) = 80360 \pm 16 \text{ MeV}$

Updated mW measured to have lower mass, and 3 MeV smaller unc. Better consistency with electroweak fit prediction

FUTURE:

more precise, independent measurements from ATLAS, CMS, LHCb will be desired (in view of discrepancies w.r.t. CDF results) → more precise calibrations (with more data), better pT modelling (more precise V pT measurements), better PDF modelling (more relevant PDF measurements at the LHC)

V pT measurements

ATLAS-CONF-2023-028 ATLAS-CONF-2023-013 arXiv:2205.04897

Flash through new measurement results

V pT measurements

Or precision differential measurements of W or Z:

- Parameter determination (e.g., W mass and α_s); Understanding of QCD (V+jets); Search for new physics, study of Higgs physics, ...

Clean, abundant Z samples

1% measurement precision provides great inputs to latest MC algorithms (NLO multi-leg, NNLO + PS, NNLL resummation, TMD, ...)

Z pT measurements

arXiv:2205.04897

Constraining TMD (from ArTemiDe and from parton branching TMD from CASCADE), Y. Wu resummation effects

Ratio measurement to explore more precision and constraining powers

Worked on Z events,

to validate that pT-

u_T equivalence

Low pile-up pT(V) measurements

Low pile-up gives smaller but sufficient data sets and clean collision environment Ideal to gain precision knowledge for pT(W) modelling at lower end

 $u_{\rm T}$ after correction (derived from Z events) is equivalent to pT

ATLAS Preliminary

√s= 5.02 TeV 255 pb⁻¹, Z→ II

Di-lepton measurement Recoil measurement

dơ/dp_⊤ [pb/Ge

10

10-

ATLAS-CONF-2023-028

Low pile-up pT(V) measurements

α_S measurements

<u>JHEP 02 (2022) 142</u> arXiv:2301.09351 <u>ATLAS-CONF-2023-015</u>

$\alpha_{\rm S}$ affects everything

LHC measurements unique to test the $\alpha_{\rm S}$ running to electroweak scale and TeV

Utilize the abundant production of jets and V+jets Many different methodologies, relevant examples below

0.125

arXiv:1811.11801

MNLO 🖛 NLO **PDF fit** with collider ``collider collider results (e.g., inclusive jet) `collider can give constraint to $\alpha_{\rm S}$ (sensitivity from parton σ "collider" and DGLAP scaling)

Transverse energy-energy correlation (TEEC) dated back to e+e-, to explore multi-jet FSR correlation

0.130

 α_{S} modifies the strength of ISR, and therefore affects $p_{\tau}(Z)$ $\Leftrightarrow p_{T}(Z)$ is one of most precisely measured distribution at LHC 28

JHEP 02 (2022) 142

Inclusive jets $\rightarrow \alpha_{S}$

Beautiful jet measurements input to a PDF fit, including CT14nlo/nnlo and CMS ttbar data

1.5% precision achieved, hitting most precise regime

Constraints to gluon PDF

arXiv:2301.09351

TEEC in multi-jets $\rightarrow \alpha_S$

TEEC in multi-jets $\rightarrow \alpha_S$

Chi2 template fits with varying $lpha_S$ at different energy scales

DYTurbo: N⁴LL resummation + aN³LO perturbative with N³LO MSHT20 PDF Z pT measurement being very precise matching to precise modelling prediction can yield great precision in α_s

Evolution of measured α_s precision v.s. increased accuracies of prediction (improving accuracies and good convergence of results)

$Z pT \rightarrow \alpha_S$

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

Uncertainty break-down for α_s

→ Dominate by modelling uncertainty

A single best precision measurement so far 0.8% precision in α_s

Summary

Discussed selected topics and recent progress relating to **mW** and α_s

- \Rightarrow Full exploitation of abundant process at the LHC: W, Z, jets leads to great precision
- \Rightarrow Careful detector calibration is indispensable
- \Rightarrow State-of-art predictions are indispensable
- \Rightarrow LHC already at the leading precision of measuring relevant fundamental parameters
- \Rightarrow Triumph of both experimental and theoretical communities
- \Rightarrow More sensitive to find potential anomalies relating to long-sought new physics

NEXT:

 \Rightarrow Rely on even larger, cleaner data sets to improve both experimental and theoretical precision NO easy tasks but rewarding!

Thank you for your attention!

Backup

Consistency Test with Z

Treat one lepton from Z as missing to mimic W events

ATLAS-CONF-2023-013

More on ZpT 8 TeV ATLAS

PDF set	Total χ^2 / d.o.f.	χ^2 p-value	Pull on luminosity
$MSHT20aN^{3}LO$ [60]	13/8	0.11	1.2 ± 0.6
CT18A [61] MSHT20 [62]	$\frac{12/8}{10/8}$	$0.17 \\ 0.26$	0.9 ± 0.7 0.9 ± 0.6
NNPDF4.0 [63]	$\frac{10}{8}$ 30/8	0.0002	0.0 ± 0.0 0.0 ± 0.2
ABMP16 [64]	30/8	0.0002	1.8 ± 0.4
HERAPDF2.0 [65] ATLASpdf21 [66]	$\frac{22/8}{20/8}$	$\begin{array}{c} 0.005 \\ 0.01 \end{array}$	$-1.3 \pm 0.8 \ -1.1 \pm 0.8$

Comparison between high precision data to various PDF sets

More on inclusive jets CMS

Constraints including both jet data and ttbar data

More on pileup dependence of $U_{\rm T}$

