The 29th International Workshop on Weak Interactions and Neutrinos (WIN2023)

Electroweak Interactions & Higgs Summary

Gang Li

School of Physics and Astronomy

Sun Yat-Sen University

Disclaimer: very biased summary

5 plenary talks

- Review of EW interactions (theory) +1:
 - Liantao Wang, Overview of the future directions of particle physics
- Review of EW interactions (experiment) +1:
 - Xiaohu Sun, Experimental overview of EW and BSM physics at CMS and ATLAS
- Highlights +3:
 - Jiang-Hao Yu, Effective Field Theories for Weak Interactions and Neutrinos
 - Yusheng Wu, Progress in the measurements of the W mass, the Z-boson transverse momentum and alpha_S
 - Jia Liu, The progress of Electroweak and Beyond the Standard Model studies at CEPC

- Higgs physics + 6:
 - Qianying Guo, HVV, Higgs mass, CP
 - Zhiyuan Li, Higgs fermion at the CMS experiment
 - Fengwangdong Zhang, Search for BSM Higgs at CMS
 - Lailin Xu, Searches for new physics in the Higgs sector
 - Michihisa Takeuchi, Double aligned two Higgs doublet models at LHC

Higgs physics

Electroweak physics

- Precision measurements (theo.) +4:
 - **Zhe Guan**, Recent di-boson and tri-boson measurements at CMS
 - Yusheng Wu, Measurements of electroweak diboson production in association with two jets in ATLAS
 - Hao Xu, Measurement of multiboson production in ATLAS
 - Xiao Wang, WZ cross section measurements at LHCb
 - Menglin Xu, W mass measurements at LHCb

Electroweak physics

- Precision measurements (theo.) +4:
 - Rui-Qing Xiao, LHC and Future High Energy Colliders: Probing the nTGC New Physics
 - Jiayin Gu, SMEFT at future lepton colliders
 - **Yiming Liu**, The interplay of EWPO and top interactions in SMEFT fits at Electroweak Interactions
 - Bin Yan, Application of the jet charge in electroweak and Higgs physics
- Top quark +2:
 - Jian Wang, Precise prediction for the top quark width
 - Xiaohu Sun, Top quark mass measurements at CEPC

• Searches +1:

New phenomena

- Oliver Stelzer-Chilton, Searches for new phenomena with the ATLAS detector
- Supersymmetry +2:
 - Pengxuan Zhu, A concise review on some Higgs-related new physics models in light of current experiments
 - Norimi Yokozaki, Spontaneous CP violation and supersymmetry
- Dark matter & New light particles +3:
 - Leila Kalhor, Light dark matter around 100 GeV from the inert doublet model
 - Houbing Jiang, Dark sector and Axion-like particle search at BESIII
 - Xiaoping Wang, ALP explanation to the muon (g-2) and its test at future Tera-Z and Higgs factories

New phenomena

- Electroweak baryogenesis +2:
 - Huaike Guo, Electroweak phase transition and barogenesis
 - **Yanda Wu**, Electroweak sphaleron under multiple-step EWPT with the general high dimensional SU(2) multiplet extension to the Standard model

Liantao Wang

Open questions in the Standard Model

What is the future?

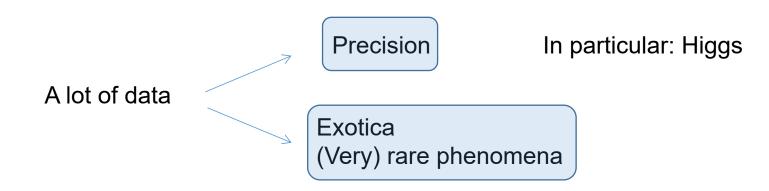
Future experimental probes, and what we can learn from them

The experimental probes

Energy frontier HL-LHC, Future colliders

Rest of the talk

Cosmological observations CMB, LSS, Gravitational wave


Table top exp, fixed target, ... Intensity frontier

10 times more data to come at the HL-LHC

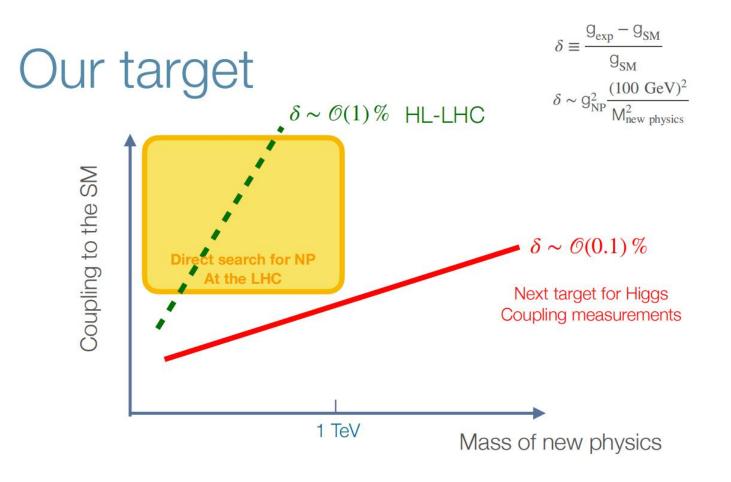
What will this data tell us?

Liantao Wang

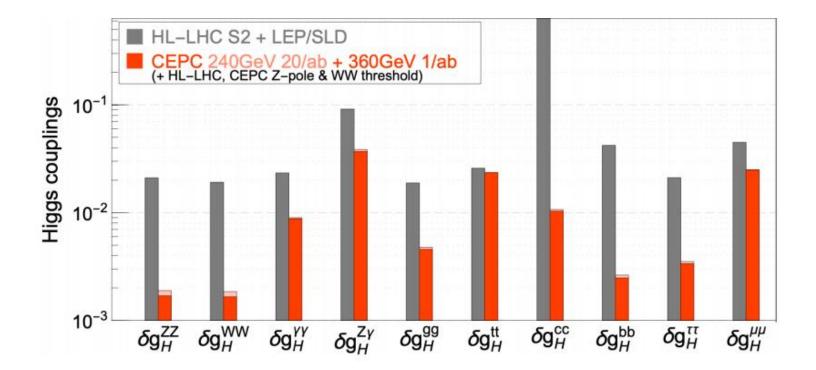
Why focusing on Higgs?

Higgs is simple.

A simple "Mexican hat" potential.

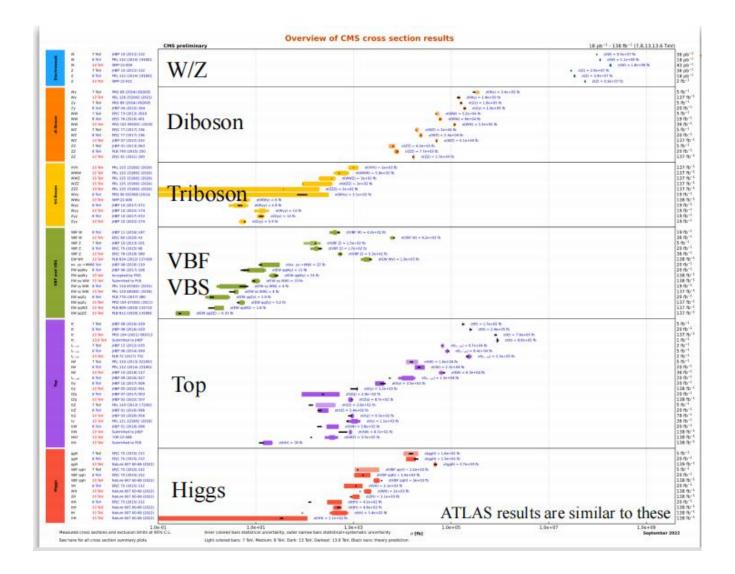

⇒ Electroweak symmetry breaking

 \Rightarrow gives masses of SM particles


Yet, Higgs is confusing.

- Is Higgs boson elementary or composite?
- Are there other Higgs bosons?
- How does Higgs mechanism set the masses of the SM particles?

Liantao Wang



Future colliders are needed

See Jia Liu's talk

Experimental review

• EW W/Z, VBS, multiple bosons

- $t\bar{t}$, single top, mass
- Higgs, rare decays
- And the relevant BSM

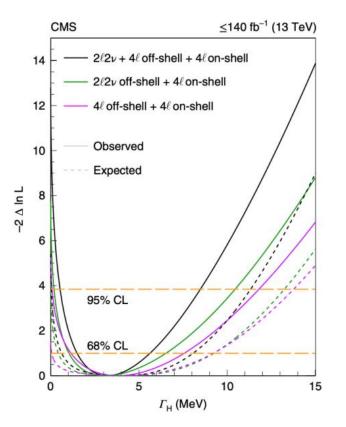
Very comprehensive review

My summary borrows a lot from this review

Xiaohu Sun

Higgs physics

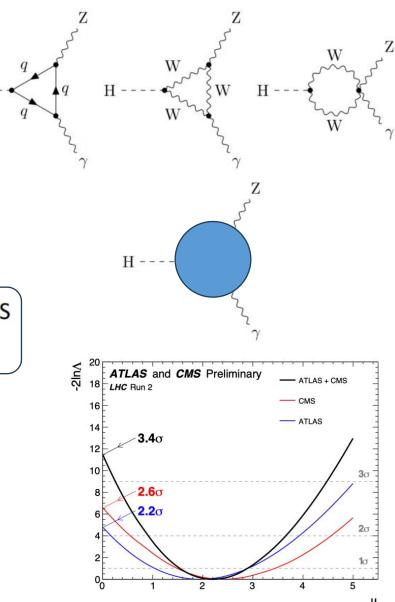
- Higgs Mass: $m_H = 125.38 \pm 0.14 (\pm 0.11) \text{ GeV}$
- Higgs Width: $\Gamma_{H} = 3.2^{+2.4}_{-1.7} MeV$
- First observed off-shell Higgs production at LHC with 3.6 σ
- Limit on HVV anomalous couplings
- First evidence of H $\rightarrow Z\gamma$ channel with 3.4 σ combined with ATLAS and CMS
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson


$$\frac{\sigma_{\rm gg \to H \to ZZ^*}^{\rm on-shell} \sim \frac{g_{\rm gg H}^2 g_{\rm HZZ}^2}{m_{\rm H} \Gamma_{\rm H}}}{\sigma_{\rm gg \to H^* \to ZZ}^{\rm off-shell} \sim \frac{g_{\rm gg H}^2 g_{\rm HZZ}^2}{(2m_Z)^2}} \text{ ATLAS } \Gamma = 4.6^{+2.6}_{-2.5} \text{ MeV}$$

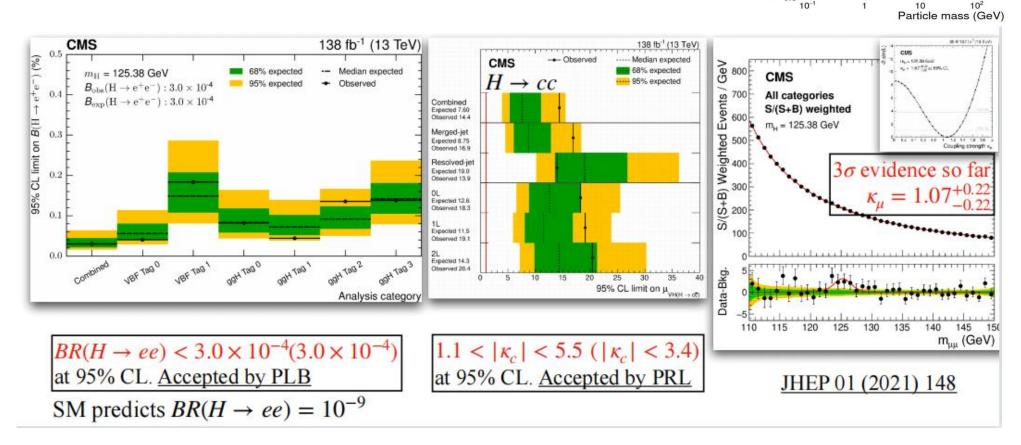
Qianying Guo @CMS

- Higgs Mass: $m_H = 125.38 \pm 0.14 (\pm 0.11) \text{ GeV}$
- Higgs Width: $\Gamma_{H} = 3.2^{+2.4}_{-1.7} MeV$

- First observed off-shell Higgs production at LHC with 3.6 σ


- Limit on HVV anomalous couplings
- First evidence of H $\rightarrow Z\gamma$ channel with 3.4 σ combined with ATLAS and CMS
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson

Distributions of ZZ invariant mass observables in off-shell signal regions $m_{VV} > 2m_V$


- Higgs Mass: $m_H = 125.38 \pm 0.14 (\pm 0.11) \text{ GeV}$
- Higgs Width: $\Gamma_{H} = 3.2^{+2.4}_{-1.7} MeV$
- First observed off-shell Higgs production at LHC with 3.6 σ
- Limit on HVV anomalous couplings
- First evidence of H $\rightarrow Z\gamma$ channel with 3.4 σ combined with ATLAS and CMS
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson

Qianying Guo @CMS

 \mathbf{H}

• Couplings to lighter fermions in the first and second generations

Zhiyuan Li @CMS

CMS

m.,=125.38 GeV Fit for each fermions/vector

bosons

 $\mathbf{k}_{f} \frac{\mathbf{m}_{f}}{\mathbf{v}}$ or $\sqrt{\mathbf{k}_{V}} \frac{\mathbf{m}_{V}}{\mathbf{v}}$

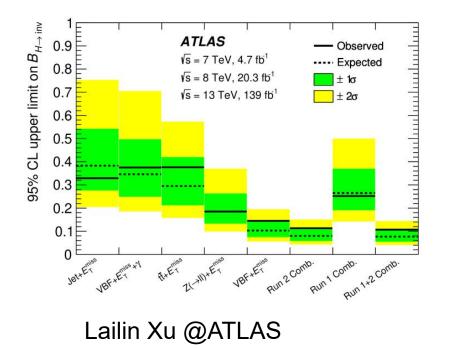
10-2

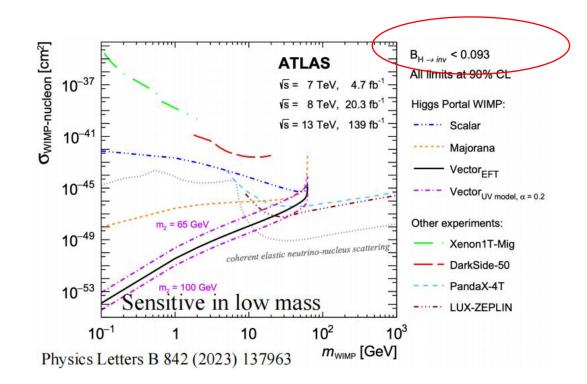
 10^{-3}

10

0.6

Ratio to SM 1.2 1.0 0.8 138 fb⁻¹ (13 TeV)

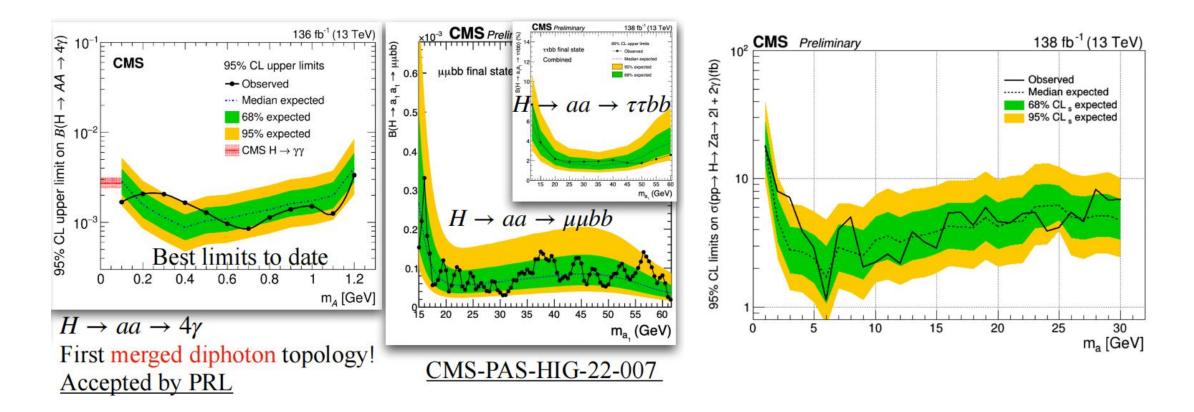

Vector bosons 3rd generation fermions


deneration fermions SM Higgs boson

Exotic Higgs decays

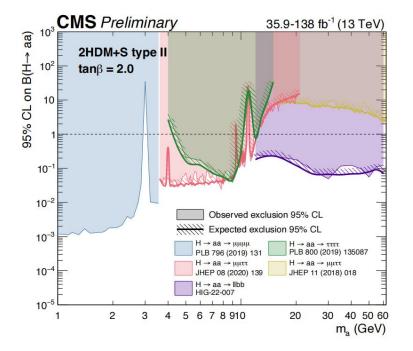
• H -> invisible:

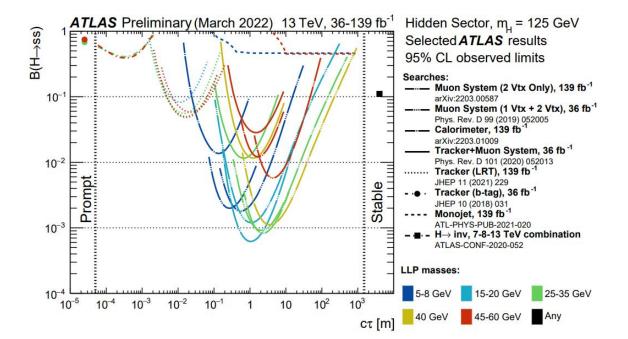
95% CL limit for H→ inv ATLAS: 10.7% (7.7% exp.) CMS: 15% (8% exp.)



Significant complementarity between LHC and direct detection experiments

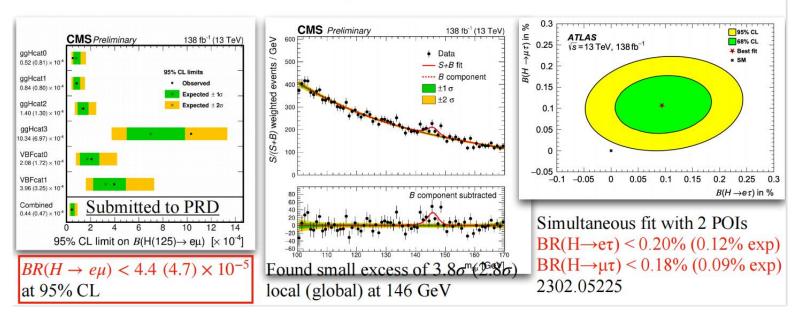
Also Fengwangdong Zhang @CMS


Exotic Higgs decays


• Higgs to pseudoscalars:

Exotic Higgs decays

• Higgs to pseudoscalars:

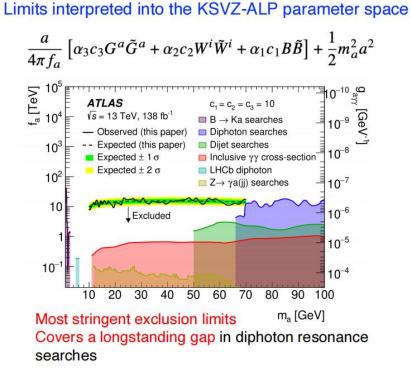

Oliver Stelzer-Chilton @ATLAS

Fengwangdong Zhang @CMS

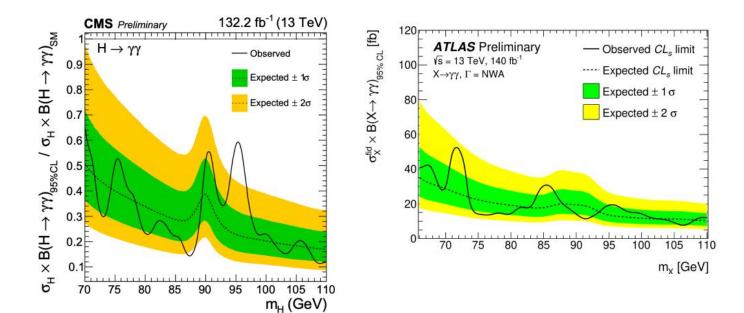
Xiaohu Sun

Exotic Higgs decays

- Higgs decays with lepton flavor violation:
 - CMS searches for $H \rightarrow e\mu$ for SM H and scans the mass from 110 to 160 GeV for BSM H
 - ATLAS searches for $H \rightarrow e\tau, \mu\tau$ decays


Additional "Higgs bosons"

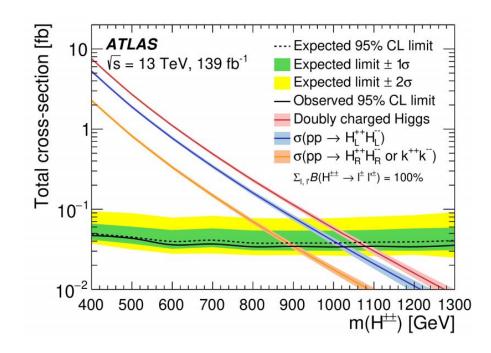
Searches	Ref.	Searches	Ref.	
Boosted $a \rightarrow \gamma \gamma$ (10 GeV < m_X < 70 GeV)	arXiv:2211.04172	$t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb$	arXiv:2302.11739	
Low-mass resonance $X \rightarrow \gamma \gamma$ (66 < m_X < 110 GeV)	ATLAS-CONF-2023-035	$H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$	arXiv:2211.07505	
tta, $a ightarrow \mu \mu$	arXiv:2304.14247	$ttH/A \rightarrow tttt$	arXiv:2211.01136	
$X \to Z\gamma$	ATLAS-CONF-2023-030	$A \rightarrow ZH \rightarrow lltt + vvbb$	ATLAS-CONF-2023-034	
$X \rightarrow WW$	ATLAS-CONF-2022-066	FCNC $t \rightarrow qX, X \rightarrow bb$	arXiv:2301.03902	


Additional "Higgs bosons"

Lailin Xu @ATLAS

• Boosted a -> $\gamma \gamma$

Low-mass resonance X -> γ γ

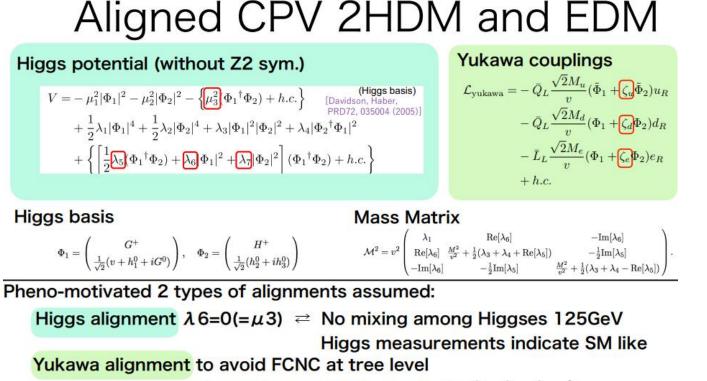


- CMS sees a 2.9σ excess at 95 GeV
- The 95 GeV excess is not confirmed by ATLAS

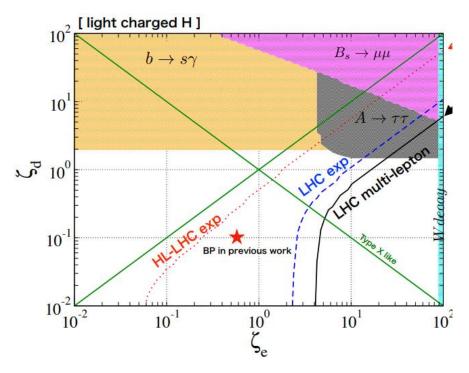
Lailin Xu @ATLAS

Additional "Higgs bosons"

• $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$

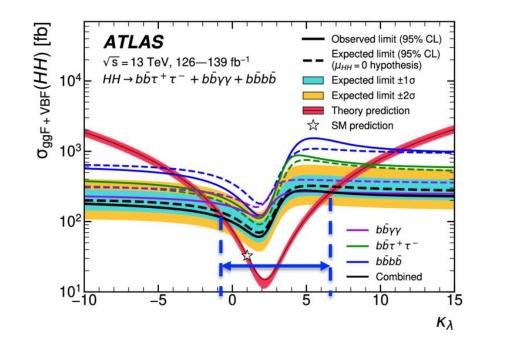

 $m_{H^{\pm\pm}} < 1080 (900) \text{ GeV}$ excluded for the LRSM (Zee-Babu) model

Provides a first direct test of the Zee–Babu model $(k^{++}k^{--})$ at the LHC

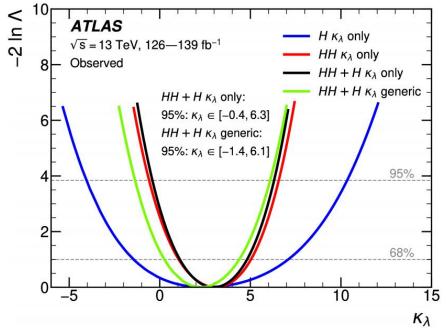

Additional "Higgs bosons"

Michihisa Takeuchi

* 125GeV Higgs is SM like \rightarrow Aligned CPV 2HDM

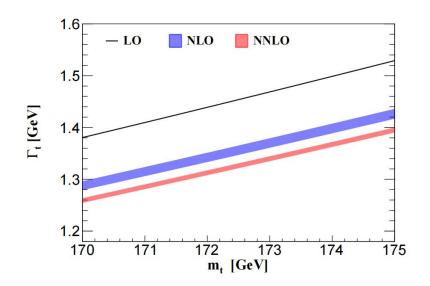


ightarrow 4 complex parameters remain $\zeta_e, \zeta_d, \zeta_u, \lambda_7$


Di-Higgs production

• Non-resonant

Also Fengwangdong Zhang @CMS

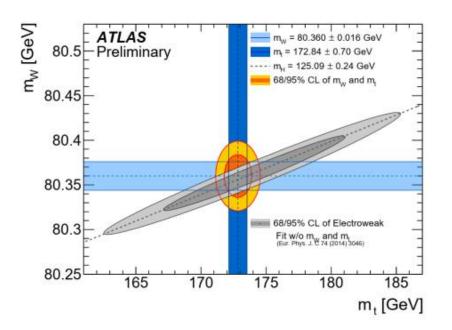

Provides the most stringent constraints on Higgs boson self-interactions to date

Electroweak physics

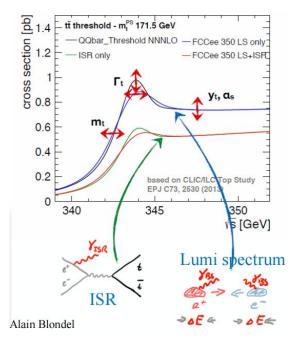
Top quark

- ttbar production: new early Run3 at 13 TeV results
- Four-top production : Observation at ATLAS with 6.1 (4.3) s.d. and CMS with 5.5 (4.9) s.d
- Top quark width

The full analytical result of top-quark width at NNLO in QCD

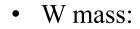

Considering all the possible uncertainties, the uncertainty at NNLO is less than 1%

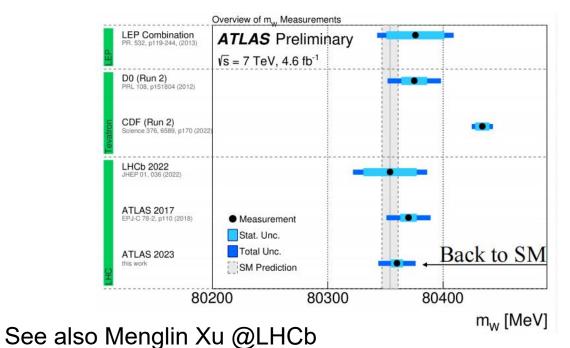
See Jian Wang's talk


Top quark

Xiaohu Sun @CEPC

• Top quark mass

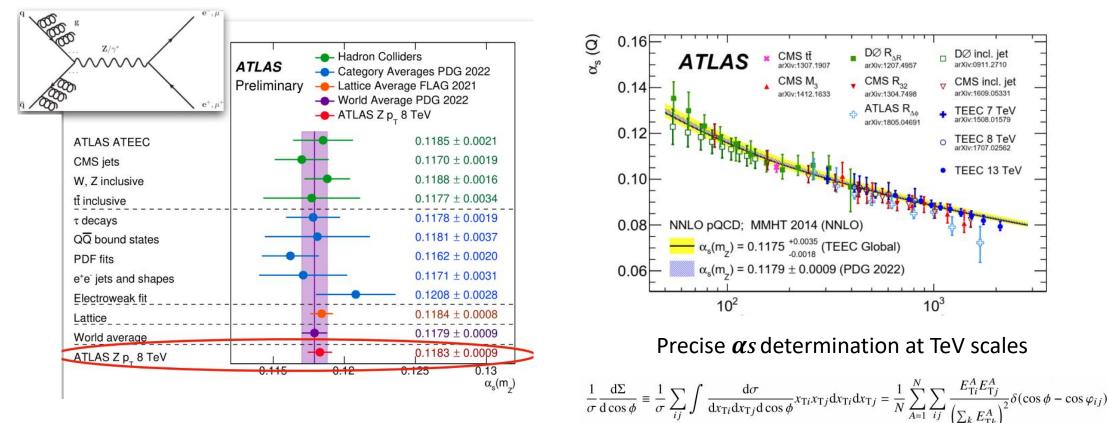

- The top mass is measured using top reconstruction at hadron colliders
 - Heavily relies on the performance of MET (the neutrino) and jet energy scale/resolution uncertainties
- CMS Run1 combined uncertainty reached ~500 MeV dominated by systematic uncertainties
- Very difficult to further improve the precision due to dominant systematic uncertainties at hadron colliders



- The total error is 24 MeV (57 MeV) optimistically (conservatively)
- 1 order of magnitude better than the LHC

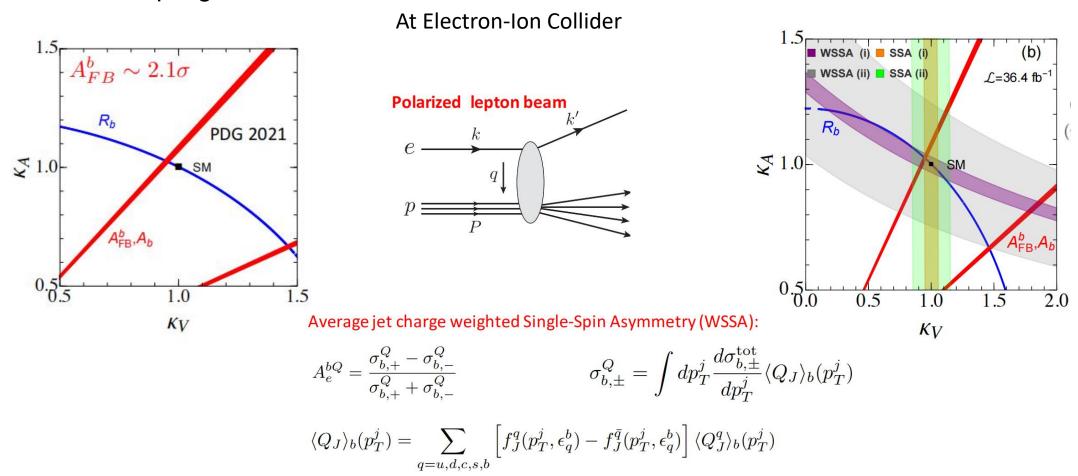
Yusheng Wu @ATLAS

Precision measurements

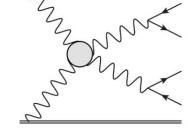

 $m_W = 80360 \pm 5(\text{stat.}) \pm 15(\text{syst.}) = 80360 \pm 16 \text{ MeV}$

Updated mW measured to have lower mass, and 3 MeV smaller unc.

FUTURE:


more precise, independent measurements from ATLAS, CMS, LHCb will be desired (in view of discrepancies w.r.t. CDF results) → more precise calibrations (with more data), better pT modelling (more precise V pT measurements), better PDF modelling (more relevant PDF measurements at the LHC)

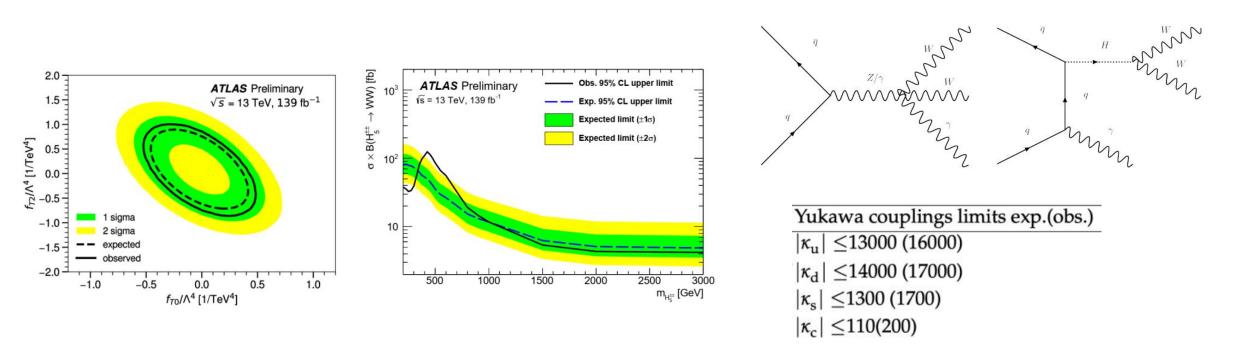
• α S: Most precise measurement by ATLAS, using large-stat Zjets events with ISR


A single best precision measurement so far 0.8% precision in αS

• Zbb coupling

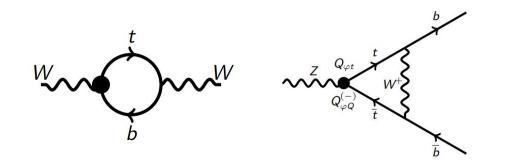
Zhe Guan, Yusheng Wu, Hao Xu, Xiao Wang

Diboson production



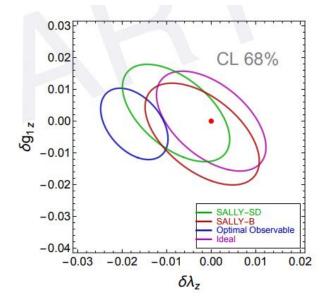
Same-sign EW WWjj

Triboson production


•

- Neutral triple-gauge coupling (nTGCs)
 - nTGCs provide unique probe of dimension-8 SMEFT operators
 - New nTGC form factor formalism which match dimension-8 SMEFT is proposed

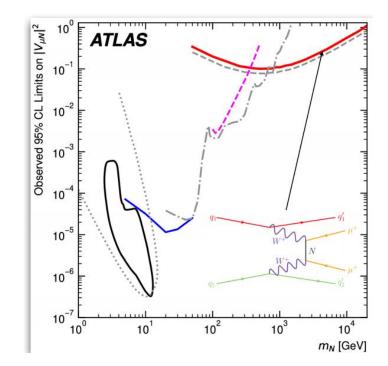
$$\begin{split} & \underbrace{e^{-}}_{Q_{2}} \sum_{q_{2}} \sum_{q_{2}} \sum_{q_{2}} q_{q_{2}} \sum_{q_{2}} \left[\int_{Z_{2}} \left[\int_{Z_{2$$


• SMEFT fits: loop effects

Operator	$C_{\varphi t}$	$C_{\varphi Q}^{(+)}$	$C_{\varphi Q}^{(-)}$	$C_{\varphi tb}$	C_{tW}	C_{tB}	Ctq
$\mu_{EFT} = 125 \text{GeV}$	2.5	1.3	3.2	9.3	0.2	0.07	0.9
$\mu_{EFT} = 1000 \text{GeV}$	1.3	0.5	4.3	1.3	0.6	0.08	0.9
Current	2.3	5.1	1.2	5.3	0.06	0.145	3.9
Our results	0.286	0.04	0.336	14.8	0.822	0.592	- <u></u>

Yiming Liu

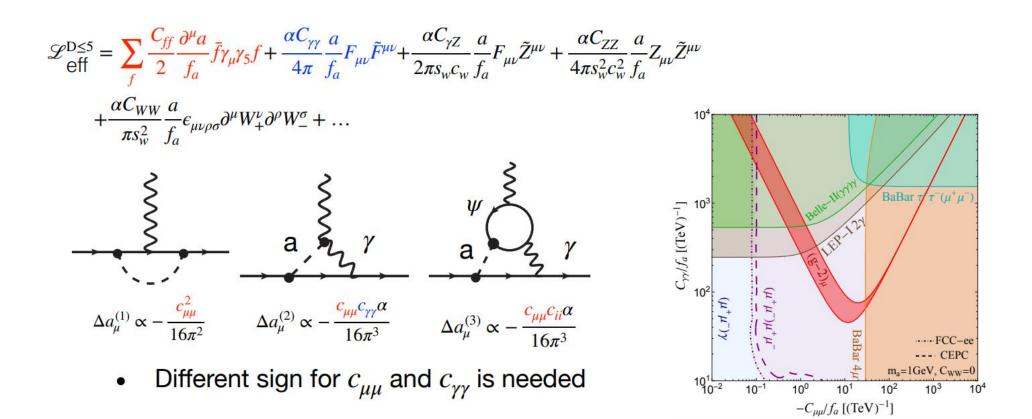
- SMEFT fits: machine learning
 - Inverse: From data / MC samples, how do we know the model parameters?
 - With Neural Network we can (in principle) reconstruct $\frac{d\sigma}{d\Omega}$ (or likelihood ratios) from MC samples.



New phenomena

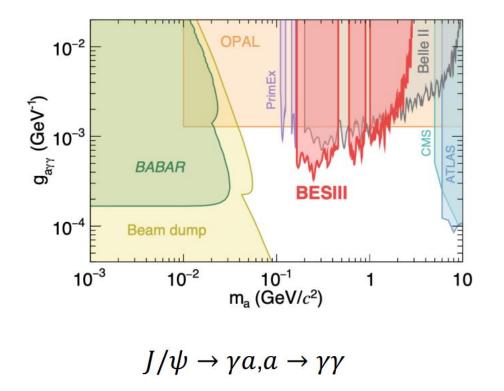
Majorana neutrino

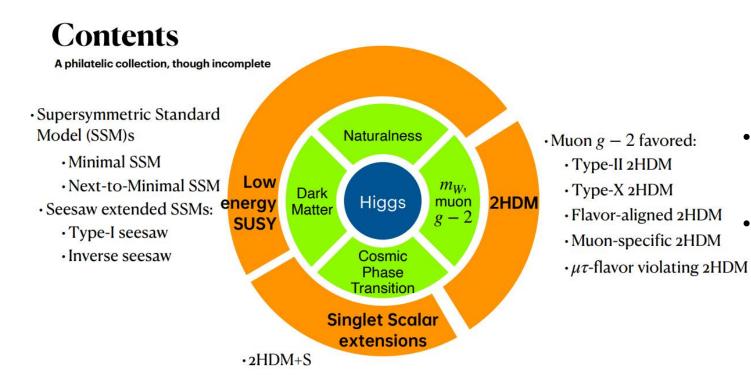
Oliver Stelzer-Chilton @ATLAS


• VBS same-sign WW for Majorana neutrinos

Xiao-Ping Wang

New light particles


• Axion-like particle


New light particles

Houbing Jiang @BESIII

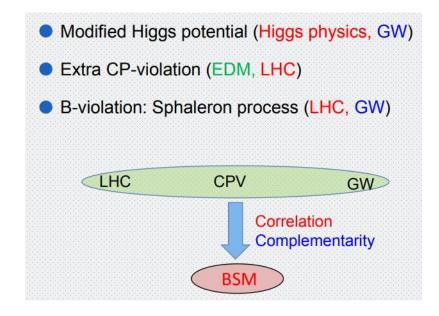
• Axion-like particle

SUSY

$$\mathcal{L} = \frac{\theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\rho\sigma}$$

 $\overline{\alpha}$

- The spontaneous CP violation is alternative way to solve the strong CP problem
- Supersymmetric model of spontaneous CP
 violation leads to a robust framework


See Pengxuan Zhu's talk

See Norimi Yokozaki's talk

Huaike Guo

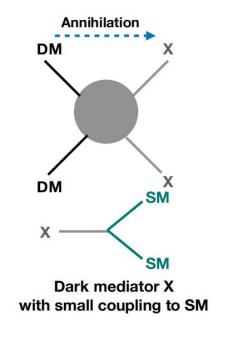
Electroweak baryogenesis

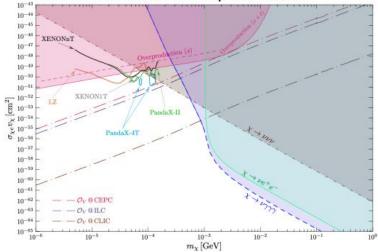
• Electroweak phase transition:

See Yanda Wu's talk for sphaleron

Models	Strong 1 st order phase transition	GW signal	Cold DM	Dark Radiation and small scale structure
SM charged				
Triplet [20–22]	1	1	1	×
complex and real Triplet [23]	1	1	1	×
(Georgi-Machacek model)				
Multiplet [24]	1	1	1	
2HDM [25-30]	1	1		×
MLRSM [31]	1	1	×	×
NMSSM [32-36]	1	1	1	×
SM uncharged				
S _r (xSM) [37–49]	1	1	×	×
$2 S_r \approx [50]$	1	1	1	×
S _c (exSM) [49, 51–54]	1	1	1	×
U(1) _D (no interaction with SM) [55]	1	1	1	×
U(1) _D (Higgs Portal) [56]	1	1	1	
U(1) _D (Kinetic Mixing) [57]	1	1	1	
Composite SU(7)/SU(6) [58]	1	1	1	
$U(1)_{1}$ [59]	1	1	1	×
$SU(2)_D \rightarrow global SO(3)$			1	×
by a doublet [60–62]				
$SU(2)_D \rightarrow U(1)_D$			1	1
by a triplet [63–65]		1		
$SU(2)_D \rightarrow Z_2$			1	×
by two triplets [66]				
$SU(2)_D \rightarrow Z_3$			1	×
by a quadruplet [67, 68]				
$SU(2)_D \times U(1)_{B-L} \rightarrow Z_2 \times Z_2$			1	×
by a quintuplet and a S_c [69]				
$SU(2)_D$ with two dark Higgs doublets [70]	1	1	×	×
${\rm SU(3)}_{\rm D} \rightarrow Z_2 \times Z_2$ by two triplets [62, 71]			1	×
SU(3) _D (dark QCD) (Higgs Portal) [72, 73]	1	1	1	
$G_{\rm SM} \times G_{\rm D,SM} \times Z_2$ [74]	1	1	1	
$G_{SM} \times G_{D,SM} \times G_{D,SM} \cdots$ [75]	1	1	1	
Current work				
$SU(2)_D \rightarrow U(1)_D$ (see the text)	1	1	1	1

Also Leila Kalhor's talk

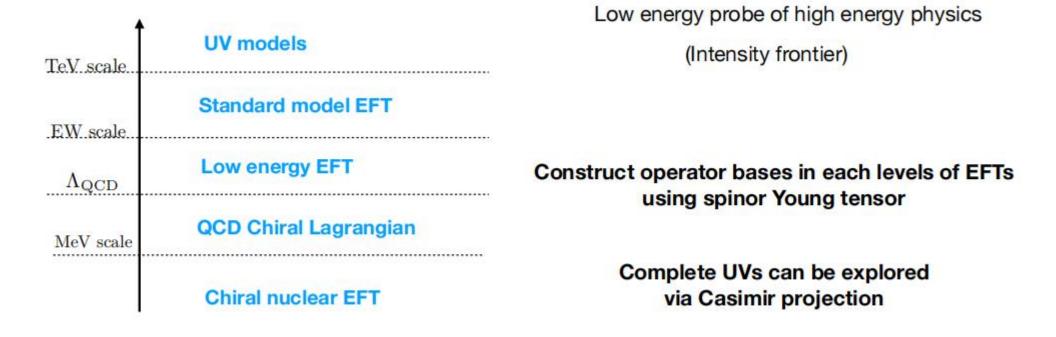

Dark matter


• Fermion portal — lepton portal

Outline

- Higgs portal
- Vector portal
- EFT models
- Summary

 Collider complementary between DM direct and indirect experiments


See Jia Liu's talk

Effective field theory

EFTs for WIN

Jiang-Hao Yu

The EFT framework provides most general description on weak interactions and neutrinos

With the whole EFT framework, we are ready to investigate WIN pheno in a systematic way