

Flavor & Precision Physics Summary

Wenbin Qian University of Chinese Academy of Sciences

The 29th International Workshop on Weak Interactions and Neutrinos SYSU, Zhuhai, 03-08 July 2023

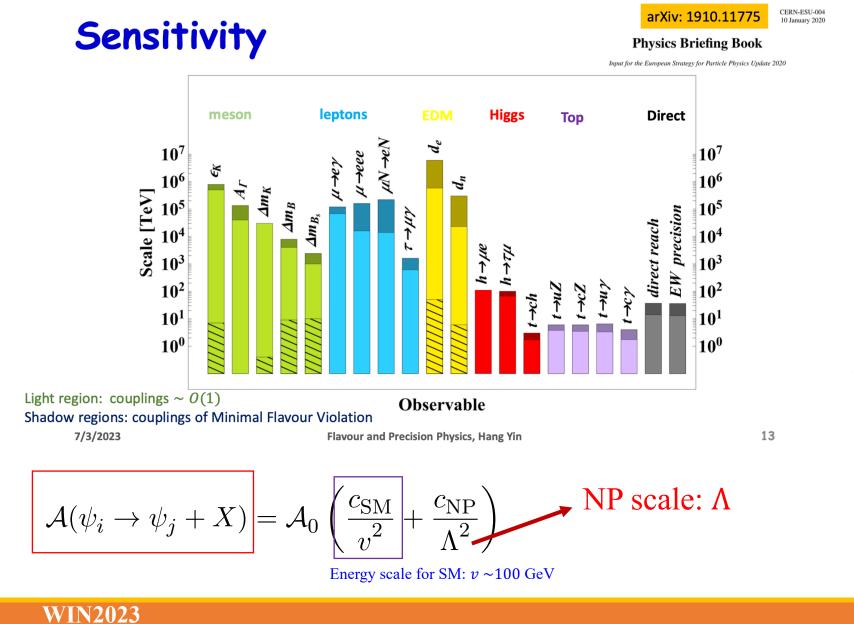
Talk statistics

- Six plenary talks: 2 theory overviews + 4 experiment summaries, covering CKM, LFV/LFU, g-2 etc
- Six sessions of parallel talks: 25 talks (8 from theory)

Charm meson decays at BESIII	Zehui Lu 🥖
Haiqin Building #6	14:00 - 14:25
CPV measurement in Bs2PhiPHi decay	Kechen Li
A280, Haiqin Building #6	14:25 - 14:50
CP Violation Induced by Neutral Meson Mixing Interference	Yin-Fa Shen
A280, Haiqin Building #6	14:50 - 15:15
Recent Results of \$B\$ Mesogenesis and Dark Sector at \$BABAR\$	Dexu Lin 🥖
A280, Haiqin Building #6	15:15 - 15:40
Search for Rare Neutral Kaon Decays at JPARC KOTO Experiment Prof.	Yee Bob Hsiung
A280, Haiqin Building #6	16:10 - 16:35
Precision measurements with Kaons at CERN	Cristina Biino
A280, Haiqin Building #6	16:35 - 17:00
Searches for lepton flavour universality violation with the ATLAS detector	Hao Pang
A280, Haiqin Building #6	17:00 - 17:25
Models for the Muon EDM	Yuichiro Nakai
A280, Haiqin Building #6	17:25 - 17:50
Current Status of the COMET Experiment Dr Yu Xu 🧷	
A631, Haiqin Building #6 14:00 - 14:25	
Expected Direct Search Charged Lepton Flavor Violation Sensitivity in \$\mu^+\$ and \$\pi^+\$ Decays at Rest Shihua Huang	
A631, Haiqin Building #6 14:25 - 14:50	
The Mu3e experiment: physics and status Yifeng Wang	
A631, Haiqin Building #6 14:50 - 15:15	
Higgs LFV decays Avelino Vicente	
A631, Haiqin Building #6 15:15 - 15:40	

Hyperon physics at BESIII	ŀ	long-Fei Shen	Ø
A280, Haiqin Building #6		16:10 - 16:	35
Recent results of the exotic hadron studies at CMS		Zhen I	Ни
A280, Haiqin Building #6		16:35 - 17:	00
Recent results of the exotic states studies at LHCb		Dongliang Zha	ng
A280, Haiqin Building #6		17:00 - 17:	25
TMD wave functions and soft functions at one-loop in LaMET		Zhifu Deng	Ø
A280, Haiqin Building #6		17:25 - 17:	50
Search for rare charm decays at BESIII	,	Yonghua Zhan	Ø
A280, Haiqin Building #6		17:50 - 18:	15
Charmed baryon physics at BESIII		Lei Li	
A280, Haiqin Building #6	1	4:00 - 14:25	
Recent results from the Belle II experiment	Che	ngping Shen	
A280, Haiqin Building #6	1	4:25 - 14:50	
The heavy flavor rare decays at CMS	Chuq	iao Jiang 🥝	
A280, Haiqin Building #6	1	4:50 - 15:15	
Light quark decays of doubly heavy baryons in light front approach		Chang Yang	
A280, Haiqin Building #6	1	.5:15 - 15:40	
New physics interpretations of \$R{D^{(*)}}\$ anomaly and their exciting predictions	Teppei Kitahara		
A631, Haiqin Building #6	16:10 - 16:35		
Testing Lepton Flavor Universality at Future Z Factories	Tsz Hong Kwok		
A631, Haiqin Building #6	16:35 - 17:00		
Muon g-2 experiment at Fermilab	Mr Cheng Chen		
A631, Haiqin Building #6	17:00 - 17:25		
A quark and lepton model with flavor specific DM and muon \$g-2\$ in modular \$A_4\$ and hidden \$U(1)\$ Takaaki Nomura	symmetries		

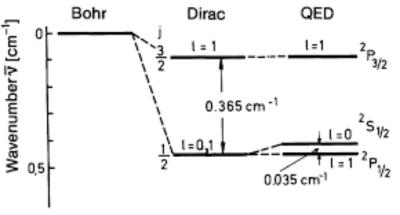
Flavor physics



- Focus on quarks and charged leptons
- To understand matter anti-matter asymmetry (CP violation), new forces or new particles coupled to

fermions through quantum fluctuation, dark matter etc.

- Colored quarks confined inside hadron, QCD crucial
- QCD extremely interesting on its own (low energy behaviors)


Precision physics

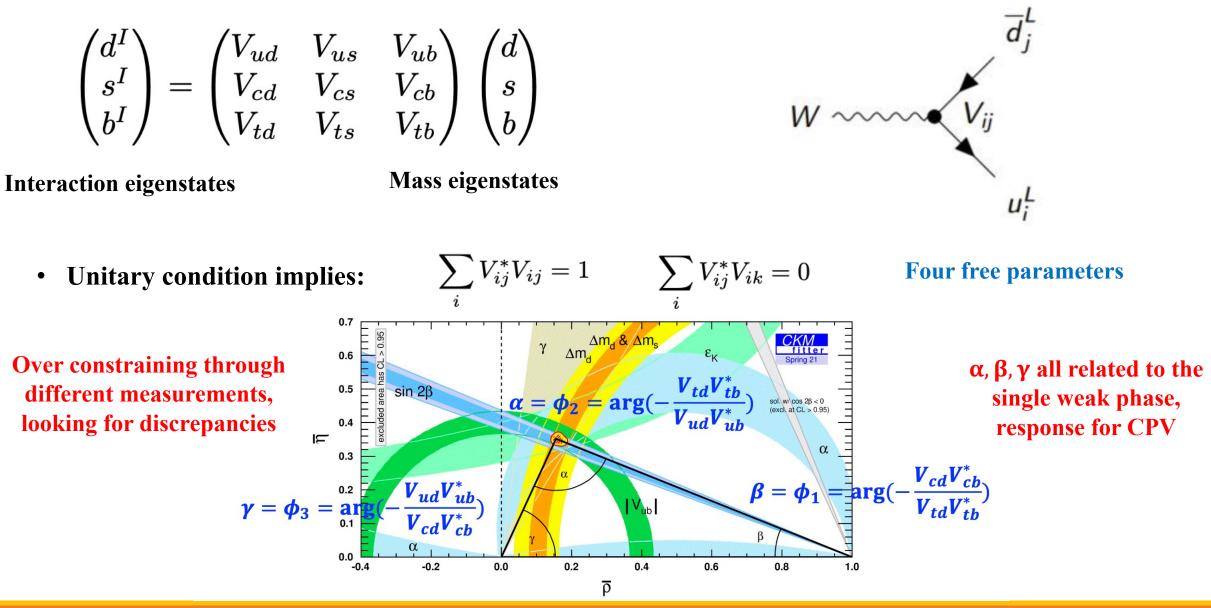
Indirect searches

Trojan horse

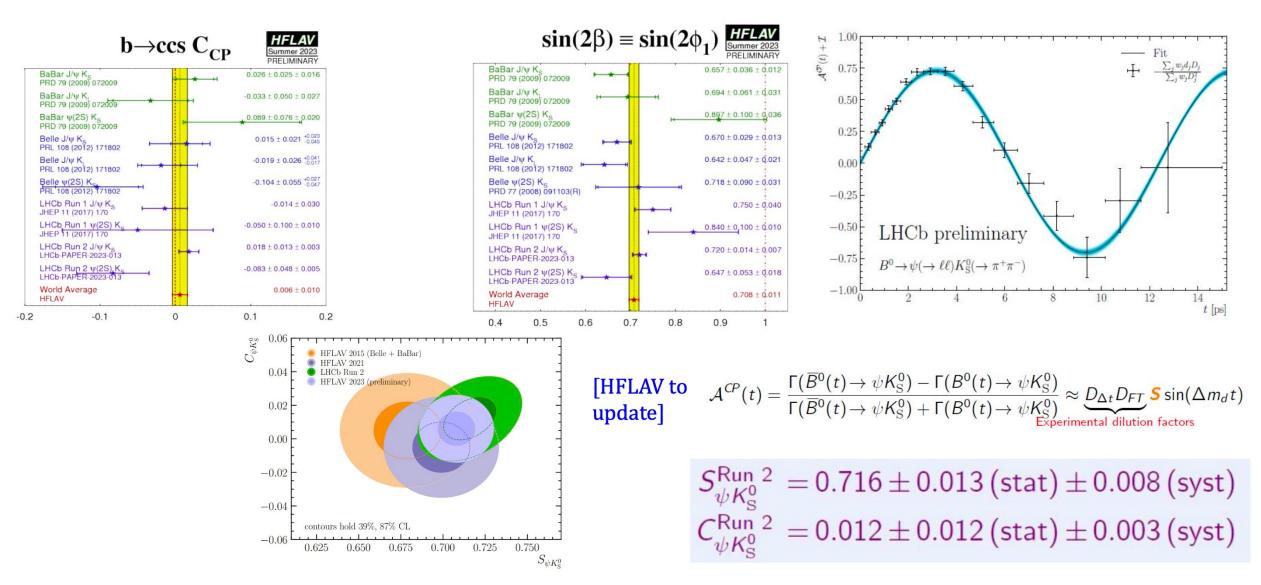
Lamb shift

4

- CKM physics
- New physics searches with leptons
 - Spectroscopy


Disclaimer: material selected based on personal taste, my apologies if your favorites are not shown

- CKM physics
- New physics searches with leptons
- Spectroscopy


CKM matrix

WIN2023

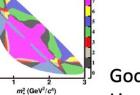
7

Angle β

Talk by Y. Han

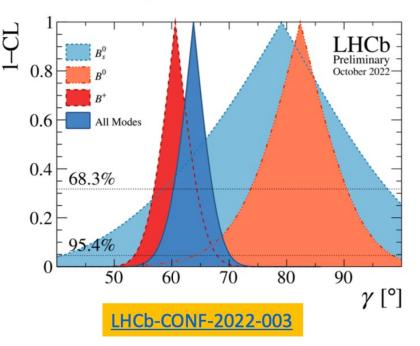
Angle γ

γ combination


\odot Combining all LHCb results for γ

τ³ τ

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[18]	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	[19]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ h^-$	[35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run 1&2(*)	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[39]	Run $1\&2$	As before


 $(63.8^{+3.5}_{-3.7})$

For the strong phase of D meson, we need input from BESIII For example: $\psi(3770) \rightarrow D\overline{D}$ [PRD 101 (2020) 112002]

m² (Ge/

Good agreement with CKM fitter Limited by statistics

Synergy between LHCb and BESIII

Strong phase measurements

• $D^0 \to K^- \pi^+$ Eur. Phys. J. C 82, 1009 (2022)

 $\delta_D^{K\pi} = (187.6^{+8.9+5.4}_{-9.7-6.4})^\circ$, most precise measurement

$$r_D^{K\pi} exp(-i\delta_D^{K\pi}) = \frac{\langle K^+\pi^- | D^0 \rangle}{\langle K^+\pi^- | \bar{D}^0 \rangle},$$

where $r_D^{K\pi}$ are $\delta_D^{K\pi}$ the ratio of amplitudes and phase difference, respectively, between the DCS and CF decays. $A_{K\pi} = 0.132 \pm 0.001 \pm 0.007$, 30% more precision $A_{K\pi}^{\pi\pi\pi^0} = 0.130 \pm 0.012 \pm 0.008$ $\mathscr{B}(D^0 \to K_L^0 \pi^0) = (0.97 \pm 0.03 \pm 0.02) \times 10^{-2}$ $\mathscr{B}(D^0 \to K_L^0 \omega) = (1.09 \pm 0.06 \pm 0.03) \times 10^{-2}$ $\mathscr{B}(D^0 \to K_L^0 \pi^0 \pi^0) = (1.26 \pm 0.05 \pm 0.03) \times 10^{-2}$. Already several Joint meetings and joint analyses ongoing

• $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ Phys. Rev. D 106, 092004 (2022)

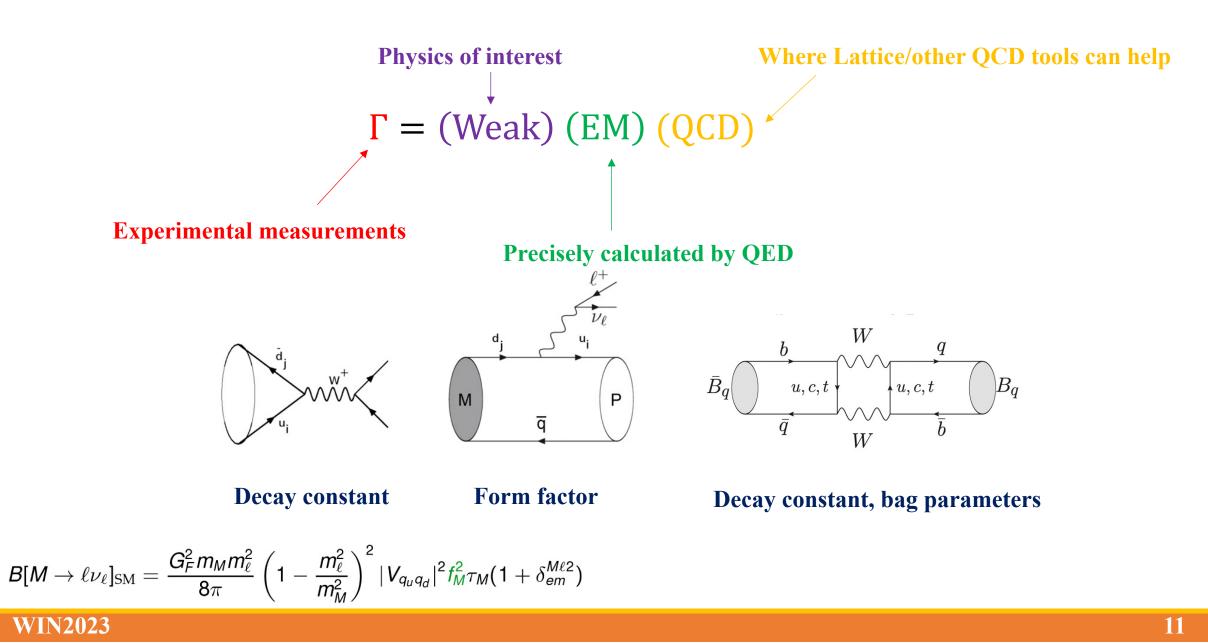
 $F_+ = 0.735 \pm 0.015 \pm 0.005,$

 \rightarrow predominantly *CP* – even most precise determination

• $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ Phys. Rev. D 107, 032009 (2023) $F_+ = 0.730 \pm 0.037 \pm 0.021$,

 \rightarrow predominantly *CP* – even

first model-independent measurement of F_+ of this decay


•
$$D^0 \to K_S^0 \pi^+ \pi^- \pi^0$$
 arXiv:2305.03975

 $F_+ = 0.235 \pm 0.010 \pm 0.002,$

 \rightarrow predominantly *CP* – odd

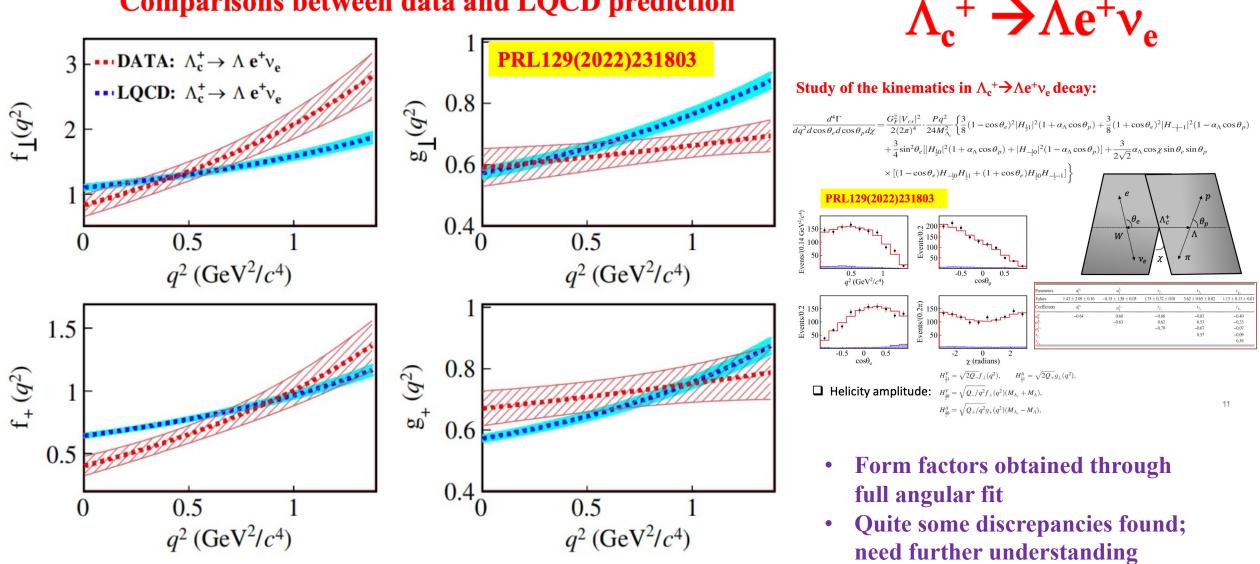
14

QCD in flavor physics

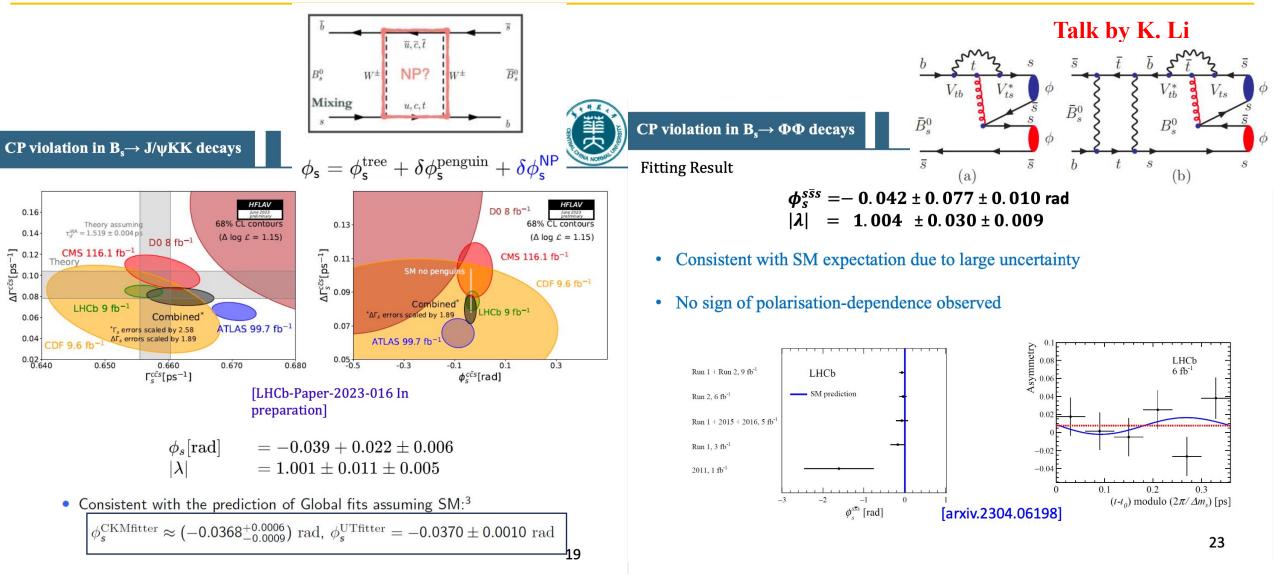
Example of magnitude measurement

(Semi-)Leptonic decays

Pure leptonic decays:


 $D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau}, \tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$, Phys. Rev. Lett. 127, 171801 (2021) $D_s^+ \to \tau^+ \nu_{\tau}, \tau^+ \to \pi^+ \bar{\nu}_{\tau} \& D_s^+ \to \mu^+ \nu_{\mu}$, Phys. Rev. D 104, 052009 (2021) $D_s^+ \to \tau^+ \nu_{\tau}, \tau^+ \to \pi^+ \pi^0 \bar{\nu}_{\tau}$, Phys. Rev. D 104, 032001 (2021) $D_s^+ \rightarrow \tau^+ \nu_{\tau}, \tau^+ \rightarrow \mu^+ \nu_{\mu} \bar{\nu}_{\tau}$ arXiv:2303.12468 $\gamma \Delta m_d \& \Delta m_s$ CKM fitter $D_s^+ \to \tau^+ \nu_{\tau}, \tau^+ \to \pi^+ \bar{\nu}_{\tau}, a$ 0.6 $D_s^{*+} \rightarrow e^+ \nu_e$, arXiv:2304 0.5 Semi-leptonic decays: 0.3 0.2 $D^0 \to K_1(1270)^- e^+ \nu_a$, Ph 0.1 $D_{s}^{+} \rightarrow a_{0}(980)^{0}e^{+}\nu_{a}$, Phy -0.2 0.0 0.2 0.4 0.6 $D^0 \rightarrow K^- e^+ \nu_a \& D^+ \rightarrow \dot{k}$ ρ $D_s^+ \to \pi^0 \pi^0 e^+ \nu_e \& K_s^0 K_s^0 e^+ \nu_e$, Phys. Rev. D 105, L031101 (2022) $D_s^+ \to \pi^0 e^+ \nu_{e}$, Phys. Rev. D 106, 112004 (2022) $D_{s}^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu_{e}$, arXiv:2303.12927 $D_s^+ \rightarrow \eta e^+ \nu_e, \eta' e^+ \nu_e, arXiv:2306.05194$

Gives the magnitudes of the triangles; could also be used to test QCD


3aBar Selle Selle SESIII 0.482 fb ⁻¹ SLEO JaBar Selle Selle SESIII 3.19 fb ⁻¹ SESIII 6.32 fb ⁻¹ SESIII 6.33 fb ⁻¹ SESIII 7.33 fb ⁻¹ SESII 7.33 fb ⁻¹	PRD82(2010)091103, τ_{eal}^{*} V JHEP09(2013)139, $\tau_{eal,x}^{*}$ V PRD94(2016)072004, $\mu\nu$ PRD92(2016)072004, $\mu\nu$ PRD82(2016)072004, $\mu\nu$ PRD82(2010)091103, $\mu\nu$ PRL122(2019)071802, $\mu\nu$ PRD104(2021)052009, $\mu\nu$ PRD104(2021)052009, τ_x^{*} V PRD104(2021)052009, τ_x^{*} V PRD104(2021)052009, τ_x^{*} V PRD104(2021)032001, τ_y^{*} v arXiv:2303.12600 [hep-ex], $\tau_x^{*}\nu$ arXiv:2303.12468 [hep-ex], $\tau_x^{*}\nu$ TV	244.6±8.6±12.0 + + + + + + + + + + + + + + + + + + +	bined 300
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar	JHEP09(2013)139, $\tau_{edl,\pi}v$ PRD94(2016)072004, $\mu\nu$ PRD92(2009)052001, $\mu\nu$ PRD82(2010)091103, $\mu\nu$ JHEP09(2013)139, $\mu\nu$ PRD102(2019)071802, $\mu\nu$ PRD104(2021)052009, $\mu\nu$ PRD104(2021)052009, $\tau_{\pi}v$ PRD104(2021)032001, $\tau_{p}v$ PRD104(2021)032001, $\tau_{p}v$ arXiv:2303.12000 [hep-ex], $\tau_{\pi}\nu$ arXiv:2303.12468 [hep-ex], $\tau_{\mu}\nu$	261.1±4.8±7.2 ++++ 245.5±17.8±5.1 ++ 256.7±10.2±4.0 ++ 248.8±6.6±4.8 +-++ 248.8±6.6±4.8 ++++ 249.8±3.0±3.9 +++ 249.7±6.0±4.2 +++ 251.6±5.9±4.9 +++ 251.4±2.4±3.0 +++ 252.7±3.8±2.6 +++	bined
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.33 fb ⁻¹	JHEP09(2013)139, τ _{641,3} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, τ _π ν PRD104(2021)052009, τ _π ν PRD104(2021)032001, τ _π ν arXiv:2303.12600 [hep-ex], τ _π ν	261.1±4.8±7.2 H+++i 245.5±17.8±5.1 H+++i 256.7±10.2±4.0 H+++i 264.9±8.4±7.6 H+++i 248.8±6.6±4.8 H+++i 249.7±6.0±3.7 H++i 249.7±6.0±4.2 H++i 249.7±6.0±4.9 H++i 251.1±2.4±3.0 H++i 251.1±2.4±3.0 H++i 251.1±2.4±3.0 H++i	
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹	JHEP09(2013)139, τ _{e,μ,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD104(2021)052009, τ _π ν PRD104(2021)052001, τ _ρ ν	261.1±4.8±7.2 H+++1 245.5±17.8±5.1 H+++1 256.7±10.2±4.0 H+++1 248.8±6.6±4.8 H++1 249.8±3.0±3.9 H++1 249.8±3.0±3.9 H++1 249.8±3.0±3.9 H++1 251.6±5.9±4.9 H++1 251.1±2.4±3.0 H+1	
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹	JHEP09(2013)139, τ _{6μ,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD104(2021)052009, τ _α ν	261.1±4.8±7.2 H+++I 245.5±17.8±5.1 H+++I 256.7±10.2±4.0 H+++I 264.9±8.4±7.6 H+++I 248.8±6.6±4.8 H+++I 253.0±3.7±3.6 H+H 249.8±3.0±3.9 H+H 249.7±6.0±4.2 H++I	
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹	JHEP09(2013)139, τ _{e,μ,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, μν	261.1±4.8±7.2 H+++i 245.5±17.8±5.1 H+++i 256.7±10.2±4.0 H+++i 264.9±8.4±7.6 H+++i 248.8±6.6±4.8 H+++i 253.0±3.7±3.6 H++i 249.8±3.0±3.9 H+ii	
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹	JHEP09(2013)139, τ _{e,ii,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν	261.1±4.8±7.2 H+++1 245.5±17.8±5.1 H+++1 256.7±10.2±4.0 H+++1 264.9±8.4±7.6 H+++1 248.8±6.6±4.8 H++1 253.0±3.7±3.6 H++1	
CLEO BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle Drowy 2.10 g. d	JHEP09(2013)139, τ _{e,μ,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν	261.1±4.8±7.2 H→++ 245.5±17.8±5.1 H→++ 256.7±10.2±4.0 H→++ 264.9±8.4±7.6 H→++ 248.8±6.6±4.8 H→++	
BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar	JHEP09(2013)139, τ _{e,μ,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
BaBar Belle BESIII 0.482 fb ⁻¹	JHEP09(2013)139, τ _{e,μ,π} ν PRD94(2016)072004, μν PRD79(2009)052001, μν	261.1±4.8±7.2 H+++ 245.5±17.8±5.1 ⊢++	
BaBar Belle	JHEP09 (2013)139, $\tau_{e,\mu,\pi}$ V	261.1±4.8±7.2	
BaBar	PRD82(2010)091103, τ _{e,μ} ν IHEP09(2013)139, τ ν		
	DDD92/2010\001102 ~ ···		
	PRD79(2009)052001 , τ ₋ ν	277.1±17.5±4.0	-
CLEO	PRD80(2009)112004 , τ _ρ ν	257.0±13.3±5.0 ⊷	
CLEO	PRD79(2009)052002, τ _e ν	251.8±11.2±5.3	
HFLAV21	arXiv:2206.07501 [hep-ex]	252.2±2.5 H	
FLAG21(2+1+1)	arXiv:2111.09849 [hep-lat]	249.9±0.4 249.9±0.5	
ETM(2+1+1) FMILC(2+1+1)	PRD91(2015)054507 PRD98(2018)074512	247.2±4.1	
	-1 0 V _{cs}		, С:
BESIII	τν	0.982±0.007±0.008 • Com	bined
BESIII 7.33 fb ⁻¹	arXiv:2303.12468 [hep-ex], $\tau_{\mu}\nu$	0.984±0.015±0.010	
BESIII 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], τ _π ν	0.991±0.015±0.013	
BESIII 6.32 fb ⁻¹	PRL127(2021)171801, τ _ν ν	0.978±0.009±0.012	
BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹	PRD104 (2021)032009, $\tau_{\pi}v$ PRD104 (2021)032001, $\tau_{\nu}v$	0.972±0.023±0.016	
PECITI (22 8.1	PRD104(2021)052009, τ_ν	0.972±0.023±0.016	
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , μν	0.973±0.012±0.015	
BESIII 3.19 fb ⁻¹	PRL122(2019)071802 , μν	0.985±0.014±0.014	
Belle	JHEP09(2013)139 , μν	0.969±0.026±0.019	
CLEO BaBar	PRD79(2009)052001, μν PRD82(2010)091103, μν	1.000±0.040±0.016 ↔ 1.032±0.033±0.029 ↔	
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, μν	0.956±0.069±0.020	
Belle	JHEP09(2013)139 , $\tau_{e,\mu,\pi}v$	1.017±0.019±0.028 Hell	
BaBar	PRD82(2010)091103, τ _{e,µ} v	0.953±0.033±0.047 H+H	
CLEO	PRD79(2009)052001, τ _ν ν	1.079±0.068±0.016	
CLEO CLEO	PRD79(2009)052002, τ _e ν PRD80(2009)112004, τ _o ν	0.981±0.044±0.021	
01 10	BBB70/2000/052002		
	arXiv:2206.07501 [hep-ex]	0.9701±0.0081	
CKMFitter HFLAV21		0.97349±0.00016	

Constraining QCD predictions

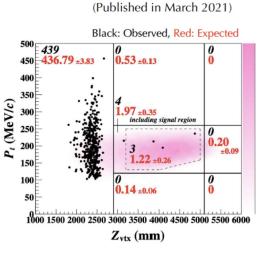
Comparisons between data and LQCD prediction

Search for new physics with precise CPV measurements

• Once precisely measured, can be used to give SM predictions

FCNC: rare kaon decays

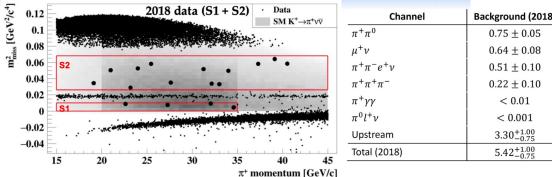
Talk by Y. Hsiung and C. Biino


Results of the 2016–18 Data Analysis

• Single Event Sensitivity:

- 3 events observed ==> consistent to #BG
- $BR(K_L \to \pi^0 \nu \overline{\nu}) < 4.9 \times 10^{-9} (90\% \text{ C.L.})$

Background Table		
Source		Number of events
K _L	$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
	$K_L \rightarrow 2\gamma$ (beam halo)	$0.26\pm0.07^{\rm a}$
	Other K_L decays	0.005 ± 0.005
K^{\pm}		$0.87\pm0.25^{\rm a}$
Neutron	Hadron cluster	0.017 ± 0.002
	$CV \eta$	0.03 ± 0.01
	Upstream π^0	0.03 ± 0.03
Total	-	1.22 ± 0.26
	Total $\#BG = 1.22 \pm 0$	0.26


 $K^0_L o \pi^0 \nu \overline{\nu}$

Phys. Rev. Lett. 126, 121801

- Finalizing the analysis of the 2021 data
 - Single Event Sensitivity = 7.9×10^{-10} (preliminary)
 - #BG(total) = 0.325 +0.069/-0.070 (preliminary)

 $BR(K_L \to \pi^0 \nu \overline{\nu})_{SM} = 3 \times 10^{-11}$

• 20 events observed in the signal region - full Run1 data sample

• Combining the complete Run 1 data set and assuming $BR_{SM}(8.4 \pm 1.0) 10^{-11}$:

$N^{exp}_{\pi\nu\nu} = 10.01 \pm 0.42_{syst} \pm 1.19_{ext}$ $N^{exp}_{background} = 7.03^{+1.05}_{-0.82}$ SES = (0.839 ± 0.053_{syst}) x 10 ⁻¹¹		JHEP 06 (2021) 093 $SM:\sim 8{ imes}10^{-11}$
BR(K ⁺ \rightarrow π ⁺ ν $\bar{\nu}$) = (10.6 $^{+4.0}_{-3.4}$ _{stat} ± 0.9 _{syst}) x 10 ⁻¹¹	3.4o significance
WIN 2023	${ m K}^+ ightarrow \pi^+ u ar u$	C. Biino 10

NA62 RUN2

•On-going: data taking foreseen at least until 2025 (included), +45-50% increase of intensity vs RUN1

Future of physics with kaons at CERN SPS

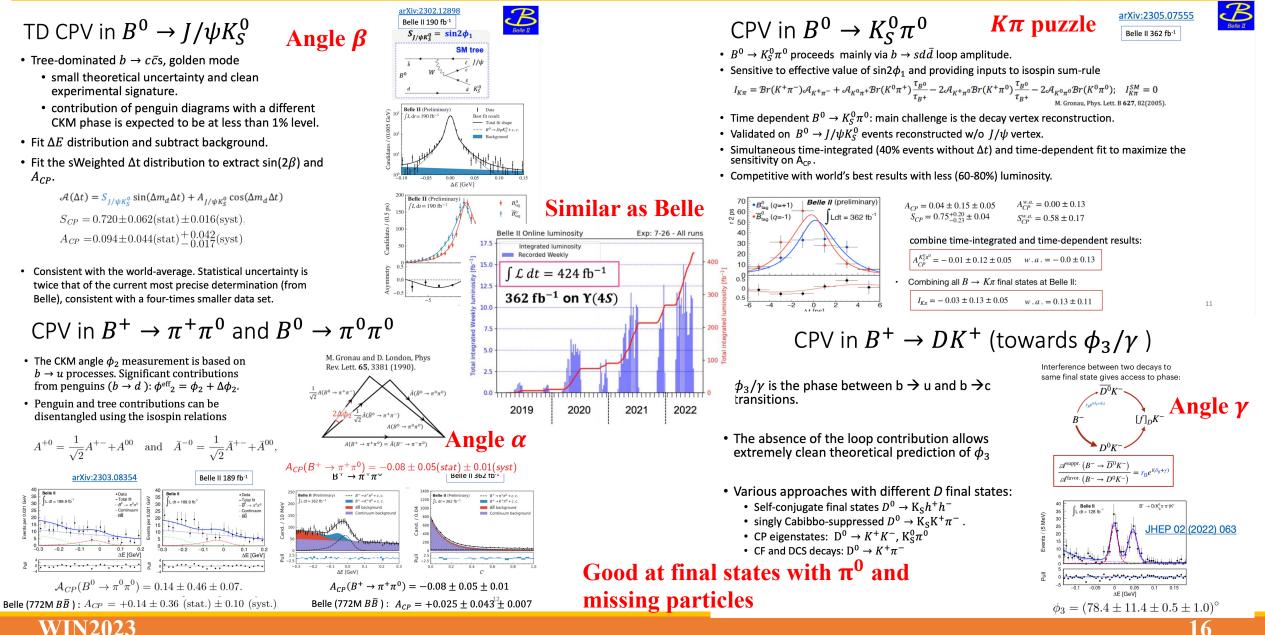
HIKE project under discussion at CERN: K^+ , K_L , dark sector searches

Intensity × 4-6 with respect to NA62; Detectors with O(20 ps) time resolution; Similar experimental layouts

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ approaching SM theory expectation

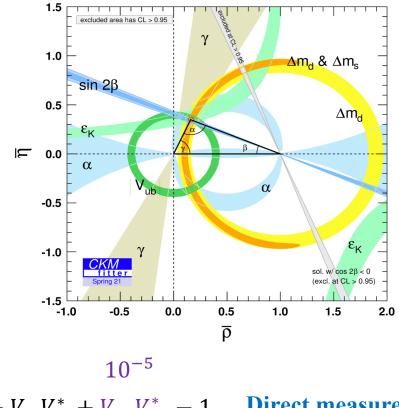
 $\mathcal{O}(15\%)$ final precision

Letter of Intent: arXiv:2211.16586v1


expected on BR($K^+ \rightarrow \pi^+ \nu \nu$)

Belle II

 A_{CP} .

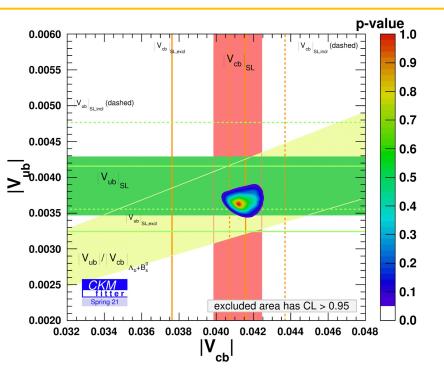

l dt = 189 9 fb

Talk by Y. Guan and C. Shen

16

Is the precision enough?

 $V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* - 1$


Direct measurements:

 $= -0.00230^{+0.00218}_{-0.00023} (1\sigma)$ $-0.00230^{+0.00237}_{-0.00044} (2\sigma)$ $-0.00230^{+0.00242}_{-0.00065} (3\sigma)$

 $\alpha + \beta + \gamma = (179^{+7}_{-6})^{\circ}$

Global fits:

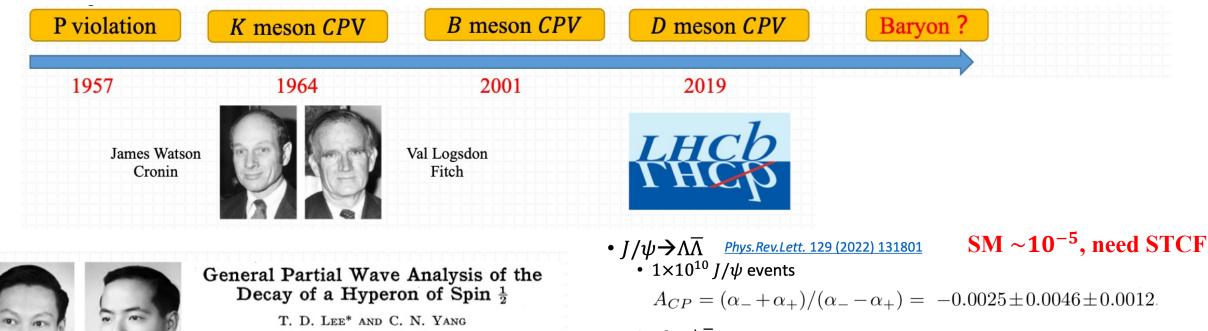
 $\alpha + \beta + \gamma = (179.9^{+1.9}_{-1.7})^{\circ}$

Disaster for new physics searches if we don't understand CKM elements precisely

$$\begin{array}{l} \mbox{Changing } \left| \textbf{V}_{cb} \right| \, : \, \boxed{39 \cdot 10^{-3} \Rightarrow 42 \cdot 10^{-3}} \\ \mbox{changes } \left| \textbf{V}_{cb} \right|^2 \, : \, \mbox{by 16\% } \left(\textbf{B}_{s,d} \rightarrow \mu^+ \mu^- , \, \Delta \textbf{M}_{s,d} \right) \\ \left| \textbf{V}_{cb} \right|^3 \, : \, \mbox{by 25\% } \left(\textbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}, \epsilon_{\textbf{K}} \right) \\ \left| \textbf{V}_{cb} \right|^4 \, : \, \mbox{by 35\% } \left(\textbf{K}_{\textbf{L}} \rightarrow \pi^0 \nu \overline{\nu}, \textbf{K}_{\textbf{S}} \rightarrow \mu^+ \mu^- \right) \end{array}$$

From A. Buras

CP violation in hyperon decays


Institute for Advanced Study, Princeton, New Jersey

(Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

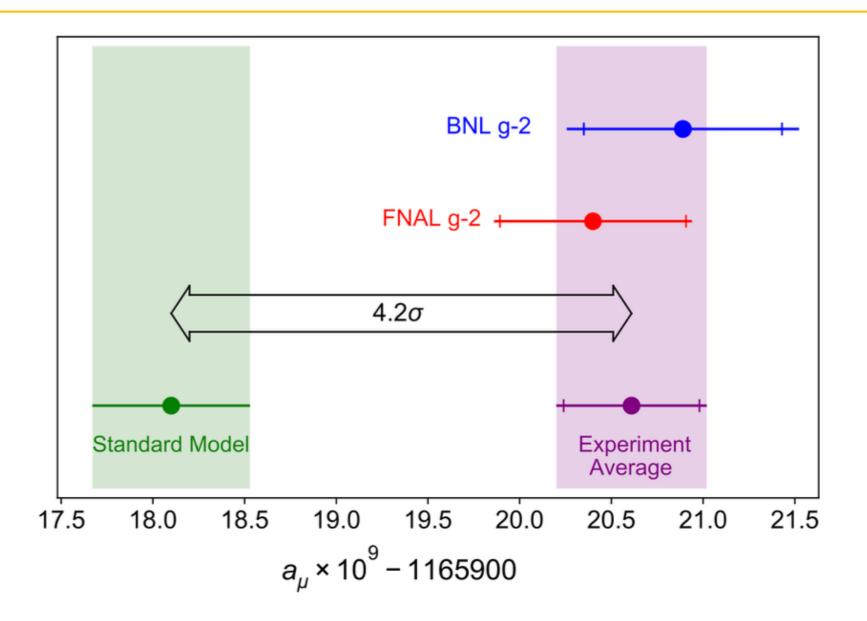
 $\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$

Talk by Y. Guan and H. Shen

• $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-$ arXiv:2304.14655

- $1 \times 10^{10} J/\psi$ events
- First study to test CP symmetry in the hyperon to neutron decay, and result is consistent with CP-conservation.
- J/ψ (ψ (3686)) $\rightarrow \Xi^0 \overline{\Xi}^0$
 - $1 \times 10^{10} J/\psi$ events; $4 \times 10^8 \psi$ (3686) events
 - Results are consistent with CP-conservation.

arX	iv:2305.09218
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$
$\Delta \phi_{CP}^{\Xi}(\mathrm{rad})$	$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$
A^{Λ}_{CP}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$


arXiv:2302.09767

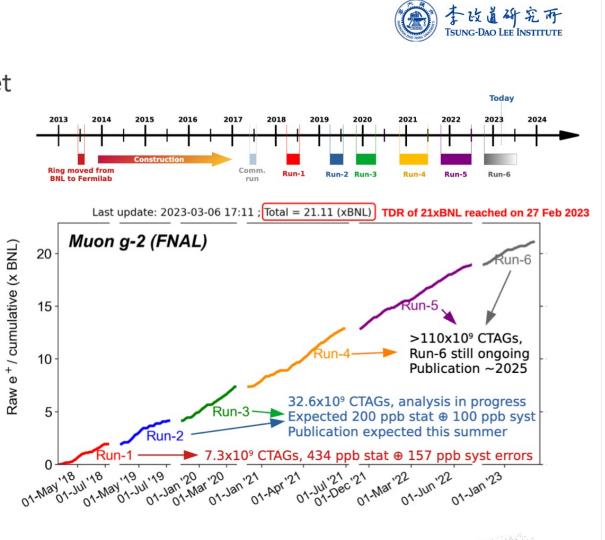
A_{CP}^{Ξ}	$-0.007 \pm 0.082 \pm 0.025$
$\Delta \phi_{CP}^{\Xi}$	$-0.079 \pm 0.082 \pm 0.010$

The decay parameters are defined as:

- CKM physics
- New physics searches with leptons
- Spectroscopy

Experiment updates in the near future

Talk by C. Chen

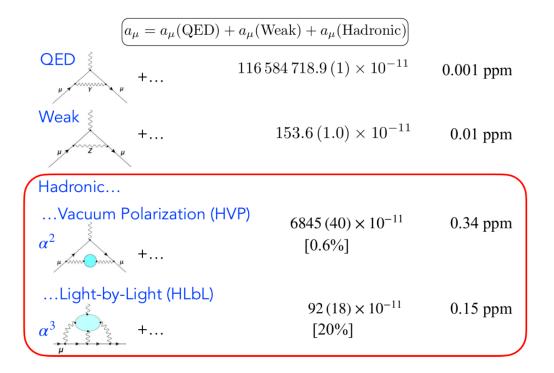

From BNL to FNAL Run-6

• Run-1 is only $\sim 5\%$ of the final dataset

√434 ppb stat ⊕ 157 ppb syst

✓ Finalized in April 2021

- Run-2/3 analysis is about to finalize
 ✓200 ppb stat ⊕ 100 ppb syst (expected)
 ✓Publication this summer (expected)
- Run-6 is still ongoing
 √21.11xBNL in total
 √150 billion of raw e+ in total



Theoretical focus

Muon g - 2 from the Standard Model 6 / 37

Muon g - 2 Theory Initiative White paper posted 10 June 2020.

132 authors from worldwide theory + experiment community. [Phys. Rept. 887 (2020) 1-166]

• Two methods: dispersive + data \leftrightarrow lattice QCD

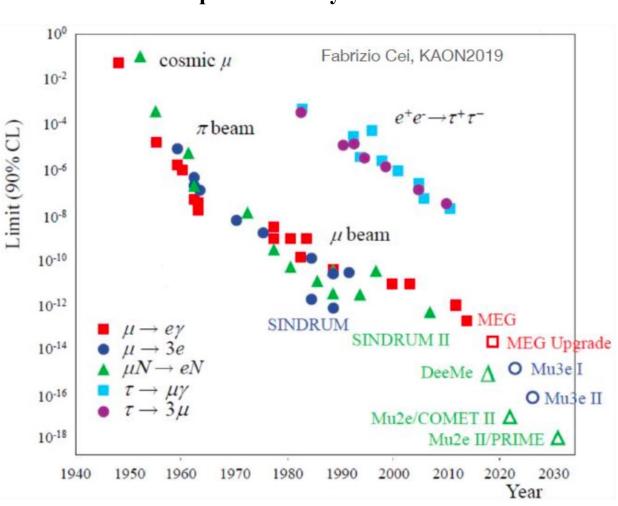
From Aida El-Khadra's theory talk during the Fermilab g - 2 result announcement.

Tension in HVP prediction

Muon $g - 2$ HVP: Data driven approach (New CMD-3 results) 12 / 37	Muon $g - 2$ HVP: overview	25 / 37
$\begin{aligned} f_{\mu}^{q=p'-p,\nu} & a_{\mu}^{HVP \ LO} = 693.1(2.8)_{exp}(2.8)_{sys}(0.7)_{DV+QCD} \times 10^{-10} \\ = 693.1(4.0) \times 10^{-10} . \end{aligned}$ $\begin{aligned} f_{\mu}^{m+m-LO} &= 693.1(2.8)_{exp}(2.8)_{sys}(0.7)_{DV+QCD} \times 10^{-10} \\ = 693.1(4.0) \times 10^{-10} . \end{aligned}$ $\begin{aligned} f_{\mu}^{m+m-LO} &= 693.1(2.8)_{exp}(2.8)_{sys}(0.7)_{DV+QCD} \times 10^{-10} \\ = 693.1(4.0) \times 10^{-10} . \end{aligned}$	 Dispersive method via R-ratio (red points) is mature and reproducible. Lattice (blue points) errors are limited by statistics. Except for BMW, which beats down the statistical error, result is limited by systematic error: BMW 20: 707.5(2.3)_{stat}(5.0)_{sys} Lattice-QCD calculations of comparable precision needed. Consistency is needed to claim new physics. 	Lattice \downarrow Lattice and R-ratio R-ratio \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

 \checkmark 4.2 σ (dispersion) → 1.5 σ (lattice-QCD)

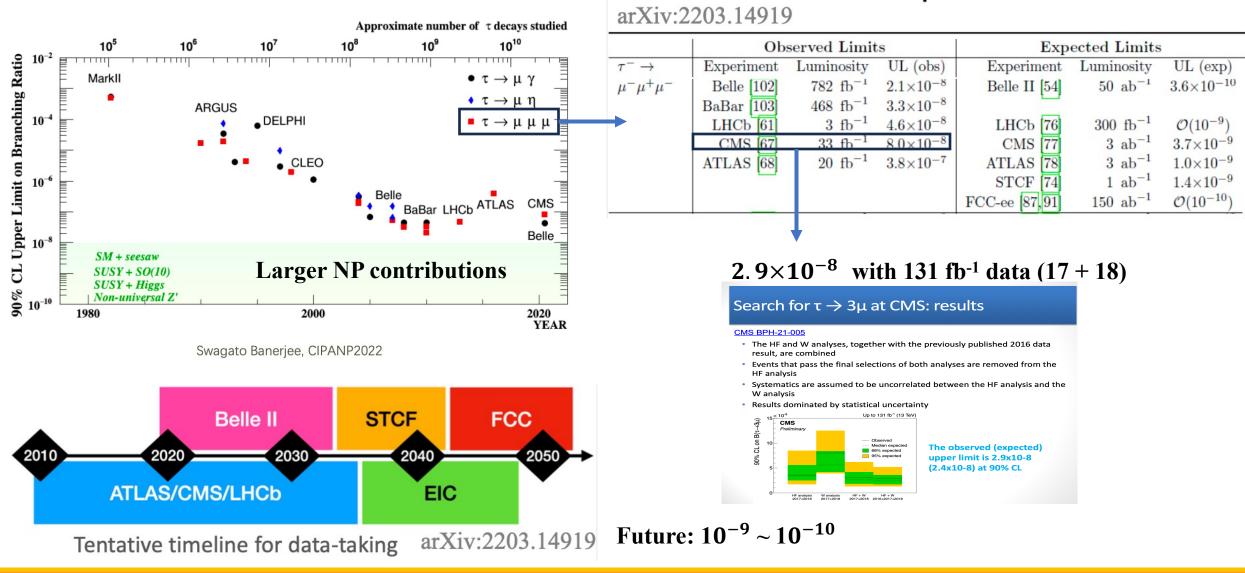
- Long distance (LD) part and its QED corrections: Some tension ($\sim 2\sigma$) between BMW 20 and previous data driven results. BMW 20 appears to be consistent with the new CMD-3 results. Results from other lattice collaborations are coming.

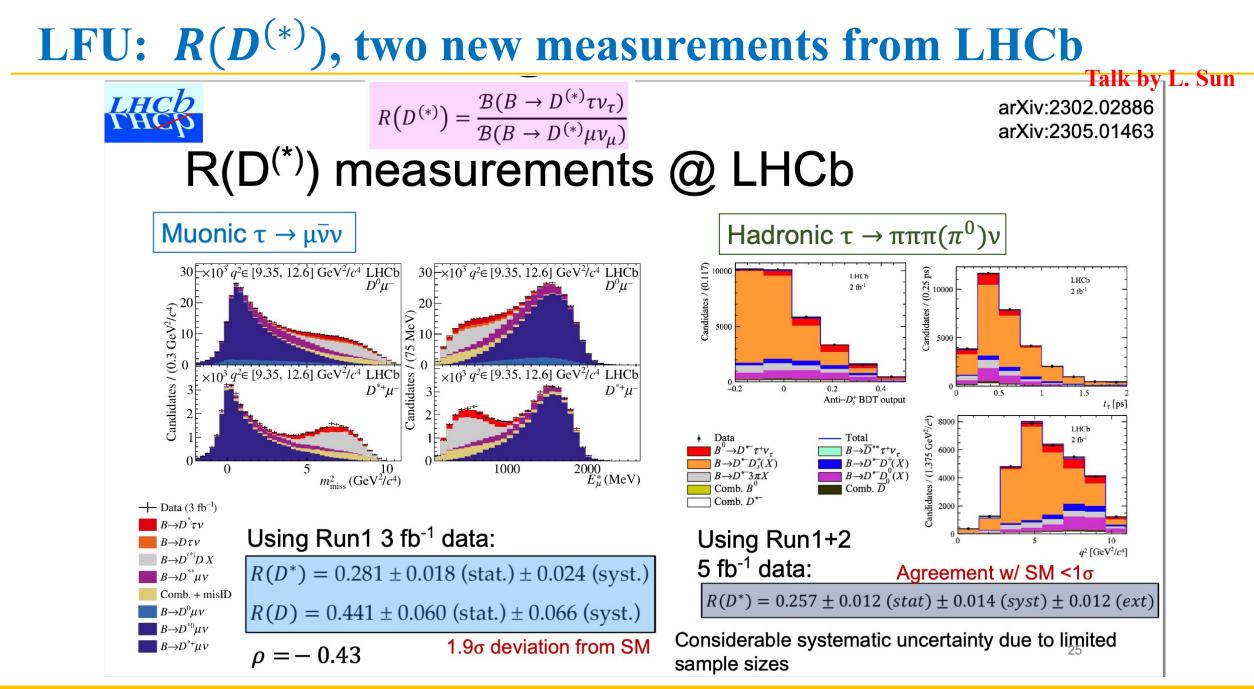

However, there is more than 3σ tension between: * lattice QCD consensus and previous data driven results,

- Middle window (W) part: Consensus is reached among lattice QCD calculations.

* new CMD-3 and previous data driven results.

WIN2023

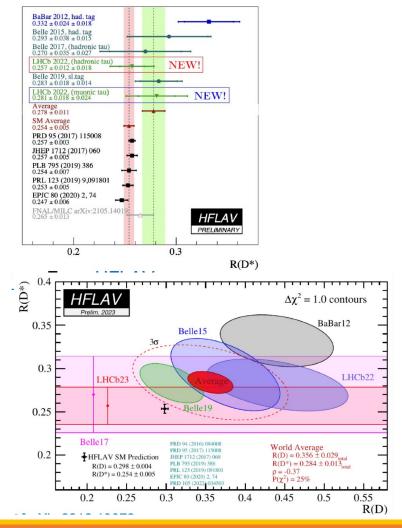

CLFV: muon


Glimpse on history and future

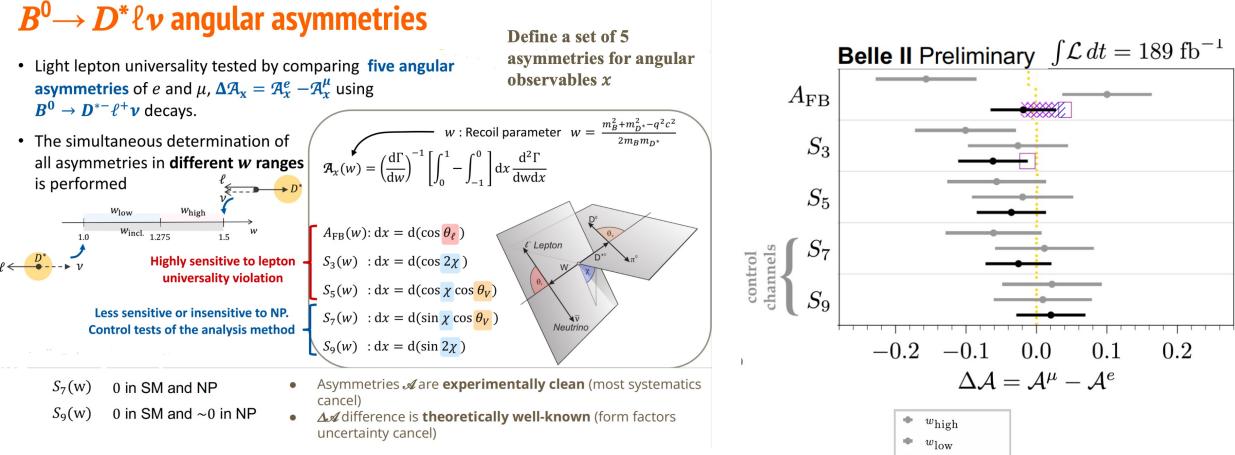
 $\mu \rightarrow e \gamma$

- MEG II: 2021~2026, aims at 4 \times 10⁻¹⁴ $\mu \rightarrow eee$
- Mu3e aims at ~ 10^{-15} sensitivity. (~3 years) $\mu N \rightarrow eN$
- Mu2e aims at 8×10^{-17} with data from 2025~2026
- COMET 7×10⁻¹⁵ with data from 2024~2025 and then 4.6×10⁻¹⁷ with phase II (~10⁻¹⁸ with optimization)
- Many complementary studies from collider experiments (BESIII, LHCb, Belle/Belle II, NA62 etc.), sensitive to different new physics scenarios

WIN2023

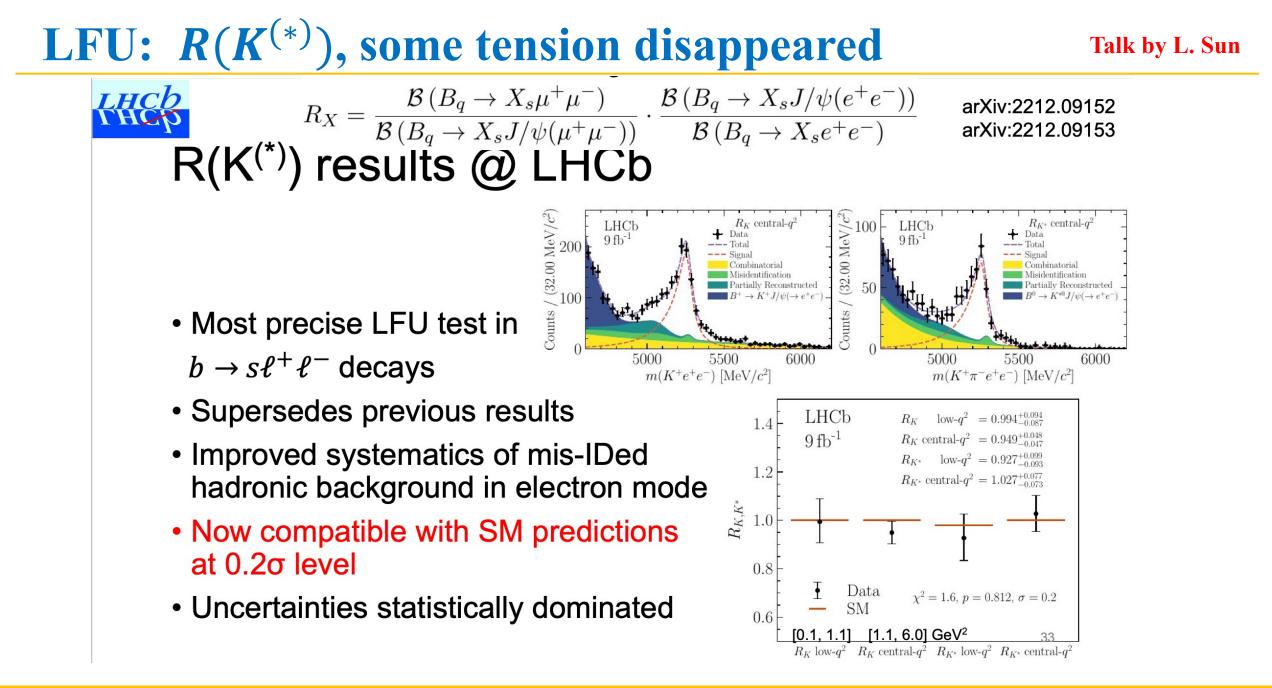


LFU: $R(D^{(*)})$, tension remained

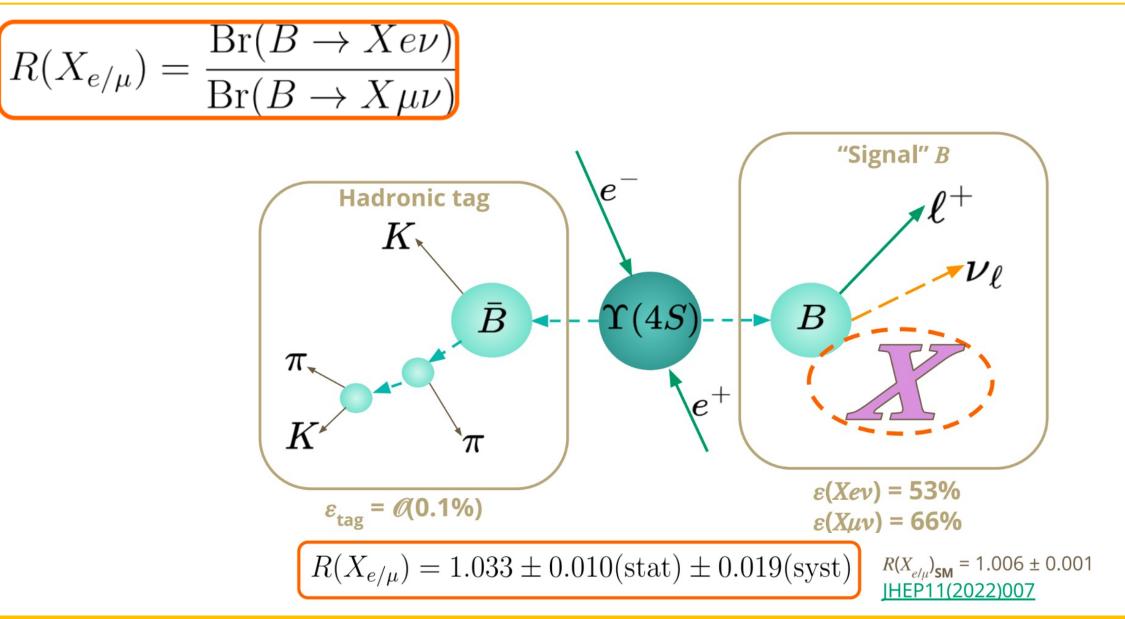

Lнср

Updated R(D^(*)) world averages

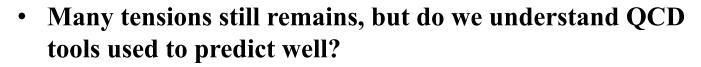

- Updates with inclusion of two new results (LHCb22, LHCb23):
 - $R(D^*) = 0.284 \pm 0.013$
 - $R(D) = 0.356 \pm 0.029$
- Deviation from SM for combined R(D*) now at 1.9σ
- Deviation from SM for combined R(D) – R(D*) now moves from 3.3σ to 3.2σ


Complete set of angular asymmetries

Consistent with SM predictions

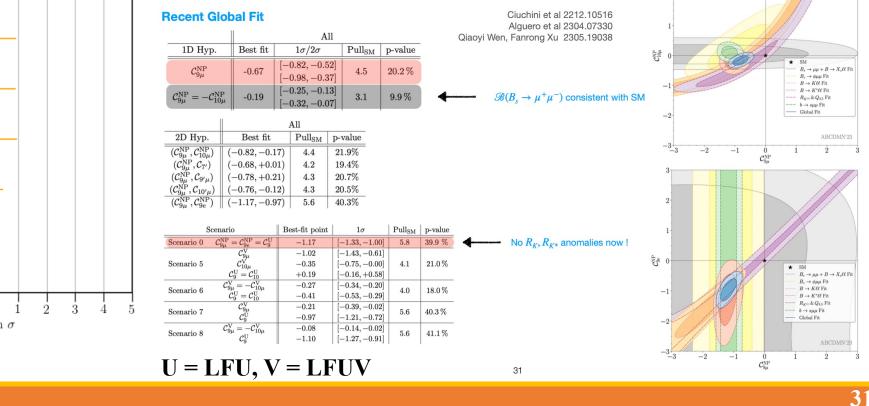


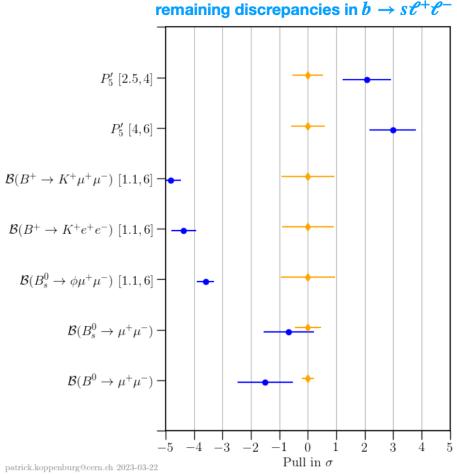
WIN2023



WIN2023

LFU from Belle II




New global fit results on NP

- NP favors in $C_{9\mu}^{NP}$ only, and prefers $C_{9\mu}^{NP} = C_{9e}^{NP}$
- Build models based on anomalies (charged higgs, leptoquarks

WIN2023

 $J/\psi \to e\tau$ Phys. Rev. D 103,112007 (2021)

 $\mathcal{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8} @90\% \text{ C.L.}$

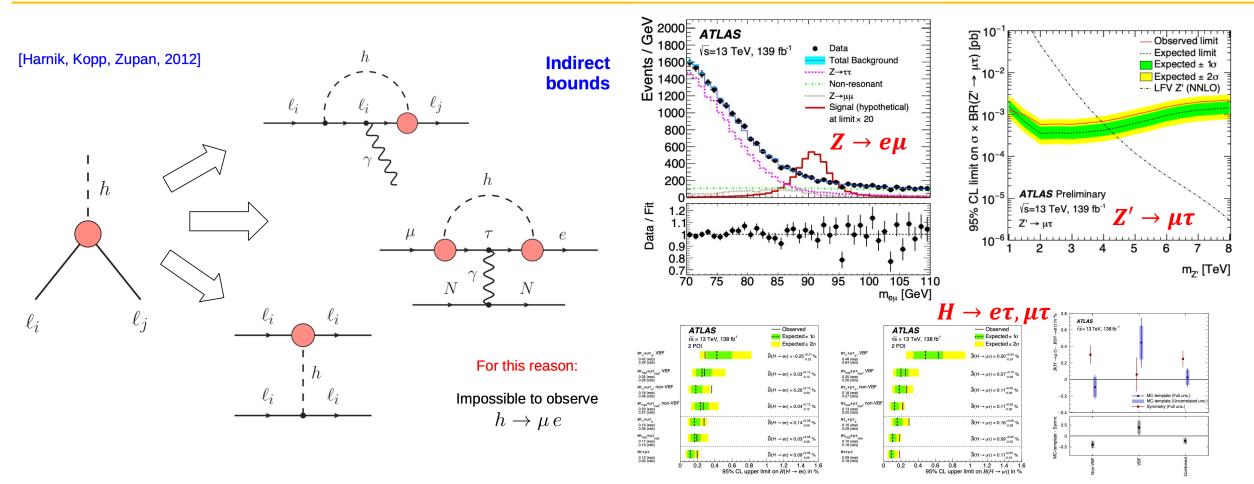
 $D^0 \to pe$ Phys. Rev. D 105, 032006 (2022)

 $\mathcal{B}(D^0 \to e^+ \bar{p}) < 1.2 \times 10^{-6} @90\% \text{ C.L.}$ $\mathcal{B}(D^0 \to pe^-) < 2.2 \times 10^{-6} @90\% \text{ C.L.}$ $J/\psi \rightarrow e\mu$

 $\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @90\% \text{ C.L.}$

D → *ne* Phys. Rev. D 106, 112009 (2022)

 $\mathcal{B}(D^+ \to e^+ \bar{n}) < 1.43 \times 10^{-5} @90\% \text{ C.L.}$

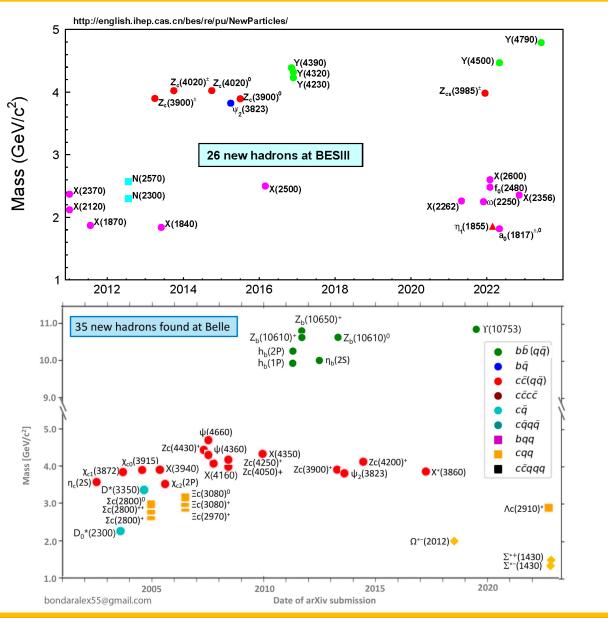

 $\mathcal{B}(D^+ \to ne^-) < 2.92 \times 10^{-5} @90\% \text{ C.L.}$

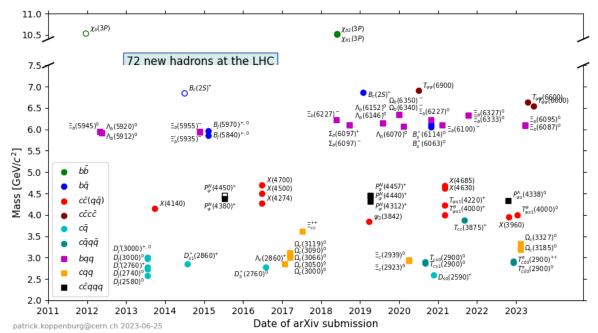
 $e^+e^- \rightarrow \gamma \gamma' \qquad \qquad \Lambda_c^+ \rightarrow p \gamma' \qquad \qquad J/\psi \rightarrow \gamma a, a \rightarrow \gamma \gamma$ coupling ε are (1.6 - 5.7)×10⁻³ $\mathcal{B}(\Lambda_c^+ \rightarrow p \gamma') < 8.0 \times 10^{-5}$ 8.3×10^{-8} to 1.8×10^{-6}

• Also interesting studies from Babar on dark sectors in $B \to \Lambda \psi_D$, $p\psi_D$, $Ka(\gamma\gamma)$

Complementary high energy searches

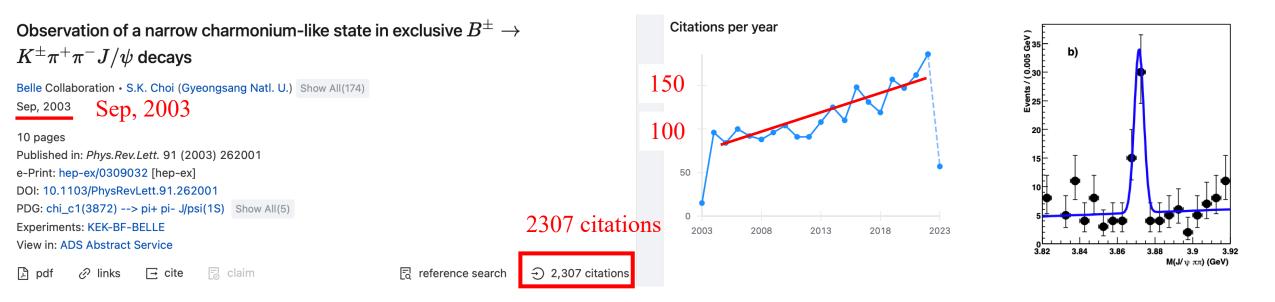
Talk by A. Vicente


• Synergy between low energy searches and high energy observables in Z and H decays


- CKM physics
- New physics searches with leptons
- Spectroscopy

New hadrons

Talks by D. Zhang and C. Shen



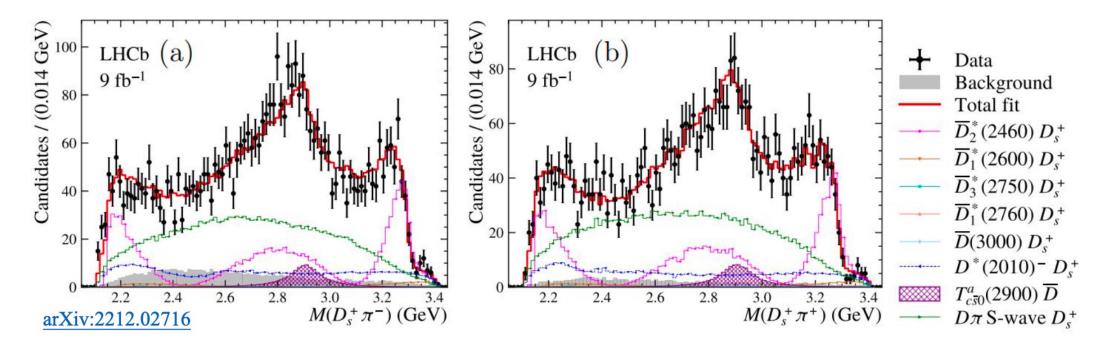
Still missing summary from BaBar, CDF, D0 etc

Particle Zoo 2.0

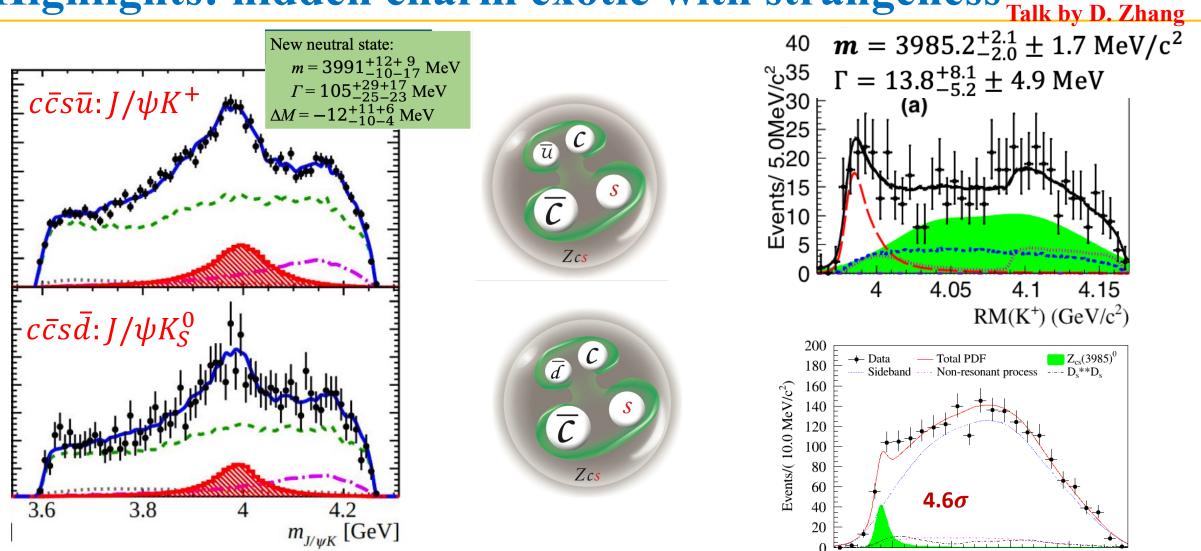
20 years ago

• First heavy exotic candidate containing $c\overline{c}$, opening a new field of research ($D_{s0}^*(2317)$) and $D_{s1}^*(2460)$) at the same year)

Particle X =
$$\overline{CC} + \overline{CC}qq + Cq\bar{C}q + C\bar{C}qq + ...$$



Highlights: doubly charged exotic


Discovery of $T^a_{c\overline{s}0}(2900)^0$ and $T^a_{c\overline{s}0}(2900)^{++}$

- In $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$
 - Isospin symmetry

- $$\begin{split} m &= 2.908 \pm 0.011 \pm 0.020 \; \text{GeV} \\ \Gamma &= 0.136 \pm 0.023 \pm 0.011 \; \text{GeV} \\ J^P &= 0^+ \end{split}$$
- First observation of a doubly charged opencharm tetraquark

Highlights: hidden charm exotic with strangeness

3.95

• Similar masses but very different width, nature still under unknown

4.2

4.15

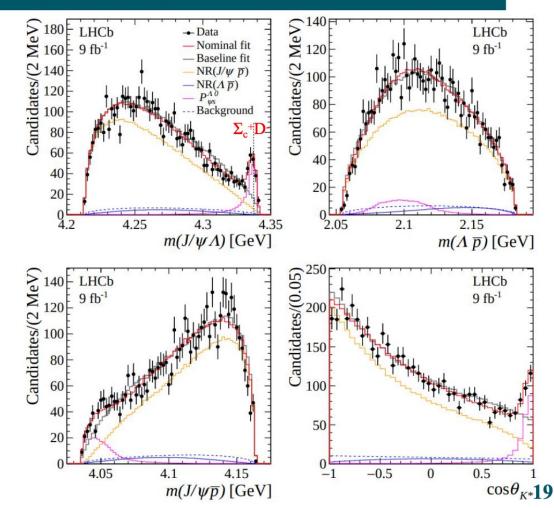
4.05

 $RM(K_c^0)(GeV/c^2)$

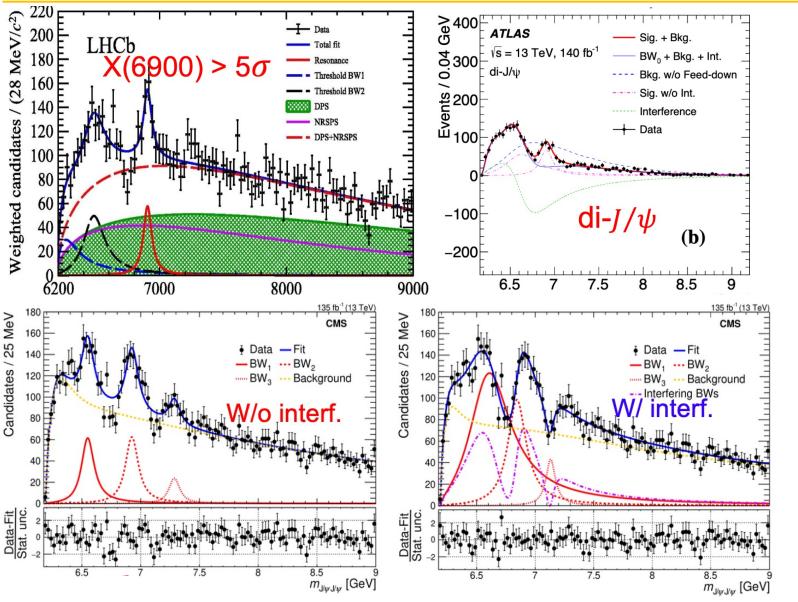
4.1

Highlights: hidden charm exotic with strangeness

Talk by D. Zhang


Discovery of $P^{\Lambda}_{\psi s0}(4338)^0 \rightarrow J/\psi \Lambda$

- A new resonance is needed in the amplitude fit
- First pentaquark containing strange quark

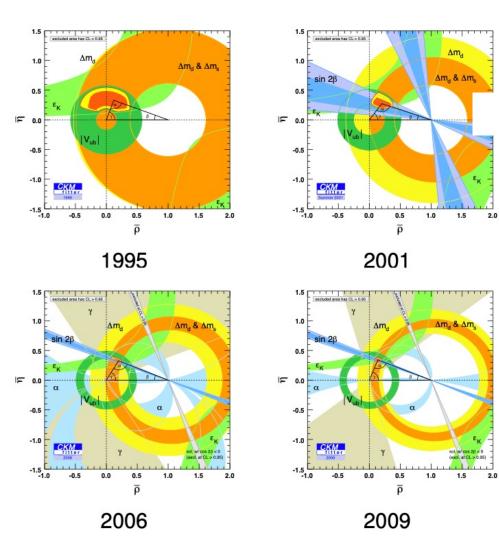

$$B^- \to J/\psi \Lambda \overline{p}$$

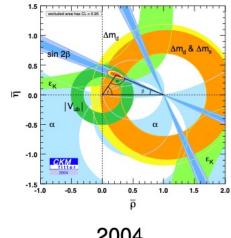
 $m = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$ $\Gamma = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$ $J^{p} = \frac{1}{2}^{-}$ preferred

arXiv:2210.10346 7/4/2023

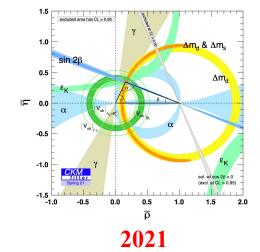
Highlights: exotic with 4c

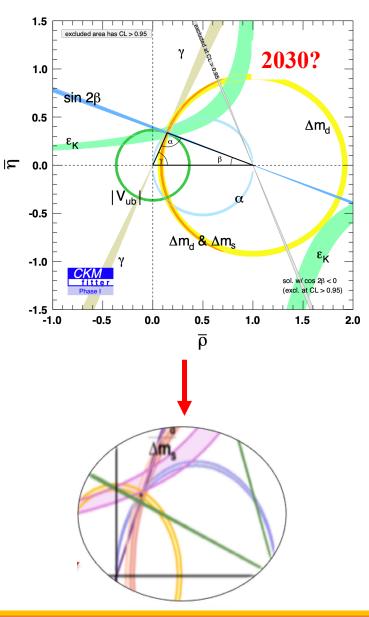
 All three LHC experiments (LHCb, ATLAS, CMS) see resonances in

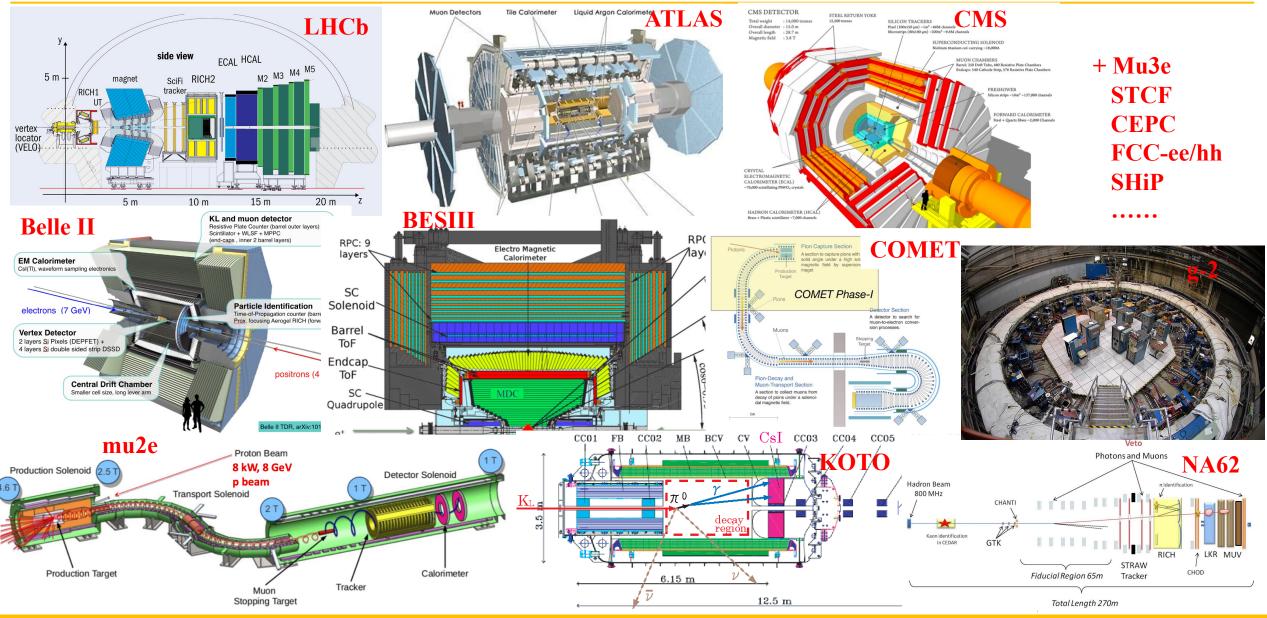

di- J/ψ mass


• Existence of two resonances

established, one with evidence


• Long waited, extremely interesting


Summary of a summary



Bright Future

WIN2023

Thank you for your attention

Synergy between LHCb and BESIII (1)

Quantum correlation $D^0 \overline{D^0}$: $|\psi(3770)\rangle \rightarrow \frac{1}{\sqrt{2}}(|D^0\rangle|\overline{D}^0\rangle - |\overline{D}^0\rangle|D^0\rangle)$

Provide direct access to the $D^0 - \overline{D^0}$ strong-phase difference

- \checkmark Important input in CKM γ measurement
- ✓ Precise test of perturbative QCD calculations in charm decays, mixing and CPV

Different methods depending on the final states of D decays

- GLW : D decaying to CP eigenstates
- ADS : *D* decaying to CF/DCS eigenstates
- **GGSZ** : *D* decaying to self-conjugate eigenstates

Flavour	$K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{-}, K^{\pm}\pi^{\mp}\pi^{0}, K^{\pm}\pi^{\mp}, \dots$
CP-even	$K^+K^-, \pi^+\pi^-, \pi^0\pi^0, K^0_S\pi^0\pi^0, K^0_L\pi^0, K^0_L\omega, \pi^+\pi^-\pi^0^\dagger$
$CP ext{-odd}$	$K^0_S \pi^0, \ K^0_S \eta, \ K^0_S \omega, \ K^0_S \eta', \ K^0_S \phi, \ K^0_L \pi^0 \pi^0$
Self-conjugate	$K^{0}_{S}\pi^{0}, K^{0}_{S}\eta, K^{0}_{S}\omega, K^{0}_{S}\eta', K^{0}_{S}\phi, K^{0}_{L}\pi^{0}\pi^{0}$ $K^{0}_{S}\pi^{+}\pi^{-}, K^{0}_{S}K^{+}K^{-}, \dots$