Applications of Nuclear Technology Session Summary - Application and Detection Iechnology Development

Zhe Wang Tsinghua University

July 8, 2023 @ WIN2023, Zhuhai

Applications of Nuclear Technology

1. 16 parallel talks
 2. Two plenary talks

 a. CEvNS with Noble Liquids, by Kaixuan Ni
 b. Neutrino Applications, by Jonathan Link

Contents

1. Reactor neutrino precision measurement and monitor 2. Geoneutrino measurements and prediction 3. CEvNS detection 4. Others: a. Jinping Neutrino Experiment b. Muon tomography c. Bolometer development

Part 1. Reactor neutrino precision measurement and monitor

a. TAO - Cryogenic liquid scintillator, high light yield
b. CHANDLER - Compact , low cost, surfacelevel, mobile

Taishan Antineutrino Observatory (TAO) arXiv: 2005.08745

by Alexander Chepurnov

Taishan Antineutrino Observatory (TAO) is a satellite experiment of JUNO

Physics goals:

- Measurement of a high-resolution antineutrino energy spectrum, which serves as a benchmark to test nuclear databases, provides increased reliability in measured isotopic antineutrino yields, and gives an opportunity to improve nuclear physics knowledge of neutron-rich isotopes
 - Providing the reference spectrum for JUNO to reduce the model dependence on the reactor antineutrino spectrum;
- Searching for light sterile neutrinos with a mass scale around 1 eV;
- Verification of the detector technology for reactor monitoring and safeguard applications

Specification:

- Expected energy resolution < 2% @ 1 MeV</p>
- Nuclear Reactor:
 - Reactor Thermal Power 4.59 GW
 - Reactor type EPR
 - Baseline ~ 30 m
- Detector operational temperature - 50C°

Target

>

- spherical acrylic vessel diameter 1.8 m
- spherical FV with radius 0.65 m
- Photosensors SiPM
 - number of tiles ~ 4100
 - 50x50x3 mm 32 SiPMs per 1 tile
 - photon detection efficiency > 50%
 - coverage ~ 94%
 - dark current rate <100 [Hz/mm²]

Scintillator

- LAB- based Gd-dopped
- Light yield 12000 photons/MeV

TAO Central detector

The Mobile Neutrino Lab — MiniCHANDLER by Jonathan Link

WirginiaTech

 The first demonstrated mobile neutrino detector,
 The first unshielded reactor neutrino detector, and
 One of the world's smallest neutrino detectors.

Observation of reactor neutrinos — — MiniCHANDLER

With the 80 kg prototype:
1. The detection of an antineutrino signal resulting from inverse beta decay at 5.5σ significance.
2. An observation of a positron spectrum in a small surface-deployed detector.

Going from MiniCHANDLER to full CHANDLER:

1. <u>New optics</u>; 2. <u>Larger detector</u>; 3. <u>PMTs on four sides</u>; 4. <u>Half cubes</u>.

Part 2. Geoneutrino measurement and prediction

a. Measurements of Borexino and KamLANDb. Prediction for JUNO

Geo-neutrino measurements with Borexino

by Xuefeng Ding

 $52.6^{+9.4}$ -8.6 (stat) $^{+2.7}$ -2.1 (sys) geo-neutrinos seen by Borexino in ~3300 days

Geo-neutrino measurements with Borexino

11

- Total: 47.0+8.4-7.7 (stat) +2.4-1.9 (sys) TNU
- Mantle: 21.2^{+9.5}-9.0 (stat) ^{+1.1}-0.9 (sys) TNU
- Null mantle signal excluded at 99.0% C.L

2023/7/4

Geo-neutrino measurements with KamLAND

by Nanami Kawada

The KamLAND detector

Comparison to Earth models

High-Q model rejection indicates the need to modify the mantle density/viscosity profile or geodynamical modeling of mantle convection.

The KamLAND data favor Low-Q, Middle-Q model.

This result suggests mantle multi-layer convection.

Geo-neutrino Signal Prediciton at JUNO

by Ruohan Gao

Earth's layers and their estimated geo-neutrino signal

Crust: high Th & U

Continental crust

- CLM (Continental Lithospheric Mantle): relatively low Th & U
- Mantle: very low Th & U, large volume

Oceanic crust

•

Geo-neutrino Signal Prediciton at JUNO

JULOC					
		$S_U \pm \sigma$	$S_{Th} \pm \sigma$	$S_{U+Th} \pm \sigma$	
Upper Crust Middle Crust Lower Crust Oceanic Crust Total	Top layer Basement	$10.5_{-0.7}^{+0.7}$ $8.1_{-3.7}^{+7.0}$ 1.7 ± 1.0 $1.9_{-1.3}^{+3.8}$ 0.2 ± 0.05 21.3 ± 4.0	$3.2_{-0.3}^{+0.3}$ $2.6_{-1.1}^{+1.8}$ 0.4 ± 0.3 $0.8_{-0.7}^{+5.7}$ 0.1 ± 0.01 6.6 ± 1.3	$13.8_{-0.7}^{+0.8}$ $11.0_{-3.9}^{+5.9}$ 2.1 ± 1.1 $1.7_{-1.2}^{+4.0}$ 0.3 ± 0.05 28.5 ± 4.5	

JULOC-I	Preliminary results				
	SU	S _{Th}	S _{U+Th}		
Continental Crust	22.1	6.7	28.8		
Oceanic Crust	0.2	0.1	0.3		
Total	22.3	6.8	29.1		

1. Geochemical model has larger influence on geo-neutrino signal prediction than geophysical model, as the earth's continental crust is highly heterogenous in terms of U and Th abundances.

2. Local crust model (JULOC/JULOC-I) predicts higher geoneutrino signal than global models.

3. This is consistent with the wide distribution of high U/Th granite intrusions in the Cathaysia region around JUNO

Part 3. CEvNS detection

a. COHERENT b. CloverS c. CICENNS d. Dual phase argon TPC e. RELICS f. CONUS g. vGen h. RECODE

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

- CEvNS is a standard model process predicted 50 years ago (D.Z. Freedman, 1973) and was first observed by the COHERENT collaboration at the Spallation Neutron Source (SNS) in 2017 [1708.01294]
- Particle physics:

$$\frac{d\sigma}{dE_R} = \frac{G_F^2}{4\pi} (N - Z(1 - 4\sin^2\theta_w))^2 m_N (1 - \frac{m_N E_R}{2E_v^2}) F^2(E_R)$$

- weak mixing angle
- neutrino EM properties: charge radius, magnet moments, millicharge
- non-standard interactions (NSI), light mediators
- Nuclear physics
 - nuclear form factors, neutron radius...
- Astrophysics:
 - Solar neutrinos and supernova neutrinos
- New physics:
 - sterile neutrinos, dark matter
- Applications:
 - nuclear security, reactor fuel (spent fuel) monitoring

COHERENT

CloverS - Cryogenic undoped CsI, SNS, 12 kg, CSNS, China

by Qian Liu

- 77K big CsI crystal light yield test \sim 15.8p.e/keVee
- The light yield can be further improved by enhancing the optical coupling and employing wavelength shifters, etc.

CICENNS - CsI(Na), SNS, 300 kg, CSNS, China

by Soo-Bong Kim

- 20 kg Csl(Na) x 15
- 14 cm (ϕ) x 28.7 cm each
- Two 5-inch SBA PMTs

2023/7/4

- Oct. 2022: Fund request submitted to SYSU.
- Nov. 2022: Instrumentation fund obtained.
- Dec. 2022: Bidding was completed for procurement.
- Dec. 2022 present.: Negotiation with Csl(Na) crystal manufacturers
 Technical Design Report in preparation
 Finalize the detector design with a full simulation
 Under purchasing parts
- Dec. 2023: All of detector components will be delivered.
- May 2024: Completion of detector assembly
- Aug. 2024: Cosmic muon data at SYSU
- Sep. 2024: Deploy the detector at CSNS and take beam data.

Dual phase argon - Ar, Reactor, 200 kg, Taishan, China by Yongpeng Zhang

Detector conceptual design

- Dual phase UAr TPC with ~200 kg fiducial mass
- Background source:
 - ✓ Muon and secondary particles
 - ✓ Radioactivity from detector material and rock
- Strategy for reducing background
 - ✓ Using UAr and material screening
 - Passive shield: Lead + polypropylene (maybe replaced with water)
 - ✓ Active shield: Active muon-veto (plastic scintillators) + Veto LAr (single phase detector)

379cm

RELICS - Xe, Reactor, 30 kg, Taizhou, China

by Qing Lin

4π LXe veto

2023/7/4

CONUS, - Ge, Reactor, 4 kg, KFR, Germany

by Kaixiang Ni

- Data: 248.7kg-d ON, 58.8kg-d OFF
- Threshold: ~300eV
- Binned Likelihood:
 - Simultaneously fit ON/OFF data
 - Poisson distribution in each bin

Run5 update

More statistics: in total 458kg-d ON, 293kg-d OFF

From CONUS to CONUS+

 New Reactor: Kernkraftwerk Leibstadt (KKL), Switzerland
 Upgraded Ge detectors

- Ge refurbishment: reduced point-contact size
- ASIC upgrade: higher trigger efficiency at low energy.
- **Cryostat upgrade:** water-cooled to reduce vibration and microphonic noise
- Under test in MPIK!
- Target:
 - Resolution: <55eV
 - Threshold: <200eV

nGen - Ge, Reactor, 1.4 kg, KNPP, Russia

by A.Lubashevskiy

- More than 1200 kgd of data has been accumulated so far.
- The optimization of data taking is performed as well. New results in the upper position with more statistics are expected soon.

RECODE - Ge, Reactor, 10 kg, Taizhou

Schedule Experience from CDEX@CJPL

	2023	2024		2025	>	2026		2027
✓ ✓	On site environmental bkg ✓ measurement/estimation Design, production, and ✓ processing of various subsystems	Subsystem independent testing Joint testing work	✓ ✓	Transport to nuclear power plant, installation, testing First physics run	✓ ✓ ✓	Change working mode Second physics run Data analysis	√ √ √	Change working mode Third physics run Data analysis
Subsystems testing @CJPL and ground			Physics Run @nuclear power plant					
	冷指 冷指 低温恒温腔 \$\phi25cm \timesH2	前端电子学 结构支架 高纯锗晶体单元 5cm		等距测量 「「「「」」 探测系统A			<u>ن</u> ر تر بر ا	反应堆芯 点

Part 4. Others

a. Jinping Neutrino Experiment – A solar and geo neutrino observatory
b. Muon tomography – Structure imaging
c. Bolometer development – for 0vββ and CEvNS

by Zhe Wang

R&D of Jinping Neutrino Experiment

1.500 Hundred-ton solar neutrino observatory at CJPL II

- a. Detector construction
- Replaceable detection media, allowed density range ± 20% wrt water, oil- or water- based liquid scintillator

2.Solar B-8 neutrino detection with water first3.Explored the option with LiCl aqueous solution

2023/7/4

v_e CC, ES, and \bar{v}_e detections with saturated LiCl aqueous solution

1.CC process for v_e : $\nu_e + {}^7\text{Li} \rightarrow {}^7\text{Be} + e^-(+\gamma)$ Measure neutrino energy High concentration: 11 mol/L 2. Elastic scatter on e⁻: **3.Delayed coincidence for** $\bar{\nu}_{\rho}$: $\bar{\nu}_e + p \rightarrow n + e^+$ with neutron capture on H, Li6, and Cl35 measure $\bar{\nu}_{\rho}$ energy

Saturated LiCl solution

- Attenuation length: 50 m at 430 nm
- 2. Adding 1 ppm C124 to LiCl aqueous solution, scintillation+Cherenkov

Spectrometer for v_e and \bar{v}_e Good chance for solar and geo neutrinos

http://jinping.hep.tsinghua.edu.cn

Muon Tomography

by Ran Han

Tunnel -- Changshu seismic station

Tunnel -- Xiaoying subway station

Volcano

40

50

0.6

Absolute density inversion

Accurate 2D density measurement of samples with dimensions of several tens of centimeters can be achieved through 200 hours of

Density results from Data(red) and Simulation(blue)

3

30 35 40

10

p(g/cm³)

> 25 > 20

> 5 10 15 20 25 X

Cryogenic phonon-scintillating bolometer technology and applications

by Mingxuan Xue

CdMoO₄/Li₂MoO₄/Gd₂SiO₅ bolometer for $0\nu\beta\beta$ search

 \mathscr{R} Small LMO $2 \times 2 \times 2$ cm³

Running @10 mK in USTC_DU

2023/7/4

PbWO4 bolometer for reactor CEvNS observation

- \Re Essential idea for using PWO in reactor neutrino CEvNS experiment:
 - **Neutron-enriched** elements to enhance interaction rates *
 - Low heat capacity (C) at working temperature (10 mK) to guarantee sensitivity to such small * recoil energy deposition, $C \propto T^3$ Heat capacity data plots 0.007

	counts/[kg day] $E_{th} = 10 \text{ eV}$	counts/[kg day] $E_{th} = 20 \text{ eV}$	counts/[kg day] $E_{th} = 50 \text{ eV}$
PbWO ₄	221.0	170.8	88.5
W	96.9	75.7	40.1
Pb	123.1	94.2	47.7
0	1.0	0.9	0.7

0.5

1 kg PWO crystal absorber

2.5

Summary

1. Reactor neutrino precision measurement and monitor a. TAO and CHANDLER 2. Geoneutrino measurements and prediction a. Borexino and KamLAND; b. JUNO pred. 3. CEvNS detection: 8 Exp. coming up 4. Others: a. Jinping Neutrino Experiment coming up b. Muon tomography results c. Bolometer development

Thank you. Apologize for the missing details and key points due to my limited knowledge.