Introduction 000	Signal identification with Kalman Filter	Event vertex z_0 reconstruction with CNN 000	Summary O	Backup 00000
E PE			Son No.	H t to
Fe	atures Analysis of I Estimation in Pa	Particle Tracks and S andaX-III Experime	Sensitivit nt ^{1,2}	y
		Tao Li		

(on behalf of the PandaX-III collaboration)

Sun Yat-sen University

July 3-8, 2023

¹Li, T. *et al. JHEP* **06**, 106 (2021). ²Li, T. *et al. JHEP* **05**, 200 (2023).

Tao Li (SYSU)

WIN2023

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Search for neutrinoless double beta decay

Experimental sensitivity to the half-life of $0\nu\beta\beta$

$$T_{1/2}^{0\nu} = \frac{\ln 2}{3} \cdot \frac{N_A \epsilon a}{W} \sqrt{\frac{M \cdot t}{b \cdot dE}}$$

- N_A : the Avogadro's number;
 - ϵ: the signal detection efficiency in the ROI;
 - a: the isotopic abundance of the parent isotope;
 - W: molar mass of the source;

- M: the source mass;
 - t: the measurement time;
- b: the background index;
- dE: the detector energy resolution;

	Candidate isotopes	Natural abundance(%)	$Q_{\beta\beta}$ (MeV)
Design criteria	⁴⁸ Ca ⁷⁶ Ge	0.187 7.8	4.2737 2.0391
 isotope choices; 	$^{82}_{100}$ Mo	9.2 9.6	2.9551 3.0350
 Backgrounds control; 	¹³⁰ Te ¹³⁶ Xe	<u>34.5</u> 8.9	2.5303 2.4578
• Detector strategies;	¹⁵⁰ Nd	5.6	3.3673
Tao Li (SYSU)	WIN2023	July	3-8, 2023

Introducti	on
000	

Event vertex z_0 reconstruction with CNN 000 Summary O Backup 00000

PandaX-III experiment

High-pressure gas-phase TPC

- 3 % FWHM @ $Q_{\beta\beta}$ =2.458 MeV;
- Active volume: 1.6 m in diameter and 1.2 m high;
- 137 kg of enriched xenon gas(1% TMA) in 10 bar;
- Readout: 52 modules of 20 cm × 20 cm (3 mm strips).

• t_0 (or the event vertex z_0) is not directly available due to the loss of scintillation light signal.

Track features can be extracted more effectively for signal identification.

Sensitivity of $0\nu\beta\beta$ half-life:

$$T_{1/2}^{0\nu} = \frac{\ln 2}{3} \cdot \frac{N_A \epsilon a}{W} \sqrt{\frac{M \cdot t}{\mathbf{b} \cdot dE}}$$

- b: the background index;
- dE: the detector energy resolution;

 Finally improvement on experimental sensitivity to the half-life of 0νββ!

ヘロト 人間 とくほとくほど

Introduction Signal identification with Kalman Filter	Event vertex z_0 reconstruction with CNN 000	Summary O	Backup 00000
Track reconstruction	0		
What is the Kalman filt	er?		
An optimal linear estimator.			
 Prediction and correction; minimum variance estimatio	n; $\begin{cases} x_k = F \\ y_k = H \end{cases}$	$\begin{aligned} x_{k-1} + \omega_k \\ x_k + \delta_k \end{aligned}$	
PDF $\mathcal{N}(\hat{x}_{k-1}, \hat{P}_{k-1})$ Estimate at (k - 1)	3. Fusion 3. Fusion 2. Measurem 2. Measurem $\mathcal{N}(\tilde{x}_k, \check{P}_k)$ $\mathcal{N}(\hat{x}_k, \check{P}_k)$ $\mathcal{N}(\hat{x}_k, \check{P}_k)$ $\mathcal{N}(\hat{x}_k, \check{P}_k)$ $\mathcal{N}(\hat{x}_k, \check{P}_k)$ $\mathcal{N}(\hat{y}_k, \check{R}_k)$ $\mathcal{N}(\hat{y}_k, \check{R}_k)$ $\mathcal{N}(\hat{y}_k)$ $\mathcal{N}(\hat{y}_k, \check{R}_k)$ $\mathcal{N}(\hat{y}_k, \check{R}_k)$ $\mathcal{N}(\hat{y}_k,$	ent P _k) Position(p) Hent Model) PS,	

Tao Li (SYSU)

vent vertex z_0 reconstruction with CNN

Summary O Backup 00000

Track reconstruction

Kalman filter in a Bayesian formalism (KFBF)

6D Kalman filter model in our method:

Bayesian formula:

The most likely value for both the noise items.

$$Q_k, R_k] = \arg \max_{Q_i \in \mathbb{Q}, R_j \in \mathbb{R}} (P(Q_i, R_j | \mathcal{M}^k)).$$

Event vertex z_0 reconstruction with CNN

Reconstruction procedures

Track reconstruction

II: Rough reconstruction:

- E_{Space} : The energy in a unit volume (57 mm) around the energy-weighted center of the event;
 - E_p : The total deposited energy of the principal track.
- N_{Tracks}: The total number of the event track;
 - E_{BB} : The deposited energy in Bragg blob with radius 12 mm;
 - dE_{dx} : The energy loss per unit travel length.
 - P: The momenta at the ends of the reconstructed track;

Tao Li (SYSU)

WIN2023

Signal identification with Kalman Filter

Event vertex z_0 reconstruction with CNI 000 Summar O Backup 00000

Reconstruction procedures

Estimation of $0\nu\beta\beta$ Sensitivity

The estimation of background level is 152 CPY. After the BDT cut, the background rate is 0.48 CPY. An improvement on sensitivity by a factor of 2.7 (2.4).

Comparation	Overall efficiency	background counts in 5 yr	significance	Sensitivity (90% C.L.)
This work	34.7%	2.4	8.8	$2.7 imes10^{26}~{ m yr}$
Design target ³	35.0%	25.3	2.8	$9.8 imes 10^{25} ext{ yr}$
Work before ⁴	23.2%	7.6	3.3	$1.1 imes 10^{26} ext{ yr}$

Table: The $0\nu\beta\beta$ half-life sensitivity estimation of PandaX-III based on MC data.

Assuming 1 t Xenon and (3 mm, 1%), the background rate is 0.11 CPY, pushing the search towards background-free regime.

³Chen, X. *et al.* PandaX-III: Searching for neutrinoless double beta decay with high pressure 136 Xe gas time projection chambers. *Science China Physics, Mechanics & Astronomy* **60**, 1–40 (2017). ⁴Galan, J. *et al.* Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment. *Journal of Physics G: Nuclear and Particle Physics* **47**, 045±08 (2020).

Motivation	

Event vertex z_0 reconstruction with CNN $\bigcirc \bigcirc \bigcirc$ Summary O Backup 00000

Event vertex reconstruction in PandaX-III

t_0/z_0 loss

- Distortion of energy spectrum due to electron attachment effect;
- Events near the readout plane and cathode can't be identified (Radon degassing).
- Electron diffusion effect: z_0 is revealed in the degree of trajectory dispersion.

Tao Li (SYSU)

9/17

000	0000	$\odot \odot \odot$	O Summary	00000
Methodology				
VGGZ0	Inet			

A customized VGG16 model for z_c regression.

- Input: RGB Images consisting of 64×64 pixels (only the principle tracks);
- Label: The Z position of event charge center z_c ;

The Structure of VGGZ0net based on VGG16 classification model.

イロト イタト イヨト イヨト

troduction
00

Event vertex z_0 reconstruction with CNN

Summary O Backup 00000

Results

Correction on energy spectrum

Energy correction:

$$E_c = E_r / e^{-\hat{l}_e / \hat{z}_c}$$

The energy spectrum under 1200 cm hypothetical electron lifetime.

Table: The performance of vertex reconstruction and energy correction based on VGGZ0net in different electron lifetime scenarios. The corrected energy resolution at $Q_{\beta\beta}$ is presented.

l _e (cm)	$\sigma(\Delta z)$ (cm)	\hat{l}_e (cm)	Corrected FWHM
Infinity	11	-	3.3 %
2000	11	2015 ± 55	3.4 %
1800	11	1815 ± 53	3.5 %
1600	11	1614 ± 42	3.6 %
1400	11	1408 ± 33	3.7 %
1200	11	1217 ± 30	4.0 %
1000	11	1008 ± 25	4.2 %
800	11	809 ± 20	4.6 %

ヘロト ヘアト ヘヨト ヘヨト

Introdu	
000	

Event vertex z_0 reconstruction with CNN

Summary

Backup 00000

Summary

The PandaX-III experiment has great advantage to search for $0\nu\beta\beta$ due to its excellent ability of track measurement.

Focusing on the particle track features:

- Improve the sensitivity of PandaX-III experiment in the search for $0\nu\beta\beta$ by nearly 3 times;
- Build a CNN regression model VGGZ0net to reconstruct event vertex;
- Push the search towards background-free regime;

trod		
00		

Event vertex z_0 reconstruction with CNN 000

32 channels × 1 sampling point

Summary O Backup ●○○○○

Data preparation

The distribution of triggered channels on XZ and YZ plane.

an example of RGB image conversion. the RGB image size is arranged to 32×32 .

32 channels × 3mm

Signal identification with Kalman Filter

Event vertex z₀ reconstruction with CN1 200 Summary O Backup ○●○○○

Topological features analysis

Distribution of track feature parameters

Tao Li (SYSU)

WIN2023

July 3-8, 2023

14/17

Signal identification with Kalman Filter

vent vertex z₀ reconstruction with CN1

Summary O Backup 00000

Topological features analysis

Identification of signal and background

 ϵ_s : the signal efficiency;

 ϵ_b : the background efficiency;

 Ξ : the signal significance, $\Xi = \epsilon_s / \sqrt{\epsilon_b}$;

Conformations			BDT	Cuts		
Configurations		²³² Th		²³⁸ U		
	ϵ_s	ϵ_b	Ξ	ϵ_s	ϵ_b	Ξ
(1 mm, 3%)	0.34	4.7×10^{-4}	15.7	0.49	2.8×10^{-3}	9.3
(1 mm, 6%)	0.35	1.2×10^{-3}	10.1	0.57	4.2×10^{-3}	8.8
(3 mm, 3%)	0.39	$6.7 imes 10^{-4}$	15.1	0.51	3.4×10^{-3}	8.7
(3 mm, 1%)	0.50	8.2×10^{-4}	17.5	0.40	1.5×10^{-3}	10.3
(3 mm strip, 3%)	0.32	$8.3 imes 10^{-4}$	11.1	0.46	$4.6 imes 10^{-3}$	6.8

Signal identification with Kalman Filter

Event vertex z_0 reconstruction with CNN 000 Summary O

U238: 24% Backup ○○○●○

Sensitivity of $0\nu\beta\beta$ in PandaX-III

Background estimation

- The background level is 152 CPY;
- The majorities of the background are from the acrylic field cage, the copper liner, and the stainless vessel.

The background count after BDT cuts obviously goes down by about an order of magnitude compared with that after BB cut.

Signal identification with Kalman Filter

event vertex z₀ reconstruction with CNN

Summary O Backup 00000

Sensitivity of $0\nu\beta\beta$ in PandaX-III

Validation through experimental data in prototype

Tao Li (SYSU)

17/17