

Precision measurements with Kaons at CERN

Cristina Biino * - INFN Torino

(email: cristina.biino@cern.ch)

WIN2023

International Workshops on Weak Interactions and Neutrinos

Sun Yat-sen University (SYSU) in Zhuhai, China 3-8 July 2023

On behalf of the NA62 Collaborations

Outline

Physics program with charged kaons successfully pursued at CERN SPS by NA62 and NA48/2

* (K00μ4) first observation and BR by the NA48/2 experiment

Future of physics with kaons at CERN SPS

W	IN	20	23

The NA62 experiment at the CERN kaon beam facility CERN kaon beam facility

The NA62 experiment at CERN

A fixed target experiment at the CERN SPS dedicated to the study of rare decays in the kaon sector.

- Detector installation completed in 2016
- Physics runs in 2016, 2017 and 2018
- Data taking resumed in July 2021, approved up to CERN Long-Shutdown-3...
- Main goal: BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement
- Broad physics program thanks to unprecedented statistics for many decay modes

~300 physicists from 31 institutes in 11 countries

The NA62 kaon beam

- SPS beam: 400 GeV/c proton on beryllium target
- 75 \pm 1 GeV/c unseparated secondary hadron beam (70% pions, 24% protons, 6% kaons)
- Decay in-flight technique: the high energy kaons decay in a ~60 m fiducial region
- Nominal beam particle rate (at GTK3): 750 MHz, O(10¹²) pot per spill, ~3.5 s effective spill
- Average beam particle rate during 2018 data-taking: 500-750 MHz
- K⁺ decay rate ~ 5 MHz

WIN 2023

The CERN kaon facility

The NA62 detector

- Beam Si pixel spectrometer (GTK)
- Decay products magnetic spectrometer (STRAW)
- Particle identification system (KTAG, RICH, MUVs)

- LKr: electromagnetic calorimeter
- Veto system (LAV, iRC, SAC, CHANTI, MUV, HASC)
- CHOD: scintillator hodoscopes
- Multi level (L0, L1, L2) trigger

★ Measurement of the ultra rare process $K^+ \rightarrow \pi^+ \vee \overline{\gamma}$

JHEP 06 (2021) 093

E787 and E949 experiments at BNL: BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) = (17.3 ^{+11.5}_{-10.5}) × 10⁻¹¹

Phys.Rev. D 77.052003 (2008), Phys.Rev. D 79.092004 (2009)

- Ultra rare FCNC: s \rightarrow d transition, loop + hard GIM suppression
- Theoretically clean dominated by short-distance physics
- Negligible hadronic uncertainties
- K⁺ π^+ Form Factor (FF) extracted from K[±] $\rightarrow \pi^0 l^{\pm} v_l$: sub % precision
- Sensitive to new physics in the lepton sector as well: involves $\nu_e \ \nu_\mu$ and ν_τ

Measurements strategy

Jighly boosted decay: K⁺@(75 ± 1) GeV/c אין ווי אין Highly boosted decay: K⁺@(75 ± 1) GeV/c

Large undetectable missing energy carried away by the neutrinos

- All energy from visible particles must be detected + Particle ID (calorimeters, Cherenkov, muon-ID, photon veto)
 - π^+ momentum range 15-45 GeV/c (E_{miss} > 30 GeV)
- ✓ Hermetic detector coverage and O(100%) detector efficiency needed
- Blind analysis using control regions

Requirements on background rejection:

- O(10⁴) suppression from kinematic conditions
- $O(10^7)$ from μ + rejection
- O(10⁷) from π^0 rejection
- O(100 ps) timing between sub-detectors

9

NA62 results from Run 1 (2016-2018)

$\frac{1}{2}$ 0.12 2018 data (S1 + S2) · Data SM K ⁺ $\rightarrow \pi^+ \nu \bar{\nu}$	Channel	Background (2018)
g 0.1	$\pi^+\pi^0$	0.75 ± 0.05
	$\mu^+ u$	0.64 ± 0.08
	$\pi^+\pi^-e^+\nu$	0.51 ± 0.10
0.04	$\pi^+\pi^+\pi^-$	0.22 ± 0.10
0.02	$\pi^+\gamma\gamma$	< 0.01
	$\pi^0 l^+ \nu$	< 0.001
	Upstream	$3.30^{+1.00}_{-0.75}$
	Total (2018)	$5.42^{+1.00}_{-0.75}$
π^+ momentum [GeV/c]		

• 20 events observed in the signal region - full Run1 data sample

• Combining the complete Run 1 data set and assuming $BR_{SM}(8.4 \pm 1.0) 10^{-11}$:

$$N^{exp}_{\pi\nu\nu} = 10.01 \pm 0.42_{syst} \pm 1.19_{ext}$$
$$N^{exp}_{background} = 7.03^{+1.05}_{-0.82}$$
$$SES = (0.839 \pm 0.053_{syst}) \times 10^{-11}$$

JHEP 06 (2021) 093

BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) = (10.6 ^{+4.0}_{-3.4} |_{stat} ± 0.9_{syst}) x 10⁻¹¹ 3.4 σ significance

Impact in the context of BSM models

NA62: BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) = (10.6 ^{+4.0}_{-3.4} |_{stat} ± 0.9_{syst}) x 10⁻¹¹

Not-SUSY models

* Recent results on **XPT** studies

Precision measurement of the rare processes:

$\begin{array}{cccc} \mathsf{K}^{+}_{+} \longrightarrow \pi^{+}_{+} \mu^{+}_{+} \mu^{-}_{-} & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{-} \mathsf{g}^{+}_{+} \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma & ; & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma \\ & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma \\ & & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma \\ & & & \mathsf{K}^{+}_{+} \longrightarrow \pi^{0}_{+} \gamma \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & &$

 $K^+ \longrightarrow \pi^+ \mu^+ \mu^-$; $K^+ \longrightarrow \pi^+ \gamma \gamma$;

JHEP 11(2022) 011

preliminary result

arXiv: 2304.12271

The $K^+_+ \rightarrow \pi^+_+ \mu^+_+ \mu^-_-$ decay

- Heavily suppressed FCNC transition: $s \rightarrow d l^+l^-$
- Main kinematic variable: $z = \frac{m^2 (l^+ l^-)}{m^2_{\kappa}}$
- Form Factor of the $K^{\pm} \rightarrow \pi^{\pm} \gamma^{*}$ transition: W(z)
- Chiral Perturbation Theory (ChPT) parametrization of W(z) at O(p⁶):

$$W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$$

Form factors

Main goals of the measurement with NA62:

- \succ Model independent measurement of the B($\pi\mu\mu$)
- > Measurement of the function $|W(z)|^2$
- \triangleright Determine the Form Factor parameters a_+ and b_+
- Forward-backward asymmetry

Effective number of Kaons N_{K} = 3.48 10¹² (measured from K3 π)

13

The $K^+_+ \rightarrow \pi^+_+ \mu^+_+ \mu^-_-$ decay results

Precision measurement: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

Goal: Measurement of

$$R_{j} = \frac{\mathcal{B}(K_{e3\gamma j})}{\mathcal{B}(K_{e3})} = \frac{\mathcal{B}(K^{+} \to \pi^{0}e^{+}\nu\gamma)}{\mathcal{B}(K^{+} \to \pi^{0}e^{+}\nu(\gamma))} \xrightarrow{\left[\begin{matrix} E_{\gamma}, \theta_{e\gamma}^{j} \\ E_{\gamma} > 10 \ \text{MeV}, \theta_{e\gamma} > 20^{\circ} \\ E_{\gamma} > 30 \ \text{MeV}, \theta_{e\gamma} > 20^{\circ} \\ E_{\gamma} > 10 \ \text{MeV}, 0.6 < \cos\theta_{e\gamma} < 0.9 \\ 0.559 \pm 0.006 \end{matrix}$$

$$R_{j} = \frac{\mathcal{B}(K_{e3\gamma j})}{\mathcal{B}(K_{e3})} = \frac{\mathcal{B}(K^{+} \to \pi^{0}e^{+}\nu\gamma)}{\mathcal{B}(K^{+} \to \pi^{0}e^{+}\nu(\gamma))} \xrightarrow{\text{phase space conditions}} phase space conditions$$

$$A_{\xi} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \quad \text{with } N_{\pm} = N(\xi \ge 0) \text{ and } \xi = \frac{\vec{p_{\gamma}} \cdot (\vec{p_{e}} \times \vec{p_{\pi}})}{(M_{K} \cdot c)^{3}}$$

$$A_{\xi} \in (-10^{[-4]}, -10^{-5}) [\text{SM and beyond]}$$

 $\rightarrow \pi^0 e^+ \gamma \gamma$ Precision Measurement

Theory: LD dominated (Chiral Perturbation theory)

IR and collinear divergence

 π^0

NA62 💦

17

R_j	$=\frac{\mathcal{B}(K)}{\mathcal{B}(K)}$	$\frac{\tilde{K}_{e3\gamma^j})}{\tilde{K}_{e3})} =$	$\frac{N_{Ke3\gamma^j}^{\rm obs}}{N_{Ke3}^{\rm obs}} -$	$\frac{N_{Ke3\gamma^j}^{\rm bkg}}{N_{Ke3}^{\rm bkg}}$	$\cdot \frac{A_{Ke3}}{A_{Ke3\gamma^j}}$	$\cdot \frac{\epsilon^{\rm trig}_{Ke3}}{\epsilon^{\rm trig}_{Ke3\gamma^j}}$	Events / (; Events / (; 10 10
							Ē.

$$A_{\xi}^{
m NA62} = A_{\xi}^{
m Data} - A_{\xi}^{
m MC}$$
 With A_{ξ}^{MC} = 0 within 10^{-4}

Normalization: $K^+ \rightarrow \pi^0 e^+ \nu$

cut on $m_{miss}^2(K_{e3})$

WIN 2023

Selected as signal without γ radiative,

[e3	- N _{Ke3}	$^{A}Ke3\gamma^{j}$	$\epsilon_{Ke3\gamma^j}$
1C	With /	MC = 0 w	$\frac{10^{-4}}{4}$

	Normalization	S_1	S_2	S_3
Selected candidates	6.6420×10^7	1.2966×10^{5}	0.5359×10^5	0.3909×10^5
Acceptance	$(3.842 \pm 0.002)\%$	$(0.444 \pm 0.001)\%$	$(0.514 \pm 0.002)\%$	$(0.432 \pm 0.002)\%$
Accidental		$(4.9\pm 0.2\pm 1.3)\times 10^2$	$(2.3\pm 0.2\pm 0.3)\times 10^2$	$(1.1\pm 0.1\pm 0.5)\times 10^2$
$K^+ \to \pi^0 \pi^0 e^+ \nu$		$(1.1\pm1.1)\times10^2$	$(1.1\pm1.1)\times10^2$	$(0.1 \pm 0.1) \times 10^2$
$K^+ \to \pi^+ \pi^0 \pi^0$		< 20	< 20	< 20
$K^+ \to \pi^+ \pi^0$	$(1.0 \pm 1.0) \times 10^4$			
Total background	$(1.0 \pm 1.0) \times 10^4$	$(6.0\pm1.8)\times10^2$	$(3.4\pm1.2)\times10^2$	$(1.2\pm0.6)\times10^2$

 $K^+ \rightarrow \pi^0 e^+ \nu \gamma$

 $^+ \rightarrow \pi^0 e^+ \chi \gamma$ Precision Measurement new result

$K^+_{+} \rightarrow \pi^0_0 e^+_+ \chi \chi$ Result Comparison

	Eur. Phys. J. C 50 (2007) 557 Eur. Phys. J. C 48 (2006) 427	Phys.Atom. Nucl. 70 (2007) 702	Eur. Phys. J. C 81.2 (2021) 161 JETP Lett. 116 (2022) 608	arXiv: 2304.1227i submitted to JHEP
	ChPT O(p ⁶)	ISTRA+	ΟΚΑ	NA62
$R_1 \times 10^2$	1.804 ± 0.021	1.81 ± 0.03 ± 0.07	1.990 ± 0.017 ± 0.021	1.715 ± 0.005 ± 0.010
$R_2 \times 10^2$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	0.587 ± 0.010 ± 0.015	0.609 ± 0.003 ± 0.006
$R_3 \times 10^2$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	0.532 ± 0.010 ± 0.012	0.533 ± 0.003 ± 0.004
$A_{\xi}(S_{I}) \times 10^{3}$			-0.1 ± 3.9 ± 1.7	-1.2 ± 2.8 ± 1.9
$A_{\xi}(S_2) \times 10^3$	-0.059		7.0 ± 8.1 ± 1.5	$-3.4 \pm 4.3 \pm 3.0$
$A_{\xi}(S_3) \times 10^3$		0.015 ± 0.021	-4.4 ± 7.9 ± 1.9	-9.1 ± 5.1 ± 3.5

Decay rates:

- Factor > 2 more precise than previous measurements
- Relative uncertainty < 1%
- 5% smaller than ChPT prediction O(3σ)

T asymmetry:

- Compatible with no asymmetry
- Improved precision
- Uncertainty still O(10²) larger than predictions

Searches for Lepton Flavour and Lepton Number violation

PLB 797 (2019) 134794

PLB 830 (2022) 137172

PRL 127 (2021) 13 131802

PLB 838 (2023) 137679

LFV/LNV searches

Lepton Flavour/Number Violation: many decay modes forbidden in the SM

Obtained Upper Limits on BRs ~O(10⁻¹¹)

350 400 10

450 500 550

 $m(\pi^-e^+e^+)$ [MeV/c²]

380 400 420 440

460

480 500 520

m(π⁻μ⁺μ⁺) [MeV/c²]

300 350 400 4

450

500

550 550 600 m_{π⁺μ⁻e⁺} [MeV/c²]

LFV/LNV searches

250

200

300

LFV/LNV searches

Theory: decays forbidden by SM; Direct search of NP: Majorana neutrino (LNV), Leptoquark LFV)

- **NA62: s**everal channels studied with RUN1 data
- **Analysis:** key points →tracking resolution and particle identification
- **Result:** no signal observed \rightarrow 90% CL Upper Limit (UL) on Branching Ratios (BR)

	Decay channel Previous UL		NA62 UL @90% CL
PRL 127 (2021) 13 131802	$K^+ { ightarrow} \pi^- \mu^+ e^+$	$BR < 5.0 \times 10^{-10}$	$BR < 4.2 \times 10^{-11}$
PRL 127 (2021) 13 131802	$K^+ \longrightarrow \pi^+ \mu^- e^+$	BR < 5.2 × 10 ⁻¹⁰	$BR < 6.6 \times 10^{-11}$
PRL 127 (2021) 131802	$\pi^0 { ightarrow} \mu^{-} e^+$	$BR < 3.4 \times 10^{-9}$	$BR < 3.2 \times 10^{-10}$
PLB 797 (2019) 134794	$K^+ { ightarrow} \pi^- \mu^+ \mu^+$	$BR < 8.6 \times 10^{-11}$	$BR < 4.2 \times 10^{-11}$
PLB 830 (2022) 137172	$K^+ \rightarrow \pi^- e^+ e^+$	$BR < 6.4 \times 10^{-10}$	BR < 5.3 × 10 ⁻¹¹
PLB 830 (2022) 1371 <u>7</u> 2	$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$	N/A	$BR < 8.5 \times 10^{-10}$
PLB 838 (2023) 137679	$K^+ \rightarrow \mu^- \nu e^+ e^+$	N/A	$BR < 8.1 \times 10^{-11}$
WIN 2023	LFV/LNV se	arches	C. Biino 2

$K^{\pm} \rightarrow \pi^{0} \pi^{0} \mu^{\pm} \gamma (K_{\mu 4}^{00})$

Experimental results status

K _{I4} mode	BR [10 ⁻⁵]	Ncand	
K _{e4} ±	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu 4}^{00}$	-		

✓ $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ as normalization channel ✓ $K^{\pm} \rightarrow \pi^0 \pi^0 (\pi^{\pm} \rightarrow \mu^{\pm} \nu)$ largest background ✓ $S_{\ell} = m^2(\mu^{\pm} \nu) > 0.03 \text{ Gev}^2/c^4$

2 437 events observed Background events expected = $374 \pm 0.33_{stat} \pm 62_{syst}$

very preliminary

 \checkmark First Observation of muon mode with $\pi^0\pi^0$

Signal and predicted background events

 $BR(K^{\pm} \rightarrow \pi^{0} \ \pi^{0} \ \mu^{\pm} \ \nu, \ S_{\ell} = m^{2}(\mu^{\pm} \ \nu) > 0.03 \ Gev^{2}/c^{4})$ = (0.65 ± 0.03) x 10⁻⁶

$$BR(K^{\pm} \rightarrow \pi^0 \, \pi^0 \, \mu^{\pm} \, \nu) = (3.4 \, \pm \, 0.2) \times 10^{-6}$$

WIN 2023

✓ Test of ChPT_{st}

NA48/2 result on K_{14}^{00}

C. Biino 22

Kaon at CERN: P

NA62 RUN2

•On-going: data taking foreseen at least until 2025 (included), +45-50% increase of intensity vs RUN1

- •Hardware upgrades implemented mainly to improve on $\pi v \overline{v}$
- •Trigger upgrade to study new channels (e.g. $K^+ \rightarrow \pi^+ e^+ e^-$)
- •Continuing LNV/LFV and dark sector searches with K^+
- •A new measurement of V_{us}/V_{ud}

•Direct searches of new particles below the EW scale Data taking periods in dump mode (Dark sector, Axion/Scalar ($K^+ \rightarrow \pi^+ aa$; $K^+ \rightarrow \pi^+ S$, $S \rightarrow AA$) searches with $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$: UL $\mathcal{O}(10^{-8})$

Summary

Future of physics with kaons at CERN SPS

HIKE project under discussion at CERN: K^+ , K_L , dark sector searches Intensity \times 4-6 with respect to NA62; Detectors with $\mathcal{O}(20 \ ps)$ time resolution; Similar experimental layouts

Physics program

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ approaching SM theory expectation
- $K_L \rightarrow \pi^0 l^+ l^-$ observation and measurement of the BR
- LFUV tests with precision < %
- LFV LNV searches with $\mathcal{O}(10^{-12})$ sensitivity
- Measurement of $V_{\mu s}$ and main kaon decay modes
- Dump physics in synergy with Shadows experiment

 $\mathcal{O}(\%)$ LFUV test x 2 lower UL (10⁻¹¹ sensitivity)

expected on BR($K^+ \rightarrow \pi^+ \nu \nu$)

 $\mathcal{O}(15\%)$ final precision

Letter of Intent: arXiv:2211.16586v1

Thank you for your attention

★ Exotics: Beam Dump Mode and Dark photon searches: A' → $\mu^+\mu^-$

2021 data - arXiv: 2303.08666c

2021 data - preliminary result

arXiv: 2207.02234

Dark sector probe:

 $K^+ \rightarrow \pi^+ aa$ with $a \rightarrow e^+e^-$ QCD axion, e.g. $m_a = 17$ MeV $BR = 1.7 \times 10^{-5}$ $K^+ \rightarrow \pi^+ S$ with $S \rightarrow A'A'$ dark scalar and $A' \rightarrow e^+e^-$ dark photon ($m_S > 2mA'$)

arXiv: 2012.02142

arXiv: 2012.02142

Goal: Search for: 1) SM process ($K_{\pi 4e}$); 2) QCD di-axion; 3) Dark cascade

$K^+_{+} \longrightarrow \pi^+_{+} e^+_{+} e^-_{-} e^+_{+} e^-_{-}$

Analysis: RUN1 Data

Signal ($K_{\pi 4e}$)

5 -track vertex topology Kinematic PID of positive tracks Conditions on $m_{\pi 4e}$, m^2_{miss} (1) m_{4e} outside the π^0 mass region

Signal ($K^+ \rightarrow \pi^+ aa$ "Dark")

Same selection as $K_{\pi 4e}$ 10⁻² Choice of the optimal e^+e^- mass pair Condition on m_{ee}

Normalization: $K^+ \rightarrow \pi^+ \pi^0_{DD}$ (2)

5 -track topology and PID as for $K_{\pi4e}$ Kinematic condition on m_{4e}

new result

 $K_{\pi 4e}$: 0.18±0.06 Dark: 0.0004±0.0004

XX/	INI	20	22
vv	\mathbf{IIN}	$_{20}$	23

$K^+_{+} \longrightarrow \pi^+_{+} e^+_{+} e^-_{-} e^+_{+} e^-_{-}$

new result

Procedure:

 $K_{\pi 4e}$ SM: Acceptance from MC Resonant amplitude negligible for selected events No candidate observed in SR

$K^+ \rightarrow \pi^+ aa$

Uniform phase space Mass scan 5 MeV/c² step

Result

 $BR(K^+ \rightarrow \pi^+ e^+ e^- e^+ e^- < 1.4 \times 10^{-8}$ @90%CL

$K^{\scriptscriptstyle +} \mathrel{\widehat{\rightarrow}} \pi^{\scriptscriptstyle +} \mathsf{S} \mathrel{\widehat{\rightarrow}} \mathsf{A} \mathsf{A}$

Di-axion AA mass scan (mA', m_s) distribution smoothing (low MC statistics)

Exotics: Beam Dump Mode & A' $\rightarrow \mu^+\mu^-$

POT measured by beam secondary emission monitor

C. Biino

30

WIN 2023

Dark photon searches: A' $\rightarrow \mu^+ \mu^-$

Signal shape not taken into account for the significance

Probability to observe 1 or more events in the SR is 1.59%

After signal selection: $N_{bg}^{expected} = 0.016 \pm 0.002$ events

N_{observed} = 1 event

2.4 σ significance (counting experiment)

C. Biino 31

NA62 \Lambda

Dark photon searches

10-5

 10^{-6}

10-7

 10^{1}

NA62 Preliminary

 $M_{A'}$ [MeV/ c^2]

104

Past experiments NA62 $A' \rightarrow \mu\mu$

NA62 $A' \rightarrow ee$

LHCb

10² CHARM NuCAL 10³

E137

NA62 IS AN INTENSITY FRONTIER EXPERIMENT:

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- Ultra rare FCNC: $s \rightarrow d$ transition, hard GIM suppression
- Theoretically clean (negligible hadronic uncertainties)

Previsione teorica*: BR(K⁺ $\rightarrow \pi^+ v \bar{v}$) = 8.4 \pm 1.0 \times 10⁻¹¹

Misura sperimentale:

BR(K⁺
$$\rightarrow \pi^+ \nu \bar{\nu}) = 1.73 \stackrel{^{+1.15}}{_{-1.05}} \times 10^{-10}$$

(E787/949): (7 events)

*[Buras, 1503.02693]

NA62 aims to measure to ~10%

Deviation from SM predictions would signal New Physics!

	20	00
W	20	23
	20	

$K^+_{+} \rightarrow \pi^+_{+} \chi \overline{\chi}$ decay – Signal selection

WIN 2023

$K^+_+ \rightarrow \pi^+_+ \chi \overline{\chi} \operatorname{decay} - \operatorname{Run} 1 \operatorname{data}$

WIN 2023

$K^+ \rightarrow \pi^+ \nu \bar{\nu} decay$

C. Biino 36

$K^+_+ \rightarrow \pi^+_+ \chi \overline{\chi}$ decay – Single Event Sensitivity (SES)

$$N_{\pi\nu\nu}^{exp} \approx N_{\pi\pi} \epsilon_{RV} \epsilon_{trigger} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{Br(\pi\nu\nu)}{Br(\pi\pi)}$$
 \Box S.E.S. = $\frac{Br(\pi\nu\nu)}{N_{\pi\nu\nu}^{exp}}$

- $N_{\pi\nu\nu}^{exp} \implies$ Expected number of $\pi\nu\nu$ events
- $Br(\pi\nu\nu) \implies SM \pi\nu\nu$ branching ratio
- $N_{\pi\pi} \implies K^+ \rightarrow \pi^+ \pi^0$ from control $\pi \nu \nu$ -like selected without γ /multiplicity rejection
- $\epsilon_{\rm RV} \implies \pi \nu \nu$ loss due to γ /multi-track rejection because of random activity
- $\epsilon_{trigger} \implies PNN$ trigger efficiency
- $A_{\pi\nu\nu,\pi\pi}$ \Rightarrow Monte Carlo acceptances for $\pi\nu\nu$ (~3.0%*) and $\pi^+\pi^0$ (~8.5%)
- Br($\pi\pi$) \Rightarrow PDG K⁺ $\rightarrow \pi^{+}\pi^{0}$ branching ratio

Computation in bins of pion momentum and instantaneous beam intensity

(* Vector Form Factors)

$K^+ \rightarrow \pi^+ \chi \overline{\chi}$ decay – Systematic Uncertainties and Error Budget)

	δa_+	δb_+	$\delta \mathcal{B} imes 10^8$	$\delta A_{\rm FB} imes 10^2$
Statistical uncertainty	0.012	0.040	0.06	0.7
Trigger efficiency Reconstruction and particle identification	0.002 0.002	$0.008 \\ 0.007$	$0.02 \\ 0.02$	0.1
Size of the simulated sample Boom and accidental activity simulation	0.002 0.002	0.007 0.002	0.01	0.1
Background	0.001	0.002	0.01	
Total systematic uncertainty	0.003	0.013	0.03	0.2
branching fraction radiative corrections Parameters α_+ and β_+	$\begin{array}{c} 0.001 \\ 0.003 \\ 0.001 \end{array}$	$0.003 \\ 0.009 \\ 0.006$	0.04 0.01	0.2
Total external uncertainty	0.003	0.011	0.04	0.2
Total uncertainty	0.013	0.043	0.08	0.7

$K^+ \rightarrow \pi^+ \gamma \overline{\gamma}$ decay – History and time evolution

JHEP 06 (2021) 93

NA62 🔊

Short term plans – NA62 Run2

Plans for V_{us} / V_{ud} measurements

Measurement to address the Cabibbo angle discrepancy

 $R_{\mathsf{A}}{}^{K\mu 2} = \Gamma(\mathsf{K}_{\mu 2})/\Gamma(\pi_{\mu 2})$

 $R_{\mathsf{A}}^{K\mu3} = \Gamma(\mathsf{K}_{\mu3})/\Gamma(\pi_{\mu3})$

 V_{ud}

Measurement strategy

- Reconstruct decay-in-flight $\pi^+ \rightarrow \mu + \nu$ from $K^+ \rightarrow \pi^+ \pi^0$
- Cancellation of systematic uncertainties (e.g. μ PID)
- Analysis ongoing on RUN1 data
- Expected statistical uncertainty < 1%
- Target systematic uncertainty O(0.1%)
- External uncertainty from the knowledge of $K^+ \rightarrow \pi^+ \pi^0$

Spares - future

NA62 A

NA62 results from Run 1 (2016-2018)

$$N^{exp}_{\pi\nu\nu} = 10.01 \pm 0.42_{syst} \pm 1.19_{ext}$$
$$N^{exp}_{background} = 7.03^{+1.05}_{-0.82}$$
$$SES = (0.839 \pm 0.053_{syst}) \times 10^{-11}$$

JHEP 06 (2021) 093

NA62 👌

BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) = (10.6 ^{+4.0}_{-3.4} |_{stat} ± 0.9_{syst}) x 10⁻¹¹ 3.4 σ significance

WIN 2023

NA48/2 result on $K_{\mu4}^{00}$

C. Biino 43