

Current Results from the NOvA Experiment

Alec Habig, for the NO_vA collaboration WIN2023, Zhuhai, Tuesday, July 4, 2023

The NuMI Off-axis v_e Appearance collaboration is 266 Scientists and Engineers from 49 Institutions

and 8 countries: NOvA @Queen Mary Univ. London, 06/2023

Argonne • Atlantico • Banaras Hindu • Caltech • Cochin Czech IOP • Charles (Prague) • Cincinnati • Colorado State Czech Tech • Delhi • JINR Dubna • Erciyes • Fermilab Goias • Florida State • IIT Guwahati • Harvard • Houston IIT Hyderabad • Hyderabad • IIT • Indiana • Iowa State • Irvine UCL • Jammu • Magdelena • Michigan State • Minn. Duluth Minnesota • Mississippi • Panjab • Pittsburgh • QMUL South Alabama • South Carolina • SMU • Stanford • Sussex Syracuse • UT Austin • Tufts • Virginia • Wichita State William & Mary • Wisconsin

... but propagate as mass states

- Same energy, different mass: so wave packets have different wavelengths, slide in and out of phase
 - When you add them back up later, they might not interact as the flavor they started
- The PMNS matrix describes this:

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

$$U_{e3} \equiv \sin \theta_{13} e^{-i\delta} \sin^2 (2\theta_{23}) \equiv 4 |U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2)$$

Amplitude proportional to flavor

(Exaggerated v_2 wavelength 5% larger than v_1)

Useful Approximations:

 v_{μ} Disappearance (2 flavors):

$$\mathsf{P}(v_{\mu} \rightarrow v_{x}) = \frac{\sin^{2}2\theta_{23}}{\sin^{2}(1.27\Delta m_{32}^{2}\text{L/E})}$$

 v_2

 ν_{e} Appearance:

 $\mathsf{P}(v_{\mu} \rightarrow v_{e}) \approx \frac{\sin^{2}\theta_{23}}{\sin^{2}2\theta_{13}} \sin^{2}(1.27 \Delta m_{31}^{2} \text{L/E})$

Where L, E are experimentally optimized and θ_{23} , θ_{13} , Δm_{32}^2 are to be determined

Mass Ordering

• Unlike quarks and the other leptons, we do not even know which ν is more massive than the next since most info in that matrix goes as Δm^2

v_e appearance

- Reactor experiments directly measure θ_{13} by observing v_{e} disappearance
- How about starting off with no v_e and seeing if any pop up after some L/E?
- Back to the oscillation approximations we use for v_{μ} disappearance:
 - While experimentally θ_{23} is close to $\pi/4$, if it's not exactly $\pi/4$ we can't tell if it's > or <

Useful Approximations:

 v_{μ} Disappearance (2 flavors):

 $\mathsf{P}(v_{\mu} \rightarrow v_{x}) = \frac{\sin^{2}2\theta_{23}}{\sin^{2}(1.27\Delta m_{32}^{2}\text{L/E})}$

 v_{e} Appearance:

 $\mathsf{P}(v_{\mu} \rightarrow v_{e}) \approx \frac{\sin^{2}\theta_{23}}{\sin^{2}2\theta_{13}} \sin^{2}(1.27\Delta m_{31}^{2}\text{L/E})$

Where L, E are experimentally optimized and $\theta_{23}, \theta_{13}, \Delta m_{32}^2$ are to be determined

— … and that "≈" wipes away a lot more terms which result from multiplying out the mixing matrix properly

v_e appearance

$$P(\overleftarrow{\nu_{\mu}} \rightarrow \overleftarrow{\nu_{e}}) \approx \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}}$$

$$(\stackrel{+}{-}) 2\alpha \sin\theta_{13} \sin\delta_{CP} \sin2\theta_{12} \sin2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin\Delta$$

$$+ 2\alpha \sin\theta_{13} \cos\delta_{CP} \sin2\theta_{12} \sin2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos\Delta$$

$$\alpha = \Delta m_{21}^{2}/\Delta m_{31}^{2} \qquad \Delta = \Delta m_{31}^{2}L/(4E) \qquad A = \stackrel{(-)}{+} G_{fn} L/(\sqrt{2}\Delta)$$

• Note there are θ_{23} terms that are not squared, introducing sensitivity to $\theta_{23} > \pi/4$ or $<\pi/4$

Thanks to Greg Pawloski for typesetting this beast!

- CP-violating δ is present
- Matter effects are in there (30% for NOvA), differ in sign for v and anti-v, so a comparison could allow sorting out the mass ordering
- But if θ_{13} is near zero, we learn nothing (all terms \rightarrow 0)

So What Might We Learn?

T2K

- Does the v_3 mass state have a v_e component? Daya Bay, NOvA,
 - Is $\theta_{13} \neq 0$? YES! (without which nothing else works)
- Is there CP violation in the lepton sector?
 - Is δ_{CP} ≠0?
- Is the v₃ mass state more massive than v₁ and v₂ (*normal ordering*) or less massive (*inverted* ordering)?
 - Absolute mass values need β and $\beta\beta$ decay experiments to nail down
- Does the ν_3 mass state have a larger ν_μ or ν_τ component?

– Is θ₂₃ ≠π/4?

In my biased opinion, that's 1.5 of the remaining fundamental 2 things we don't yet know about the standard model

A narrow-band, long- UMD baseline v_{μ} beam DULUTH

• 810 km away, 14 mrad (0.84°) off-axis, the beam spectra is narrow and at a good L/E for oscillation physics: max v_{μ} disappearance

- Two detectors: measure v before and after the trip
 - v are from the NuMI beam at Fermilab
 - 120GeV p⁺ make a π beam
 - v born headed in right direction, from π decay in flight

NuMI Beam

- Peaked sharply at 2 GeV, content well understood, also does $\overline{\nu}$
 - Operates routinely at around 800 kW (record of 960MW!)
 - Total of exposure of 41×10^{20} pot (28.5 v, 12.5 \overline{v})
 - 13.6 v, 12.5 \overline{v} analyzed and described in this talk (2022 analysis)

Carbon Target 1st of 2 focusing horns

Two Detectors

- Near Detector 100m underground near beam source
 - Establishes pre-oscillation E expectations for Far Detector
- Both same "highly active" construction: scintillator is 60% of mass

Two Detectors

 Detectors as similar as possible (aside from size) to minimize systematics when using large ND flux to determine the un-oscillated FD spectrum

Cells

- NOvA composed of highly reflective (15% TiO₂) extruded PVC cells filled with liquid scintillator.
 - Alternating horizontal and vertical layers provide stereo views.

DULUTH

To 1 APD pixel

typical

path

- A loop of wavelength shifting fiber in each cell pipes the scintillation light out to the readout.
- >20 photoelectrons for a muon crossing the far end (15.6m) of a cell
- How to get that much signal out?
 - Good scintillant, clear oil, looped fiber, reflective cells
- 344,000 channels: 32-pixel Avalanche Photo Diodes (APDs)
 - QE of 85%, gain of 100
 - Require low-noise amps and -15°C

A 5ms block of Far Detector data

Just the 500µs around UMD a NuMI beam spill

Sliced to the 10µs beam spill window

Zoomed in spatially

Candidate v_e event

UMD Duluth

See the beam UND interactions by timing

Multiple v interactions UMD per spill at ND DULUTH

Zoom in on 10µs Beam Spill

DULUTH

Slice by hit times

Show only one interaction

Track individual particles

How can we tell v flavors?

• Fine granularity, radiation length is 38cm (6 cells deep, 10 cells wide)

What's the measurement?

- NOvA measures $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ at fixed 2 GeV energy and fixed 810km baseline
 - These depend differently on the octant of $\theta_{23},$ the sign of $\Delta m^2,$ and the size of δ_{CP}
- Take data in a neutrino beam and in an antineutrino beam, measure the two oscillation probabilities, compare them:
 - And see what oscillation parameters the measured value best matches

- Extrapolate the high-statistics spectra observed at the Near Detector to see what you expect at the Far Detector
 - Including the "not ν_{μ} CC interactions" BG
 - Estimate remaining cosmic BG from data adjacent to beam spill
 - Fit for both $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$
 - Most recently described in detail in PRD 106, 032004 (2022)

 v_{μ} Disappearance

- Near first disappearance maximum, so most v_{μ} gone
- What's left matches the shape well with little background for both beams
 - Fit done in four energy resolution quartiles for maximum sensitivity

	Total observed	Best fit total	Signal	BG
ν_{μ}	211	222.3	214±14	8.2±1.9
anti- v_{μ}	105	105.4	103±7	2.1±0.7

See PRD 106, 032004 (2022) Tab.III for details

 v_e appearance

UMD Duluth

- Select ν_{μ} and ν_{e} data at both ND and FD
 - Break down ND v_e selected events into background types (*no* oscillations at ND, so it's all BG!) and extrapolate them separately to FD
 - Take observed ND v_{μ} spectra, oscillate it and see which v_{e} oscillation scenario best matches what's observed at the FD (broken up into resolution bins)
- Fit uses particle ID purity bins

	Total observed	Best fit total	Signal	BG
v _e	82	85.8	59±2.5	8.2±1.9
anti- v_e	33	33.2	19.2±0.7	14.0±1.0

See PRD 106, 032004 (2022) Tab.III for details

 v_{μ} systematics

UMD Duluth

- Systematics assessed by generating shifted sets of simulated data.
 - Can get slight improvements by extrapolating to FD in p_T bins.
 - Still statistics dominated

Uncertainty in $\sin^2\theta_{23}$

NOvA Preliminary

- v_e and anti-v_e are appearing at the same rate to 25% precision
 - Plot appearance asymmetry vs energy
 - Disfavors mass ordering/δ_{CP} combinations with large asymmetry

- Three-flavor frequentist approach plots of mixing amplitude vs δ_{CP} for both mass orderings
 - Best fit is NO
 - $\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} eV^2$
 - sin²20=0.57^{+0.04}-0.03
 - δ**=0.82**π
 - On the face of it opposite of 0.6
 T2K: but there's a lot of common parameter space 2 0.5
 - NOvA & T2K are working on[∞]
 a joint analysis

Sterile v?

- Instead of extrapolating ND predictions to FD, fit both detectors simultaneously allowing for a 4 $^{\rm th}$ ν
 - Shape from oscillations in both detectors plus NC normalization
 - as in PRL 127 20, 201801 (2021)
 - Covariance Matrix Fit to 3+1 sterile v model, dedicated systematics treatment ("PISCES")

Data vs. 3-flavor fit

Data with best v_s fit

 v_s exclusion plot

- No evidence for that sterile signal in the data
 - Doesn't fit much better than the 3-flavor version
- Limits calculated, leading in $sin^2\theta_{34}$, competitive at high Δm^2_{41} around 10 eV²

10² NOVA 90% CL allowed IceCube Preliminary 10 Δm^2_{41} (eV²) 90% CL excluded NOvA **MINOS** CDHS CCFR 10^{-2} T2K (NH) T2K (IH) SciBooNE & MiniBooNE Super-Kamiokande 10^{-3} 10⁻³ 10^{-4} 10^{-2} 10^{-1} 1 $\sin^2 \theta_{24}$

 10^{2} **Systematics** limited at high 10 Δm_{41}^2 (high stats in ND), Δm^{2}_{41} (eV²) but FD at smaller Δm^2_{41} still stats 90% CL excluded limited ΝΟνΑ 10 Super-Kamiokande IceCube-DeepCore MINOS+ T2K 10^{-3}

Other Physics

- Use the high-statistics ND data set to study v interactions:
 - v_µ CC π⁰ production <u>*Phys.Rev.D* 107 (2023) 11, 112008</u>
 - v_e CC cross section <u>Phys.Rev.Lett.</u> 130 (2023) 5, 051802
 - v_µ CC cross section <u>Phys.Rev.D 107 (2023) 5, 052011</u>
 - Tuning v interaction models and evaluating uncertainties *Eur.Phys.J.C* 80 (2020) 12, 1119
- See Yiwen Xiao's talk #51 Wed@16:00 on $v \rightarrow e$ scattering
- v NC π⁰ production <u>Phys.Rev.D 102 (2020) 1, 012004</u>
- Cosmic ray production
 - multi-μ seasonal variations: in FD <u>Phys.Rev.D 104 (2021) 1, 012014</u> and ND: <u>Phys.Rev.D 99 (2019) 12, 122004</u>
- Astrophysical:
 - Sensitive to v from supernovae: <u>JCAP 10 (2020) 014</u>
 - Don't see v from GWs: <u>Phys.Rev.D</u> 104 (2021) 6, 063024 and <u>Phys.Rev.D</u> 101 (2020) 11, 112006
- Sensitive to magnetic monopoles, DM made in NuMI target, anomalous ν MM
 - Slow Monopoles: <u>Phys.Rev.D 103 (2021) 1, 012007</u>
 - Rest in progress…

- In addition to more exposure:
 - Test beam experiment recorded known particles of known energies in a mini-NOvA, ongoing analysis is directly addressing some of the largest systematic errors
- Old data will be reprocessed using improved reconstruction, improved v interaction models, improved detector simulations
- NOvA/T2K continue to work on joint analysis
- Shooting for summer of 2024 for next results

Thank you!

- Thank you to SYSU and the conference organizers for this opportunity to share the NOvA results
- The speaker is supported by NSF RUI award #1607381

Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by the U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA UK, Czech Republic; the RAS, RFBR, RMES, RSF, and BASIS Foundation, Russia; CNPq and FAPEG, Brazil; STFC, UKRI, and the Royal Society, United Kingdom; and the State and University of Minnesota. We are grateful for the contributions of the staffs of the University of Minnesota at the Ash River Laboratory and of Fermilab.