Neutrino Oscillation Measurements with **DUNE**

Wenjie Wu, on behalf of the DUNE Collaboration

University of California, Irvine

WIN 2023, Zhuhai, China July 4, 2023

DEEP UNDERGROUND NEUTRINO EXPERI

Neutrino Oscillations

Standard model has been highly successful, but we know it's not complete

The basic building blocks are the six leptons, six quarks, four force carriers, and the Higgs boson. Credit: Fermilab

The allowed ranges of neutrino oscillation parameters have been narrowed through tremendous efforts

Neutrino Oscillations

- Many questions remain unanswered
 - What are the masses of the neutrinos?
 - What kind of masses do neutrinos have? Are neutrinos their own antiparticles?
 - Are there more than 3 kinds of neutrinos?
 - Do neutrinos follow a "normal ordering" or an "inverted ordering"?
 - Do neutrino oscillations violate chargeparity symmetry?

.

Credit: JUNO Collaboration / JGU-Mainz

Credit: Sheldon Stone

Deep Underground Neutrino Experiment

Long-baseline Oscillation Experiment

- Oscillation parameters are inferred from observed event ($N_{\nu}^{
 m obs}$)
- Powerful neutrino beam gives high statistics (Φ)
- Highly-capable near detector to constrain neutrino flux and cross-section uncertainties (σ)
- High-resolution detectors reduce ambiguities due to detector response effects

1.2 MW proton beam, upgradeable to 2.4 MW

* On axis, wide band beam

- * Dedicated near detector complex

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

- Large matter effect from the long baseline (1300 km)
 - Mass ordering and CP violation are totally non-degenerate.
 - **DUNE measures oscillations over** more than a full period, which helps resolve degeneracies.
- This is unique to DUNE, and complementary to other experiments with narrow flux spectra.

Four 17 ktons Liquid Argon Time Projection Chamber far detectors, 1490 m underground

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

- Four detectors
 - Each of them have a different design
- Phase I
 - First two detectors will start operation around 2028
 - Both of them are liquid argon TPCs
 - FD1 Horizontal Drift LArTPC
 - FD2 Vertical Drift LArTPC
- Other two detectors are to be determined for Phase II

Liquid Argon TPC

- - Clean separation of ν_{μ} and ν_{e} CC events
- range, benefits from its low thresholds for charged particles

LArTPC provides precise 3D spatial location of energy deposition for particle ID

LArTPC also provides good neutrino energy reconstruction over a broad energy

Event Selection

- neural network, named convolutional visual network (CVN)

Neutrino Oscillation Measurements with DUNE Wenjie Wu I

• Event classification is carried out through image recognition techniques using a convolutional

Build upon the three readout views of the LArTPC, using the reconstructed hits on individual planes

Event Selection

- CC in FHC, $\bar{\nu}_e$ CC and $\bar{\nu}_\mu$ CC in RHC

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

• The primary goal of the CVN is to efficiently and accurately produce event selection of ν_e CC and ν_μ

• The ν_e and ν_μ efficiencies in both FHC and RHC beam modes all exceed 90% in the neutrino flux peak

Energy resolution

$$E_{\nu} = E_{\rm lep}^{\rm cor} + E_{\rm had}^{\rm cor}$$

- ν_e CC energy: sum of the energy of the reconstructed EM shower with the highest energy and the hadronic energy
- ν_{μ} CC energy: sum of the energy of the longest reconstructed track and the hadronic energy
- 15-20% energy resolution in the range of 0.5-4 GeV that is the most relevant for oscillation measurements

FD Data Samples

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

 Oscillation sensitivities are obtained by simultaneously fitting the disappearance and appearance spectra

$$\begin{array}{ccc} \nu_{\mu} \rightarrow \nu_{\mu}, \nu_{\mu} \rightarrow \nu_{e}, \\ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \end{array}$$

- ND sample is incorporated in order to constrain flux and xsec uncertainties

Eur. Phys. J. C 80, 978 (2020)

Neutrino Interactions

- Interactions at the ~GeV scale remain an active area of study.
 - Several types of interactions can occur.
 - All of which take place in a complex nuclear environment that impacts both initial conditions and what is observed in the final state.

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

DUNE Near Detector Complex

- Large uncertainties on flux, cross sections, and detector response are constrained to the few percent level by the suite of detectors in ND
- ND-LAr+TMS: measure neutrino interactions on the same Ar target, with same detector technology as FD
 - System moves up to 30 m off axis
- SAND: on-axis detector measures neutrino interactions on various targets and monitors beam stability

DUNE-PRISM

- PRISM: Precision Reaction-Independent Spectrum Measurement
- Use off-axis data to uncover interaction modeling problems that might induce an unexpected bias in the extracted oscillation parameters
- GENIE-based FD prediction is a poor predictor for the FD data, where as the linear combination of ND data correctly predicts the FD spectrum

UCIRVINE DUNE

Mass Ordering: Definitive Resolution

- Long term $\rightarrow >10\sigma$ for any parameter combination

DUNE is sensitive to the mass ordering from very low exposures: ~97% correct after ~1-2 years

CP Violation: δ resolution 6-16°

- Phase II: > 5 σ discovery potential for > 50% of δ_{CP} values
- violation over a broad range of possible values

• 6-16° resolution to δ_{CP} without dependence on other experiments, discovery sensitivity to CP

Precision Measurements

- Excellent on Δm_{32}^2 and θ_{23} , including octant discovery potential
- Ultimate reach does not depend on external θ_{13} measurements, and comparison with reactor directly tests PMNS unitarity

Eur. Phys. J. C 80, 978 (2020)

Summary

- DUNE will resolve the neutrino mass ordering, and measure δ_{CP} with CP violation sensitivity over a broad range of parameter space.
- DUNE will precisely measure θ_{13} , θ_{23} , and Δm_{32}^2 , and 3-flavor oscillations to test the 3-flavor paradigm.
- DUNE has unique sensitivity to MeV-scale neutrinos and a rich BSM program (not covered in this talk, <u>Highlight talk of DUNE by Xin Qian on July 7</u>).
- We are on track to deliver Phase-I and paving the way for Phase-II.

Stay tuned !

Backup Materials

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \simeq \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}}\Delta_{31}^{2}$$

+ $\sin 2\theta_{23}\sin 2\theta_{13}\sin 2\theta_{12}\frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)}\Delta_{31}$
× $\frac{\sin(aL)}{(aL)}\Delta_{21}\cos(\Delta_{31} \pm \delta_{CP})$
+ $\cos^{2}\theta_{23}\sin^{2}2\theta_{12}\frac{\sin^{2}(aL)}{(aL)^{2}}\Delta_{21}^{2}$
 $a = \pm \frac{G_{F}N_{e}}{\sqrt{2}} \approx \pm \frac{1}{3500 \text{ km}}\left(\frac{\rho}{3.0 \text{ g/cm}^{3}}\right)$

Liquid Argon TPC

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

- Charged particles ionize argon atoms
- Ionized electrons drift horizontally opposite to the E field in the LAr and are collected on the anode wire planes ($\sim ms$) $\rightarrow 2D$ spatial location
- Electron drift time projection \rightarrow enable 3D spatial location
- Argon scintillation light (~ ns) detected by photon detectors, providing event start time t_0
- Key factors: LAr purity and noise on the readout electronics

Energy resolution

Wenjie Wu I Neutrino Oscillation Measurements with DUNE

ν_{μ} CC with exiting tracks

DUNE Plans and Installation

this decade

Parameter	Phase I		Phase II			Impact	
FD mass	20 kt fiducial		40 kt fiducial			FD	statistics
Beam power	up to 1.2 I	ММ		2.4 MW		FD	statistics
ND config	ND-LAr TMS,	SAND	ND-LAr,	ND-GAr,	SAND	Syst.	constraints

- Far and near detector prototyping and validation underway
 - ProtoDUNEs successfully operated at CERN, and are preparing for the phase 2 running
 - ND prototype tested at BERN with cosmic rays and being tested at Fermilab with neutrino beam
- Far site civil construction to be complete in 2024 with far detector installation starting right after
- Near site and beamline are fully designed, and in construction in parallel with far site activities

• DUNE construction is phased to provide continuous progress towards physics goals beginning

Snowmass: "DUNE Physics Summary", arXiv:2203.06100

