Recent di-boson and tri-boson measurements at CMS

Zhe Guan (关喆) on behalf of CMS Collaboration 2023 July

Hot off the news!

MDi/Tri boson measurement status at CMS

Measurement of ZZ production

• Differential cross-section measurement

Measurement of WWγ production

- WWγ signal significance
- WWγ inclusive cross section
- Ηγ cross section upper limits and the interpreted Yukawa couplings results

Facebook

CMS news

CMS news

PAS is public!!!

ELEMENTARY PARTICLE INTERACTIONS WITH ZZ+JETS

MS Experiment at CERN 🕏 5月22日 · ③

CMS reports the first observation of the simultaneous production of two W bosons and a photon! S What a way to celebrate the 40th anniversary of the W boson discovery.

Read more here → https://cms.cern/news/new-tri-boson-process-discovery

CERN #CERN #CMSExperiment #physics

Why study Di/Tri-boson processes?

Stringent test of the standard model (SM)

Precise measurement for SM test

help to constrain SM contribution (background) in searches of many new physics models and Higgs analysis.

Search for new physics at the TeV scale.

Platform to measure the anomalous coupling

Platform to search the Higgs to light quark Yukawa couplings

Di-boson cross section measurements at several center of mass energies

Many multi-boson processes are currently accessible only at the CERN LHC given the energies and integrated luminosities required to observe them.

Di/Tri-boson overview at CMS

Overview of CMS cross section results

Span several orders of magnitude!

[1] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

Recent Di-boson/Tri-boson Measurement at CMS

Hot off the news!

At CMS, recent public analyses:

SMP-22-001: Measurement of the ZZ(4ℓ)+jets production Public on LHCP!!! SMP-22-006: Measurement of the WWγ production Public on Moriond QCD!!!

Measurement of ZZ production Introduction

Channel: 4 lepton final state (ZZ->4²) Loop effects: up to 10% contribution

- First differential cross sections measured as a function of:
- of number of jets and properties of the jets \boxed{M}_{4l} as a function of different jet multiplicities \boxed{M}_{4l} invariant mass of the highest p_T jet and the second
- highest p_T jet
- \mathbf{M} Δη of the highest p_T and the second highest p_T jets

New results compared with the state-of-the-art nextto-next- to-leading order (NNLO) and parton shower (PS) predictions using MiNNLOPS

Shape of distributions described well by predictions \rightarrow normalization is not

Predictions over-estimate data \rightarrow largest discrepancy for highest p_T jet with p_T < 100 GeV

O Large uncertainty from MC modeling like QCD scale

Differential cross sections of ZZ production

- **M**Differential cross sections normalized to the fiducial cross sections
- \bigcirc On-shell Z-boson requirement applied (60 < m_{Z1,Z2} < 120)

WWy production introduction

Experiment		CMS		ATLAS		
Triboson with γ	Final states	Journal	Lumi fb⁻¹ /√s TeV	Journal	Lumi fb⁻¹/ √s TeV	
WVγ	ℓvjjγ	<u>PRD 90 (2014)</u> <u>032008</u>	19.3/ 8	<u>EPJC 77, 646 (2017)</u>	20.2/ 8	
WWγ	eμννγ	<u>SMP-22-006</u>	138/ 13	_	20.2/ 8	

CMS:

- Cross section limit of WVγ (ℓvjjγ)
- Limits on dim-8 and dim-6 operators

ATLAS:

- Cross section limit of WWy ($e\mu\nu\nu\gamma$) and WVy ($\ell\nu jj\gamma$)
 - $\sigma_{\text{fid}}^{e\nu\mu\nu\gamma} = 1.5 \pm 0.9(\text{stat.}) \pm 0.5(\text{syst.}) \,\text{fb} \,(\text{N}_{\text{jets}}=0)$
 - Observed (expected) 1.4 σ (1.6 σ)
- Limits on dim-8 operators

Full Run2 13 TeV data $e^{\pm}\nu_{e}\mu^{\mp}\nu_{\mu}\gamma$ final states:

- Easy to generate the signal sample
- Clean signal signature
- Fewer kinds of backgrounds

Signal production

Final state	Generator (MadGraph_aMC@NLO)	Lepton identification	Photon identification	Jet identification	MET
$e\mu\gamma E_{T}^{miss}$	process: pp > e $v_e \mu v_\mu \gamma$ [QCD] $p_T^{\gamma} > 10 \text{ GeV}$	MVA e ID(≈80%)	- 909/	anti-k⊤ AK4CHS 98%-99%	PF
		MVA μ ID (≥90%)	≈00%		

- Signal is produced by MadGraph at NLO in QCD accuracy showering by Pythia8 with NNLO PDF
 - ✓ FSR (final state radiation) photons are included
 - No EW or much higher QCD corrections
- MVA-based identifications are used for physics object reconstruction
 - Improve efficiency and sensitivity

WWy production backgrounds

- Other backgrounds with ignorable contributions are $W\gamma$ +jets, tZq, etc
- All background simulation samples are generated at NLO (NNLO normalization factor considered if it exists)

Theoretical uncertainty

- Factorization and renormalization
- Parton shower
- PDF

Experimental uncertainty

Simulation and data-driven statistics

1. Correction and measurement

- Luminosity, pileup, L1prefiring
- Energy corrections for jet and MET
- Efficiencies
- 2. Background modelling
 - Nonprompt ℓ/γ uncertainty

Correlated between years, categories, and regions

 Apply for processes of the signal, relevant top, and Vγ productions

Dominant in total syst. uncertainties (0.21) Around 13% impact on the cross section

- Correlated between different categories and regions but correlated or uncorrelated between years.
- Apply for all simulation processes
- Correlated between different categories and regions but uncorrelated between years
- Apply for corresponding datadriven process

Observed (Expected) significance is 5.6 (4.7) s.d.

The **first observation** of WWγ process

Fiducial region definition

- A. $p_T^{e/\mu}$ > 25 (20) GeV, $|\eta| < 2.4$ (2.5)
- B. $m_{\ell\ell}$ > 10 GeV and $p_T^{\ell\ell}$ > 15 GeV
- C. p_T^{γ} > 20 GeV in the barrel or endcap
- D. $\Delta R(\gamma/\ell, \ell) > 0.5$

- Cross section is measured in the fiducial region
- Theoretical cross section from MadGraph at NLO QCD accuracy is: $\sigma_{\rm th} = 4.61 \pm 0.34$ (scale) ± 0.05 (PDF) fb

Within uncertainties, measurements **agree with the SM** predictions

- Measured results are:
 - $\mu_{\text{comb}} = 1.31 \pm 0.17 \,(\text{stat}) \pm 0.16 \,(\text{syst}) \pm 0.13 \,(\text{theo})$
 - $\sigma_{\text{fid}} = 6.0 \pm 0.8 \,(\text{stat}) \pm 0.7 \,(\text{syst}) \pm 0.6 \,(\text{theo}) \,\text{fb}$
- Main uncertainties due to parton shower modelling calculations

For q = u, d, s

1. MadGraph

- Model "Higgs effective Lagrangian"
 - Current-quark masses in \overline{MS} scheme from <u>PDG</u> are used
- Process: $q\bar{q} \rightarrow H\gamma$
- 2. JHU generator

•
$$\mathrm{H} \to \mathrm{W}^+\mathrm{W}^- \to e^{\pm}\mu^{\mp}\nu_e\bar{\nu}_{\mu}$$

For q = c

- 1. MadGraph
 - Model: *loop_sm* UFO modified to have *ymc* in MS scheme
 - Closely following theory studies for bbH (<u>1409.5301</u>)

At NLO and

considering the quark

mass running effect

- Process: $q\bar{q} \rightarrow H\gamma$ [QCD]
- 2. JHU generator

 $\mathbf{H} \to \mathbf{W}^+ \mathbf{W}^- \to e^{\pm} \mu^{\mp} \nu_e \bar{\nu}_{\mu}$

- Main background from gluon-initiated Hγ doesn't exist due to Furry's theorem [1]
- Backgrounds in Hγ are sum of signal and backgrounds in the WWγ measurement
 - ggH, bbH are checked and can be neglected

- $\bar{\nu}_l$ $\bar{\nu}_l$ $\bar{\nu}_l$ $\bar{\nu}_l$ $\bar{\nu}_l$ l^+
- In the Higgs boson rest frame, the Higgs (spin 0) to two opposite-sign W bosons, traveling in opposite direction and with opposite relative spin orientation
 The weak decay of the oppositely charged W bosons with opposite spin orientation results in two leptons that tend to travel in the same direction

- Maximum likelihood function for signal extraction
 - WWy normalization is float
 - Fit for $u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c} \rightarrow H\gamma$ separately
- Simultaneous fit of all regions (H γ SR, WW γ CR, Top γ CR, and SSWW γ CR)
 - Hy SR: 2D binning, [10, 40, 70, 110, $\infty)$ in $m_T{}^{WW}$ and [0.5,1.0,1.5, $\infty)$ in
 - WWy CR 1D binning, [10, 40, 70, 110, ∞) in m_T^{WW}
- [1] https://cds.cern.ch/record/1261372/files/CERN-THESIS-2010-061.pdf

Cross section limits

Process	$\sigma_{\rm up}$ pb exp.(obs.)
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)
${ m s} \overline{ m s} ightarrow { m H} + \gamma ightarrow { m e} \mu \gamma$	0.049 (0.068)
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)

Flat direction: assuming all other SM κ scale as $\kappa_{\rm H}$, which is constrained as a function of $\kappa_{\rm q}$ to give a signal strength of 1 for all other Higgs production decay processes [1]

•
$$\kappa_{\rm H}^2 \approx \frac{1 - Br_{q\bar{q}}^{\rm SM}}{2} + \frac{\sqrt{(1 - Br_{q\bar{q}}^{\rm SM})^2 + 4Br_{q\bar{q}}^{\rm SM}\kappa_q^2}}{2}}{2}$$

• Hy rate can be scaled with $\kappa_q^2 \times \frac{\kappa_{\rm H}^2}{(1 - Br_{q\bar{q}}^{\rm SM})\kappa_{\rm H}^2 + Br_{q\bar{q}}^{\rm SM}\kappa_q^2}}{(1 - Br_{q\bar{q}}^{\rm SM})\kappa_{\rm H}^2 + Br_{q\bar{q}}^{\rm SM}\kappa_q^2}}$
• $\kappa_{\rm H} = 13000 (16000)$
• $|\kappa_{\rm H}| \leq 13000 (17000)$
• $|\kappa_{\rm S}| \leq 1300 (1700)$
• $|\kappa_{\rm S}| \leq 1300 (1700)$
• $|\kappa_{\rm S}| \leq 1300 (1700)$
• $|\kappa_{\rm S}| \leq 1300 (1700)$

[1] https://journals.aps.org/prd/pdf/10.1103/PhysRevD.100.073013

Summary

- Differential Cross-section from ZZ production (to be submitted to JHEP)
- Observation of WWγ production (to be submitted to PRL)
 - Significance and Inclusive cross section in $e^{\pm}\nu_{e}\mu^{\mp}\nu_{\mu}\gamma$ final states
 - The cross section upper limits for Hγ production, and Yukawa coupling of κ_c , κ_s , κ_u , and κ_d interpreted results
- In 1983, We found the W/Z boson at CERN. Now, Run-3 Ongoing:

More surprise expected!

LHC Run 3 schedule

- Will take data until at least ~ end of 2024 (may be extended by 1 year)
- Will run p-p collisions at 13.6 TeV
- Total integrated luminosity ~ 160-200 fb⁻¹ (compared to ~ 140 fb⁻¹ in Run 2)

Backup

Triboson overview

CMS Triboson Cross Section [1]

ATLAS Triboson Cross Section [2]

[1] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

[2] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/

Published/Approval results

Triboson Fina		CMS		ATLAS		
with y	states	Journal	Lumi fb ⁻¹ /√s TeV	Journal	Lumi fb ⁻¹ / √s TeV	
γγγ	үүү		_	<u>PLB 781 (2018) 55</u>	20.2/ 8	
Ζγγ	llyy	<u>JHEP 10 (2017) 072</u>	19.4/ 8	PRD 93, 112002 (2016)	20.3/ 8	
Wγγ	ℓvγγ	<u>JHEP 10 (2017) 072</u>	19.4/ 8	<u>PRL 115, 031802 (2015)</u>	20.3/ 8	
WVγ	ℓvjjγ	PRD 90 (2014) 032008	19.3/ 8	<u>EPJC 77, 646 (2017)</u>	20.2/ 8	
	fvnn	.IHEP 10 (2021) 174		Ζγγ: <u>2211.14171</u>		
Vγγ	ℓνγγ ℓℓγγ	<u>JHEP 10 (2021) 174</u> SMP-19-013	137/ 13	Zγγ: <u>2211.14171</u> Wγγ: <u>ATLAS-</u> <u>CONF-2023-005</u> New!	139/ 13	
Vγγ VVV	ℓνγγ ℓℓγγ multi- ℓ+jets	<u>JHEP 10 (2021) 174</u> SMP-19-013 <u>PRL 125 151802</u> SMP-19-014	137/ 13 137/ 13	Ζγγ: 2211.14171 Wγγ: ATLAS- CONF-2023-005 PRL 129 061803 (WWW production)	139/ 13 139/ 13	
Vyy VVV WWy	ℓνγγ ℓℓγγ multi- ℓ+jets eµvvγ	<u>JHEP 10 (2021) 174</u> SMP-19-013 PRL 125 151802 SMP-19-014 <u>SMP-22-006</u> New! (Target PRL)	137/ 13 137/ 13 138/ 13	Zyy: 2211.14171 Wyy: ATLAS- CONF-2023-005 PRL 129 061803 (WWW production) EPJC 77, 646 (2017)	139/ 13 139/ 13 20.2/ 8	

Uncertainties

Systematic source	$m_{4\ell}$ with all jets	0 jet	1 jet	2 jets	3 and more jets
Trigger	-	-	-	-	-
Electron Efficiency	0.42 %	0.38 %	0.66 %	0.36 %	0.26 %
Muon Efficiency	0.05 %	0.06 %	0.07 %	0.09 %	0.08 %
Jet energy resolution	0.0	0.07 %	1.72 %	1.65 %	0.8 %
JES correction	0.0	0.17 %	1.77 %	1.95 %	0.97 %
Reducible background	0.18 %	0.18 %	0.32 %	0.33 %	0.96 %
Pileup	0.02 %	0.05 %	0.11 %	0.13 %	0.35 %
Luminosity	0.01 %	0.01 %	0.02 %	0.02 %	0.05 %
Monte Carlo choice	0.35 %	0.65 %	0.94 %	0.48 %	0.35 %
gg cross section	0.02 %	Ù.U3 %	0.09 %	0.06 %	0.09 %
QCD Scales	0.15 %	0.16 %	0.58 %	0.54 %	0.62 %
PDF	0.05 %	0.05 %	0.15 %	0.15 %	0.21 %
α_S	0.02 %	0.01 %	0.05 %	0.03 %	0.02 %