

W mass measurement at LHCb

Menglin Xu on behalf of the LHCb collaboration WIN 2023, 07/07

Motivation

• m_W is directly related to electroweak symmetry breaking in the SM

1

$$n_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F (1 - m_W^2 / m_Z^2)(1 - \Delta r)}$$

 Δr : loop corrections

• Sensitivity to BSM physics is primarily limited by precision of direct measurements of m_W

LHCb forward region

- Low pile-up environment
- Forward region, $2 < \eta < 5$: high/low-*x* partons involved

Phys. Rev. D 93, 074008 (2016)

Signal event signature

- **Identified muon** candidate matched to single muon trigger path
- Hadronic background suppressed to the percent level by an isolation requirement
- Second-muon ($p_T > 20$ GeV and 2.2 < $\eta < 4.4$) veto suppressed $Z \rightarrow \mu\mu$ background

Fitting the muon q/p_{T} distribution

• Measurements based on muon $p_{\rm T}$

4

 $ext{fit region} \ \Rightarrow \ \eta \in [2.2, \ 4.4], \ p_T^\mu \in [28, \ 52] \, ext{GeV}$

2023-07-07

Detector and physics modelling

- Detector response
 - Muon momentum, reconstruction and selection efficiency
 - □ Correct the simulation efficiencies of the different selection steps
- *W* boson production
 - Modelling of the $W p_T$ distribution, boson polarisation and electroweak corrections
 - Use plain LHCb Pythia8 simulation
 - A variety of models are used to fully reweight the events to/beyond next-to-leadingorder accuracy

Curvature biases

- m_{W} determination is highly sensitive to misalignments and miscalibrations of the detector Misalignment of 10µm translates into a O (50MeV) shift 0
- Re-run the alignment and calibration offline using Z events
- Corrected for charge-dependent curvature biases using the pseudomass method

EPJC 81 (2021) 3, 251

MC Smearing

- Smearing of the muon momentum in simulation to account for
 - momentum scale
 - multiple scattering
- **Simultaneous fit** of *Z*, $\Upsilon(1S)$ and J/Ψ
- Systematic uncertainties: variations in the PDG resonance masses, detector material budget, final state radiation and the form of the smearing function

Selection efficiency modelling

- The selection efficiencies are measured in data and simulation with the same method
- Three main sources of selection biases
 - Trigger efficiencies
 - Muon-identification efficiencies
 - Isolation requirements
 - The simulated events are subsequently corrected with $\varepsilon_{data}/\varepsilon_{mc}$

2023-07-07

Backgrounds

- Eletroweak electroweakbackgrounds and heavy flavour hadrons are modelled with the simulation
- Hadronic background (decays-in-flight of pions and kaons)
 - A parametric model is trained on a sample of hadrons with weights to account for the variation of the decaylength acceptance on the Lorentz boos

JHEP 01 (2022) 036

2023-07-07

2023-07-07

Physics model

- **POWHEG + Pythia** gives the best description of the **unpolarized** cross-section
 - Varied success with other generators, used to determine systematic uncertainties
- The **angular part** of the cross-section is better described with **DYTurbo**

Electroweak corrections

- Pythia, Photos and Herwig models of QED final state radiation considered
- Central result based on the **average** of the three, while the uncertainty is based on the envelope over the three individual models

2023-07-07

Extract m_W

- In a template fit to the $q/p_{\rm T}^{\mu}$ distribution
- In a **simultaneous** fit of *W* and *Z* data

EPJC 71 1600 (2011)

$$\phi^* \equiv rctan\left(rac{\pi-\Delta\phi}{2}
ight)/\cosh\left(rac{\Delta\eta}{2}
ight) \sim rac{p_T}{M}$$

PDF uncertainties

- The uncertainties are evaluated with specific prescriptions from each of the three groups
- Central m_W result is an average of the three results with the individual PDF sets assuming

MeV

100% correlation

 $\sigma_{\rm PDF,base}$

8.3

11.5

6.5

JHEP 01 (2022) 036

 $\sigma_{
m PDF}$

8.6

11.6

6.8

MeV

 $\sigma_{\text{PDF},\alpha_s}$

2.4

1.4

2.1

2023-07-07

Set

CT18

NNPDF3.1

MSHT20

JHEP 01 (2022) 036

Measurement uncertainty summary

	JHEP 01 (2022) 036	
Source	Size (MeV)	
Parton distribution functions	9	\rightarrow average of
Total theoretical syst. uncertainty (excluding PDFs)	17	
Transverse momentum model	11	\rightarrow from five d
Angular coefficients	10	\rightarrow scale variat
QED FSR model	7] → envelope o
Additional electroweak corrections	5	Photos and He
Total experimental syst. uncertainty	10	
Momentum scale and resolution modelling	7	
Muon ID, tracking and trigger efficiencies	6	\rightarrow statistical u
Isolation efficiency	4	(e.g. binning.
QCD background	2	(- 0
Statistical	23	
Total uncertainty	32	

\rightarrow average of NNPDF31, CT18 and MSHT20

- \rightarrow from five different models \rightarrow scale variation \rightarrow envelope of the OED ESB from
 - → envelope of the QED FSR from PYTHIA8 Photos and Herweig
- \rightarrow statistical uncertainties, details of method (e.g. binning, smoothing)

Cross Checks

- Orthogonal splits: differences within 2σ
- Fit range: the result is stable with the variations in the upper/lower limits
- W-like m_Z measurement: with μ^+ and $\mu^$ agree to better than 1σ and their average agrees with in the PDG value at 1σ

Subset	$\chi^2_{\rm tot}/{\rm ndf}$	$\delta m_W \; [\mathrm{MeV}]$
Polarity = -1	92.5/102	
Polarity = +1	97.3/102	-57.5 ± 45.4
$\eta > 3.3$	115.4/102	_
$\eta < 3.3$	85.9/102	$+56.9\pm45.5$
Polarity $\times q = +1$	95.9/102	_
Polarity $\times q = -1$	98.2/102	$+16.1\pm45.4$
$ \phi > \pi/2$	98.8/102	_
$ \phi < \pi/2$	115.0/102	$+66.7\pm45.5$
$\phi < 0$	91.8/102	_
$\phi > 0$	103.0/102	-100.5 ± 45.3

- Alternative fit with the difference between the m_{W+} and m_{W-} as another floating parameter: this parameter ~0 within 1σ
- Additional tests with NNLO PDFs instead of NLO PDFs, variations in the charm quark mass, etc... affect m_W at the ≤ 1 MeV level

2016 result

• LHCb achieves a precision of ~ 32 MeV using roughly 1/3 of the Run-II dataset

 $m_W = 80354 \pm 23_{\text{stat.}} \pm 10_{\text{exp.}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

With the full Run 2 dataset

- Including 2017 and 2018 data is straight-forward
 - More careful treatment of the detector effects
 - Improvements in the physics modelling

Target sensitivity:

$$\sigma^{\text{Run 2}}_{\text{stat.}} \sim 14 \text{MeV}$$

 $\sigma^{\text{Run 2}}_{\text{total}} \sim 20 \text{MeV}$

Conclusions and outlook

- First measurement of m_W from LHCb with 32 MeV uncertainty is consistent with the prediction
- A total uncertainty of $\lesssim 20$ MeV looks achievable with existing LHCb data
- On Run 3, with a similar detector and analysis environment the precision will increase with the square root of the luminosity
- On Run 4 and beyond, an improved electromagnetic calorimeter system might open the door to study the electron mode at LHCb
- Look forward to working with the other LHC experiments, and the theory community, to fully exploit LHCb's unique/complementary rapidity coverage to achieve the ultimate precision on m_W

Back Up

LHCb Detector

- Single-arm **forward** spectrometer
- Designed for the heavy flavour physics with $2 < \eta < 5$
- Extended to **EW** measurements: excellent performance of tracking and muon detector

Selections

• EW physics with leptons in the final state can be done at LHCb with simple selections based on the transverse momentum, impact parameter,

isolation and particle identification

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2 ig(\mathrm{rad}^{-2} ig)}$$

2023-07-07

Curvature corrections

• Fit the pseudomass asymmetries (between M^+ and M^- peak positions) in fine detector regions (bins in η and ϕ) and translate these to curvature corrections (shifts in q/p)

Polarized cross-section

- Uncertainties from DYTurbo mitigated by floating A_3
 - Otherwise the uncertainty would be O(30 MeV)
 - The preferred value in the fit is however consistent with DYTurbo predictions

Postfit Plots

• The model is in good agreement with the data, which confirms that the momentum smearing is reliably determined and applied

Cross checks

JHEP 01 (2022) 036

Change to fit range	$\chi^2_{\rm tot}/{\rm ndf}$	$\delta m_W \; [\mathrm{MeV}]$	$\sigma(m_W) \; [\mathrm{MeV}]$
$p_{\rm T}^{\rm min} = 24 {\rm GeV}$	96.5/102	+6.8	19.7
$p_{\rm T}^{\rm min} = 26 {\rm GeV}$	97.7/102	+9.6	20.9
$p_{\rm T}^{\rm min} = 30 {\rm GeV}$	102.7/102	+3.0	25.7
$p_{\rm T}^{\rm min} = 32 {\rm GeV}$	84.9/102	-21.6	30.8
$p_{\rm T}^{\rm max} = 48 {\rm GeV}$	105.3/102	-3.8	23.2
$p_{\rm T}^{\rm max} = 50 {\rm GeV}$	103.0/102	-2.1	23.0
$p_{\rm T}^{\rm max} = 54 {\rm GeV}$	96.3/102	-8.6	22.6
$p_{\rm T}^{\rm max} = 56 { m GeV}$	103.7/102	-14.3	22.4

JHEP 01 (2022) 036

Configuration change	$\chi^2_{ m tot}/{ m ndf}$	$\delta m_W [\mathrm{MeV}]$	$\sigma(m_W) \; [\mathrm{MeV}]$
$2 \rightarrow 3 \alpha_s$ parameters	103.4/101	-6.0	± 23.1
$2 \rightarrow 1 \ \alpha_s$ and $1 \rightarrow 2 \ k_{\rm T}^{\rm intr}$ parameters	116.1/102	+13.9	± 22.4
$1 \rightarrow 2 \ k_{\rm T}^{\rm intr}$ parameters	104.0/101	+0.4	± 22.7
$1 \rightarrow 3 \ k_{\rm T}^{\rm intr}$ parameters	102.8/100	-2.7	± 22.9
No A_3 scaling	106.0/103	+4.4	± 22.2
Varying QCD background asymmetry	103.8/101	-0.7	± 22.7