

Electroweak Phase Transition and Baryogenesis

Huaike Guo (郭怀珂)

UCAS (ICTP-AP)

July 7, 2023

The 29th International Workshop on Weak Interactions and Neutrinos

2023年7月2日至8日 Sun Yat-sen University Zhuhai Campus

Recent research largely driven by GWs

THE SPECTRUM OF GRAVITATIONAL WAVES

Finite Temperature Effective Potential: Perturbative Method

The commonly adopted approach:

(see, e.g., Morrissey, Ramsey-Musolf, NJP [1206.2942])

Non-Perturbative Method and Applications to BSMs

- Infrared problem (Linde, 1980)
- Gauge dependence (see, e.g., Patel,Ramsey-Musolf, JHEP [1101.4665])
- Non-perturbative method overcomes these problemsBut yet quite limited in BSM studies

$$\mathcal{L} (\phi, A_{\mu}, \psi, S, s) \longrightarrow \text{dimensional reduction}$$
Superheavy πT) Integrate out $n > 0$ modes and $S_{n=0}$
 $\mathcal{L}_{3}(\phi_{3}, A_{i}, A_{0}, s_{3})$
heavy gT) Integrate out A_{0}, s_{3} fields
 $\overline{\mathcal{L}}_{3}(\overline{\phi}_{3}, \overline{A}_{i})$
light $g^{2}T$ 3D EFT

Gould,Kozaczuk,Niemi,Ramsey-Musolf,Tenkanen,Weir, PRD [1903.11604]

7

Dimensional Reduction (Status)					
SM	\checkmark	Farakos, Kajantie, Rummukainen, Shaposhnikov (1994)			
MSSM	\checkmark	Cline,Kainulainen(1996), Losada(1996), Laine (1996)			
xSM (SM + Singlet)	\checkmark	Brauner, Tenkanen, Tranberg, Vuorinen, Weir, JHEP [1609.06230]			
ΣSM (SM + Triplet)	\checkmark	Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir, PRD [1802.10500]			
2HDM	\checkmark	Gorda, Helset, Niemi, Tenkanena, Weir, JHEP [1802.05056]			

Precise Determination of Kinematics

Minkowski spacetime: Hindmarsh, Hijazi, JCAP [1909.10040] Expanding universe: HG, Sinha, Vagie, White, JCAP [2007.08537]

Statistical properties

- **Bubble Nucleation Rate**
- **False Vacuum Fraction**
- **Unbroken Wall Area**
- **Bubble Lifetime Distribution**
- Bubble Number Density and Mean Bubble Separation(R*)

Useful for modelling of the process

Important inputs for GW (or other observables) calculations

10¹

Number of Bubbles per Hubble Volume

Wall Velocity: vw

Usually chosen as given fixed value in EWBG and GW studies

But, significant advances in recent years (driven by GW studies)

$$\Box \phi + V_T'(\phi) + \sum \frac{dm^2}{d\phi} \int \frac{d^3p}{(2\pi)^3 2E} \left[\delta f(p,x)\right] = 0$$

- Friction from out-of-equilibrium (Moore, Prokopec, PRL [9503296]; PRD [9506475])
- Transition radiation (Bodeker, Moore, JCAP [1703.08215])
- All orders resummation (Höche et al, JCAP [2007.10343])
- Lineared distribution or not (Laurent, Cline, PRD [2007.10935]; PRD[2204.13120])
- Singularity or not (Dorsch, Huberb, Konstandin, JCAP [2112.12548], Laurent, Cline)

- EWBG generally requires small vw
- Might be possible at relatively large vw, Cline, Kainulainen, PRD [2001.00568]

Relativistic Combustion and Simulations

Simulations present clearer picture, and reveal possible new phenomena

Gravitational Wave Sources

A clearer picture of the PT has been gained from GW studies

Bubble Collisions

Envelope Approximation

Simulations:

Kosowsky, Turner, Watkins, Kamionkowski, PRL69,2026(1992), PRD45,4514(1992), PRD47,4372(1993), PRD49,2837(1994), Huber, Konstandin, JCAP09(2008)022 Analytical Modelling:

Jinno, Takimoto, PRD95,024009(2017)

Beyond the Envelope Approximation

Bulk flow model: Konstandin, JCAP03(2018)047, Jinno, Takimoto, JCAP01(2019)060 Direct large scalar lattice simulations: Cutting, Escartin, Hindmarsh, Weir, PRD97,123513(2018), arXiv:2005.13537

Expanding Universe: Zhong, Gong, Qiu, JHEP02(2022)077

New Phenomena

Di, Wang, Zhou, Bian, Cai, Liu, Phys.Rev.Lett. 126 (2021) 25, 251102 Lewicki, Vaskonen, EPJC 80,1003(2020) Zhao, Di, Bian, Cai, arxiv:2204.04427

$$\Omega_{\text{coll}}(f)h^2 = 1.67 \times 10^{-5} \Delta \left(\frac{H_{\text{pt}}}{\beta}\right)^2 \left(\frac{\kappa_{\phi}\alpha}{1+\alpha}\right)^2 \times \left(\frac{100}{g_*}\right)^{1/3} S_{\text{env}}(f),$$

 $f_{\rm env} = 16.5 \left(\frac{f_{\rm bc}}{\beta}\right) \left(\frac{P}{H_{\rm pt}}\right) \left(\frac{100 \, {\rm GeV}}{100 \, {\rm GeV}}\right) \left(\frac{g_*}{100}\right)$

13

μHz,

Previous formula enforces an infinite lifetime.

Sound Waves

Magnetohydrodynamic Turbulence

Analytical Modelling

Kolmogorov spectrum:

Kosowsky, Mack, Kahniashvili, PRD66,024030(2002) Gogoberidze, Kahniashvili, Kosowsky, PRD76,083002(2007) Caprini, Durrer, Servant, JCAP12(2009)024

5%~10% but uncertain

https://home.mpcdf.mpg.de/~wcm/projects/ homog-mhd/mhd.html

$$h^2 \Omega_{\rm turb}(f) = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\rm turb}\alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_*}\right)^{1/3} v_w S_{\rm turb}(f)$$

Caprini, Durrer, Servant, JCAP12(2009)024 (adopted by the LISA Cosmology Working group, JCAP04(2016)001)

$$S_{\text{turb}}(f) = \frac{(f/f_{\text{turb}})^3}{\left[1 + (f/f_{\text{turb}})\right]^{\frac{11}{3}} (1 + 8\pi f/h_*)} \qquad h_* = 16.5 \times 10^{-3} \,\text{mHz}\left(\frac{T_*}{100 \,\text{GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}}$$

$$f_{\rm turb} = 2.7 \times 10^{-2} \,\mathrm{mHz} \,\frac{1}{v_w} \,\left(\frac{\beta}{H_*}\right) \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}}$$

New result: Pol et al, PRD 102, 083512 (2020)

Generic Features

Uncertainties

- Finite T effective potential calculations —
- Phase transition parameter calculations (vw)
- GW spectra calculations (simulations, modellings)
- Possibly new phenomena

 $\Delta \Omega_{\rm GW} / \Omega_{\rm GW}$ 4d approach 3d approach $\mathcal{O}(10^2 - 10^3)$ $\mathcal{O}(10^0 - 10^1)$ RG scale dependence $O(10^{-3})$ Gauge dependence $O(10^{1})$ $\mathcal{O}(10^{-1}-10^{0})$ $\mathcal{O}(10^0 - 10^2)$ High-T approximation $\mathcal{O}(10^0 - 10^1)$ Higher loop orders unknown $\mathcal{O}(10^{-1}-10^{0})$ Nucleation corrections unknown Nonperturbative corrections unknown unknown

Croon, Gould, Schicho, Tenkanen, White, JHEP [2009.10080]

Effect(fixed wall velocity)	Range of error (medium)	Range of error (low)	Type of error
Transition temperature	$\mathcal{O}(10^{-4} 10^{1})$	$\mathcal{O}(10^{-1} ext{} 10^0)$	Random
Mean bubble separation	$O(0-10^{-1})$	$\mathcal{O}(10^{-1} 10^0)$	Suppression
Fluid velocity	$\mathcal{O}(10^{-2}10^{0})$	$\mathcal{O}(10^{-2} 10^{0})$	Random
Finite lifetime	$\mathcal{O}(10^{-3} - 10^{-1})$	$\mathcal{O}(10^1 ext{} 10^3)$	Enhancement
Vorticity effects	$\mathcal{O}(10^{-1} - 10^0)$	-	Random

HG,Sinha,Vagie,White, JHEP [2103.06933]

BSM studies

Chung,Long,Wang, PRD [1209.1819]

- Large cubic term from thermal corrections (loop level)
- Add new scalars (tree level)
- Including non-renormalizable operators

More general EFT approach: Cai,Hashino,Wang,Yu [2202.08295]

Models	Strong 1 st order phase transition	GW signal	Cold DM	Dark Radiation and small scale structure
SM charged				
Triplet [20–22]	1	1	1	×
complex and real Triplet [23]	1	1	1	×
(Georgi-Machacek model)				-
Multiplet [24]	1	1	1	
2HDM [25-30]	1	1		×
MLRSM [31]	1	1	×	×
NMSSM [32–36]	1	1	1	×
SM uncharged				
S_r (xSM) [37–49]	1	1	×	×
2 S _r 's [50]	1	1	1	×
S _c (cxSM) [49, 51–54]	1	1	1	×
$U(1)_D$ (no interaction with SM) [55]	1	1	1	×
U(1) _D (Higgs Portal) [56]	1	1	1	0
U(1) _D (Kinetic Mixing) [57]	1	1	1	
Composite SU(7)/SU(6) [58]	1	1	1	0
U(1) _L [59]	1	1	1	×
$SU(2)_D \rightarrow global SO(3)$			1	×
by a doublet [60–62]				
$SU(2)_D \rightarrow U(1)_D$			1	1
by a triplet [63–65]				
$SU(2)_D \rightarrow Z_2$			1	×
by two triplets [66]				
$SU(2)_D \rightarrow Z_3$			1	×
by a quadruplet [67, 68]				
$SU(2)_D \times U(1)_{B-L} \rightarrow Z_2 \times Z_2$			1	×
by a quintuplet and a S_c [69]				10 000 10
SU(2) _D with two dark Higgs doublets [70]	1	1	×	×
$SU(3)_D \rightarrow Z_2 \times Z_2$ by two triplets [62, 71]			1	×
SU(3) _D (dark QCD) (Higgs Portal) [72, 73]	1	1	1	
$G_{\rm SM} \times G_{\rm D,SM} \times Z_2$ [74]	1	1	1	
$G_{\rm SM} \times G_{\rm D,SM} \times G_{\rm D,SM} \cdots$ [75]	1	1	1	
Current work				
$SU(2)_D \rightarrow U(1)_D$ (see the text)	1	1	1	1

Ghosh,HG,Han,Liu, JHEP [2012.09758]

EWPT and Related Physics

The electroweak phase transition: a collider target

Michael J. Ramsey-Musolf

Tsung-Dao Lee Institute, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts-Amherst, Amherst, MA 01003, U.S.A. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, U.S.A.

E-mail: mjrm@sjtu.edu.cn, mjrm@physics.umass.edu

- Extra CP-violation (EDM, LHC)
- B-violation: Sphaleron process (LHC, GW)

20

Electroweak Baryogenesis

Lepton-flavored Electroweak Baryogenesis

- CP-violation is generally small, decoupled from GW analysis
- Lepton-flavored EWBG is effective for baryon asymmetry generation

Many studies since then:

De Vries, Postma, van de Vis, JHEP [1811.11104] Modak,Senaha, PRD [1811.08088] Fuyuto, Hou, Senaha, PLB [1705.05034] and more ...

 \Rightarrow

Baryon Asymmetry

CP-violating $h\bar{\tau}\tau$

Type III 2HDM

Jarlskog-like invariant

Lepton-flavored Electroweak Baryogenesis: Higgs CPV

$$-\frac{m_{\tau}}{v} [\operatorname{Re}(y_{\tau})\bar{\tau}\tau + \operatorname{Im}(y_{\tau})\bar{\tau}i\gamma_{5}\tau]h$$

OK

discovery or exclusion?

Collider Sensitivities

					1		10.00			119110		
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	35 <mark>0</mark>	500	1,000		125	125	≥ 500	(theory)
$\mathcal{L} (\mathrm{fb}^{-1})$	300	3,000	20,000	250	350	500	1,000		250			
HZZ/HWW	$4 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.4 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$	-	0.50	✓			-		-	0.06	(1)	-	$< 10^{-2}$
$HZ\gamma$	s=-:	~ 1	\checkmark		3773	579	73		\overline{a}		3	$< 10^{-2}$
Hgg	0.12	0.011	~	-		-		-	-		-	$< 10^{-2}$
$Htar{t}$	0.24	0.05	\checkmark	-		0.29	0.08	0 .— 0	-	3 — 3	\checkmark	$< 10^{-2}$
H au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	1	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$		-	-	-	())	-		а н а	-	\checkmark	-	$< 10^{-2}$

Snowmass White Paper: Gritsan et al [2205.07715]

Higgs Precision Measurements

First order EWPT achievable in simplest SM+Singlet model

Correlation and complementarity between collider and GW probes

h1: the Higgs h2: heavier scalar

WIMP affecting EWPT

• WIMP naturally plays a role during EWPT

$$\begin{split} V_0 &= -\frac{1}{2}\mu_{\Phi}^2 \Phi^2 + \frac{1}{4}\lambda_{\Phi} \Phi^4 - \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4}\lambda_S S^4 \\ &- \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H\right)^2 + \lambda_1 S^2 H^{\dagger} H + \lambda_2 \Phi^2 H^{\dagger} H \\ &+ \lambda_3 S^2 \Phi^2, \end{split}$$

Chao, HG, Shu, JCAP [1702.02698]

2-step EWPT

φ

S

$$\sigma_{n} = \frac{\mu^{2}m_{n}^{2}}{\pi v_{\text{EW}}^{2}m_{S}^{2}} \left| \begin{array}{c} \frac{c_{\theta}a_{\hat{h}}}{m_{\hat{h}}^{2}} - \frac{s_{\theta}a_{\hat{\phi}}}{m_{\hat{\phi}}^{2}} \right|^{2} \left(\frac{2}{9} + \frac{7}{9} \sum_{q=u,d,s} f_{T_{q}}^{n} \right)^{2} \\ \checkmark \text{ vanishes} \\ \lambda_{3} = \frac{v_{\text{EW}}\lambda_{1} \left(m_{\hat{h}}^{2} \tan \theta + m_{\hat{\phi}}^{2} \cot \theta \right)}{2v_{\Phi} \left(m_{\hat{h}}^{2} - m_{\hat{\phi}}^{2} \right)} \right|$$

Dark Sector affecting EWPT

THE SPECTRUM OF GRAVITATIONAL WAVES

high-scale PT

LIGO Search Result

O1+O2+O3@LIGO (H1, L1), Virgo

- No Evidence for Broken Power Law Signal
- No Evidence for Bubble Collision Domination Signal
- No Evidence for Sound Waves Domination Signal

Bubble Collision

Phenomenological model (hubble collisions)								
		$\Omega_{\rm coll}^{95\%}(25 \text{ Hz})$						
$\beta/H_{\rm pt} \setminus T_{\rm pt}$	10 ⁷ GeV	10 ⁸ GeV	10 ⁹ GeV	10 ¹⁰ GeV				
0.1	9.2×10^{-9}	8.8×10^{-9}	1.0×10^{-8}	7.2×10^{-9}				
1	1.0×10^{-8}	8.4×10^{-9}	5.0×10^{-9}					
10	4.0×10^{-9}	6.3×10^{-9}	•••					

Romero, Martinovic, Callister, HG, Martínez, Sakellariadou, Yang, Zhao, PRL [2102.01714]

Sound Waves

95% CL UL

$$\Omega_{\rm sw}(25~{\rm Hz})$$
 5.9 × 10⁻⁹
 $\beta/H_{\rm pt} < 1$ and $T_{\rm pt} > 10^8~{\rm GeV}$

First result from gravitational wave data!

What possible PTA discovery implies?

New Observables

32

- Rapid experimental progresses (LIGO-Virgo-KAGRA, LISA/Taiji/Tianqin, PTA)
- A much clearer picture of a first order EWPT (simulations, analytical insights)
- More robost calculations (dimensional reduction, non-perturbative methods)
- More accurate predictions for GWs
- New observables (PBHs, curvature perturbations, magnetic fields, etc)
- Extensive phenomenological studies

Since LIGO's first direct detection of GWs (announced in 2016)

The 2023 Shanghai Symposium on Particle Physics and Cosmology: Phase Transitions, Gravitational Waves, and Colliders (SPCS 2023)

Organizing Committee

- Michael Ramsey-Musolf 任穆 (Shanghai Jiao Tong University, Tsung-Dao Lee Institute)
- Huaike Guo (University of Chinese Academy of Sciences, ICTP-AP)
- Fa Peng Huang (Sun Yat-Sen University)
- Shu Li (Shanghai Jiao Tong University, Tsung-Dao Lee Institute)
- Kun Liu (Shanghai Jiao Tong University, Tsung-Dao Lee Institute)
- Lei Zhang (Nanjing University)

Website: https://indico-tdli.sjtu.edu.cn/event/1741/