New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions

Teppei Kitahara (Nagoya \rightarrow ITP, CAS)

The 29th International Workshop on Weak Interactions and Neutrinos (WIN2023), Sun Yat-sen University, Zhuhai, July 7, 2023

Test of Lepton Flavor Universality (LFU)

Gauge symmetry predicts lepton flavor universal (LFU) phenomena:

Only charged-lepton mass (+QED corrections) violates the LFU within the SM

$$m_e = 0.5 \text{ MeV}, \qquad m_\mu =$$

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

 $= 105 \,\mathrm{MeV}\,,$ $m_{\tau} = 1776 \, {\rm MeV}$

Lepton-flavor-universality observables: R(D) and R(D*)

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

R_{D^*}	R_D	Correlation
$0.332 \pm 0.024 \pm 0.018$	$0.440 \pm 0.058 \pm 0.042$	-0.27
$0.293 \pm 0.038 \pm 0.015$	$0.375 \pm 0.064 \pm 0.026$	-0.49
$0.270 \pm 0.035 ^{+0.028}_{-0.025}$		
$0.283 \pm 0.018 \pm 0.014$	$0.307 \pm 0.037 \pm 0.016$	-0.51
Oct $0.281 \pm 0.018 \pm 0.024$	$0.441 \pm 0.060 \pm 0.066$	-0.43
lar $0.257 \pm 0.012 \pm 0.018$	_	_
$0.284 \pm 0.008 \pm 0.010$	$0.356 \pm 0.024 \pm 0.016$	-0.37

P-value= 0.25; implying data are consistent

Lepton-flavor-universality observables: R(D) and R(D*)

QED correction within the SM

Long-distance QED correction could violate the lepton flavor universality Note that $B \rightarrow D\ell\nu$ measurements are not soft-photon inclusive

The QED corrections depend on the lepton

see slide

- [de Boer, TK, Nisandzic, 1803.05881; Calí, et al, 1905.02702; Isidori, Nabeebaccus, Zwicky, 2009.00929]

Recent progress in SM: Dispersion matrix approach

- Dispersion matrix approach is novel form factor's description for $B \rightarrow D^{(*)}$
- Based on the lattice QCD data only. By applying the unitarity condition, one can extract the form factors for all q² region with non-perturbative and model-independent manner
 - No experimental data are needed [Di Carlo, et al, 2105.02497; Martinelli, et al, 2105.07851]

Recent progress in SM: Dispersion matrix approach

It is pointed out that there are 3σ tension in the dispersion matrix approach with lightlepton data [Fedele, et al, 2305.15457]

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions **Teppei Kitahara** (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

D^{*} longitudinal polarization fraction

Related channel: $R(J/\psi)$

The LFU violation was also observed in $B_c^- \rightarrow J/\psi$

$$C \mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^- \to J/\psi\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(B_c^- \to J/\psi\ell^-\bar{\nu}_{\ell})}$$

 $R(J/\psi)_{\rm SM} = 0.258 \pm 0.004$

 1.8σ consistent

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

 $R(J/\psi)_{\rm exp} = 0.71 \pm 0.17_{\rm stat} \pm 0.18_{\rm syst}$ [LHCb, <u>1711.05623</u>]

Based on first lattice result [HPQCD, 2007.06956]

using $N_f=2+1+1$, with "HISQ" c and heavy quark b

Same-direction tension as R(D) and R(D^{*}) anomalies

New physics interpretations of $b \rightarrow c \tau \nu$ anomaly

W' (additional SU(2) gauge symmetry) and $Z' \rightarrow \tau \tau$ search [Faroughy, Greljo, Kamenik, 1609.07138] **Charged-Higgs with generic flavor structure** 2202.10468; Iguro, 2201.06565, 2302.08935] (next slide) Leptoquark (LQ)

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions **Teppei Kitahara** (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

Severely constrained from ΔM_s ($B_s^0 - \bar{B}_s^0$ mixing), $W' \to \tau \nu$ search [Abdullah, et al, 1805.01869]

Collider bound comes from $pp \rightarrow LQ LQ^*$, and broad parameter regions are still allowed

Charged-Higgs scenario

For heavy charged Higgs, strong LHC bounds come from 2τ +MET, 2b (+ γ), 2j, τ +MET (+b); $m_{H^{\pm}} \leq 250 \,\text{GeV}$ is allowed [Blanke, Iguro, Zhang, 2202.10468; Iguro, 2201.06565, 2302.08935]

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

Unique prediction

New physics interpretations of $b \rightarrow c \tau \nu$ anomaly

		\mathbf{Spin}	Charge	Operators	R_D	R_{D^*}	LHC	Flavor
	H^{\pm}	0	$({f 1},{f 2},{}^{1\!/\!2})$	O_{S_L}	~	~	b au u	$B_c \rightarrow \tau \nu, F_L^{D^*}, P_{\tau}^{D^*}, M_W$
LQ	\mathbf{S}_1	0	$(ar{3},1,1/\!$	O_{V_L},O_{S_L},O_T	\checkmark	\checkmark	au au	$\Delta M_s, P^D_\tau, B\to K^{(*)}\nu\nu$
LQ	$ m R_{2}^{(2/3)}$	0	$({f 3},{f 2},{7/\!6})$	$O_{S_L},O_T,(O_{V_R})$	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{\Upsilon(nS)},P_{ au}^{D^*},M_W$
LQ	U_1	1	$({f 3},{f 1},{f 2}/{f 3})$	O_{V_L},O_{S_R}	~	\checkmark	$b \tau \nu, \tau \tau$	$R_{K^{(*)}}, R_{\Upsilon(nS)}, B_s \to \tau \tau$
LQ	${ m V}_{2}^{(1/3)}$	1	$(ar{3}, 2, {}^{5}\!/\!\!6)$	O_{S_R}	~	2σ	au au	$B_s \to \tau \tau, B_u \to \tau \nu, M_W$

Leptoquark (LQ)

One can distinguish each model by these observables

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

[Iguro, TK, Watanabe, 2210.10751 + Iguro, Omura, 2306.00052]

Can be deviated from SM

Leptoquark catalogue

[cf. Angelescu, Bečirević, Faroughy, Jaffredo, Sumensari, 2103.12504; Athron, Balazs, Jacob, Kotlarski, Stockinger, Stockinger-Kim, 2104.03691]

[LQ* requires additional symmetry that forbids the proton decay, see 1603.04993]

Label	Spin	Charge	R(D (*))	R(K ^(*))	muon g-2	Mw
S ₁ LQ (*)	0	(3, 1, 1/3)		Loop		With S 3
U ₁ LQ	1	(3, 1, 2/3)			X	×
R ₂ LQ	0	(3, 2, 7/6 [1/6])		Loop		
V ₂ LQ (*)	1	(3, 2, 5/6)	only R(D)	Small	Small	
S ₃ LQ (*)	0	(3, 3, 1/3)	×		×	With S 1
U ₃ LQ	1	(3, 3, 2/3)	×		×	?

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

Leptoquarks that do not lead to proton decay and can contribute precision measurements

Polarization obserbavles

$$P_{\tau}(D^{(*)}) = \frac{\Gamma\left(B \to D^{(*)}\tau^{\lambda=+1/2}\nu\right) - \Gamma\left(B \to D^{(*)}\tau^{\lambda=-1/2}\nu\right)}{\Gamma\left(B \to D^{(*)}\tau\nu\right)}$$

 τ polarization asymmetry -0.35 along the longitudinal directions of $\tau [\tau \rightarrow \pi \nu, \rho \nu]$ -0.40 **D**¹ [Tanaka, hep-ph/9411405] -0.45 Fit of an angle dependence: between π/ρ and $W^*(\rightarrow \tau \nu)$ in τ rest frame

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

Belle II (final) sensitivity

13

New idea: LFU violation in Upsilon decay

new LFU observable ($b\bar{b} \rightarrow \tau \bar{\tau}$)

 $R_{\Upsilon(3S)}^{SM} = 0.9948 \pm \mathcal{O}(10^{-5}),$

 $R^{\mathrm{exp}}_{\Upsilon(3S)} = 0.968 \pm 0.016$. [CLEO+BaBar data]

Belle II can measure R_{γ} precisely

less than 1% accuracy is needed

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023 Correlation in the U₁ LQ scenario

New idea: sum-rule between $R(\Lambda_c)$ and $R(D^{(*)})$

Baryonic counterpart ($b \rightarrow c \tau \nu$): $\mathcal{R}(\Lambda)$

There is a model-independent sum-rule for R(D), $R(D^*)$, and $R(\Lambda_c)$, through new physics

form factor analysis (originated from heavy quark symmetry)

$$\frac{R\left(\Lambda_{c}\right)}{R\left(\Lambda_{c}\right)_{\mathrm{SM}}} \simeq 0.28 \frac{R(D)}{R(D)_{\mathrm{SM}}} + 0.72 \frac{R\left(D^{*}\right)}{R\left(D^{*}\right)_{\mathrm{SM}}}$$

It can crosscheck of $R(D^{(*)})$ anomaly by coherent amplification of $R(\Lambda_c)$

 $R(\Lambda_c) = 0.380 \pm 0.012_{P}$ $R(\Lambda_c)_{\rm SM} = 0.324 \pm 0.00$

 $R(\Lambda_c)_{\rm exp} = 0.242 \pm 0.075$ [LHCb, <u>2201.03497</u>]

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions Teppei Kitahara (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

 $R(D^{(*)})$

data

anomaly

$$\mathbf{L}_{c}) = \frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \tau^{-} \bar{\nu}_{\tau})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell})}$$

[Fedele, et al, 2211.14172]

$$R(D^{(*)}) \pm 0.005_{\rm FF}$$

Currently, a slight (~ 2σ) inconsistency appeared

CPV from U₁ vector LQ [Iguro, TK, in progress]

(CPV in $b \rightarrow s\gamma$ would be interesting as well)

New physics interpretations of $R(D^{(*)})$ anomaly and their exciting predictions **Teppei Kitahara** (ITP, CAS), WIN2023, Sun Yat-sen University, Zhuhai, July 7, 2023

neutron/proton EDMs can probe the allowed region

Leptoquark indirect collider search

New LQ anomaly from CMS @ICHEP2022

3.4 σ level excess at $M_{\rm LQ} \sim 2$ TeV was reported from CMS [CMS, CMS-PAS-EXO-19-016 (2022)]

Conclusions

- $R(D^{(*)})$ anomaly persists in $b \rightarrow c\tau\nu, c\ell\nu$ processes at 3.2-4 σ level
- The charged Higgs boson and Leptoquark models can accommodate the anomaly
- The crosschecks of the new physics are very important by $P_{\tau}(D^{(*)}), F_{L}(D^{*}), R(\Lambda_{c}), R(\Upsilon), R(D^{(*)})(q^{2})$ and LHC indirect search, see table:

L	Charge	Operators	R_D	R_{D^*}	LHC	Flavor
	(1 , 2 ,1/2)	O_{S_L}	\checkmark	~	b au u	$B_c \rightarrow \tau \nu, F_L^{D^*}, P_{\tau}^{D^*}, M_W$
	$(ar{3},1,1/3)$	O_{V_L},O_{S_L},O_T	\checkmark	\checkmark	au au	$\Delta M_s,P^D_\tau,B\to K^{(*)}\nu\nu$
	$({f 3},{f 2},{}^7\!/\!\!6)$	$O_{S_L},O_T,(O_{V_R})$	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{\Upsilon(nS)},P_{ au}^{D^{st}},M_W$
	$({f 3},{f 1},{f 2}/{f 3})$	O_{V_L},O_{S_R}	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{K^{(*)}}, R_{\Upsilon(nS)}, B_s \rightarrow \tau \tau$
	$(ar{3}, 2, {}^{5}\!/\!\!6)$	O_{S_R}	\checkmark	2σ	au au	$B_s \to \tau \tau, B_u \to \tau \nu, M_W$

Backup slides

(c) KMI/Nagoya-U

