Measuring reactor neutrinos with CEvNS Jiajun Liao Sun Yat-sen University

In collaboration w/ Hongkai Liu and Danny Marfatia

arXiv: 2104.01811, Phys. Rev. D 104, 015005 (2021) arXiv: 2202.10622, Phys. Rev. D 106, L031702 (2022) arXiv:2302.10460

The 29th International Workshops on Weak Interactions and Neutrinos Zhuhai, 7/7/2023

Outline

- CEvNS with reactor neutrinos
- Indirect measurement of quenching factor
- Reactor neutrino flux below IBD
- Summary

CEvNS with reactor neutrinos

Coherent Elastic ν -Nucleus Scattering

$CE\nu NS$ experiments

• π DAR source @ SNS

COHERENT first observed CE ν NS in 2017 at the 6.7 σ CL with a Csl detector

COHERENT, Science 357,1123 (2017)

Later confirmed in 2020 at more than 3σ CL with LAr detector

COHERENT, PRL 126, 012002 (2021)

• Reactor neutrino source

$CE\nu NS$ spectrum

• Differential cross section

$$\frac{d\sigma_{SM}}{dE_R} = \frac{G_F^2 M}{4\pi} q_W^2 \left(1 - \frac{ME_R}{2E_\nu^2}\right) F^2(\mathfrak{q})$$

• Event spectrum

$$\frac{dR}{dE_R} = N_T \int \frac{d\Phi}{dE_\nu} \frac{d\sigma}{dE_R} dE_\nu$$

Only a small portion of nuclear recoiling energy E_R will go into electronic ionization energy E_I , which is measured.

Quenching factor (QF):
$$Q \equiv E_I/E_R$$

Measured number of events:

$$N_i = t \int_{E_I^i}^{E_I^{i+1}} \eta \frac{dR}{dE_R} \left(\frac{1}{Q} - \frac{E_I}{Q} \frac{dQ}{dE_I}\right) dE_I$$

 $\frac{dE_R}{dE_I}$

Lindhard Model

$$Q(E_R) = \frac{k g(\epsilon)}{1 + k g(\epsilon)},$$

where $g(\epsilon) = 3 \epsilon^{0.15} + 0.7 \epsilon^{0.6} + \epsilon$
Lindhard el al, Mat. Fys. Medd.
Dan. Vid. Selsk. 33 10 (1963)

dimensionless reduced energy:

$$\epsilon = 11.5 Z^{-\frac{7}{3}} \left(\frac{E_R}{\text{keV}_{\text{nr}}}\right)$$

the slope of electronic stopping power

$$k = 0.1333Z^{\frac{2}{3}}A^{-\frac{1}{2}}$$

A larger k value leads to larger fraction of total energy going into electron.

Collar, et al, PRD 103, 122003 (2021)

Modified Lindhard Model

Key approximations made in Lindhard model:

- Atomic binding energy of electrons is negligible.
- Energy transfers to electrons are small wrt energy transfers to atoms. Sorensen, PRD 91, 083509 (2015) [arXiv: 1412.3028]

$$Q(E_R) = \frac{k g(\epsilon)}{1 + k g(\epsilon)} - \frac{q}{\epsilon}$$

Lindhard model

- A positive q value allows a sharp cutoff in the energy given to electrons.
- A negative q value allows an enhancement in the energy given to electrons.

JL, Liu, Marfatia, PRD 104, 015005 (2021)

Mimic the signal of new physics

JL, Liu, Marfatia, PRD 104, 015005 (2021)

- Both the light Z' and scalar cases with the standard Lindhard model can fit the SM spectrum with the modified Lindhard model QF.
- This will lead to confusion in determining the nature of new physics.

Indirect measurement of quenching factor

Measurement of Coherent Elastic Neutrino-Nucleus Scattering from Reactor Antineutrinos

J. Colaresi,¹ J. I. Collar^(D),^{2,*} T. W. Hossbach^(D),³ C. M. Lewis^(D),² and K. M. Yocum¹ ¹Mirion Technologies Canberra, 800 Research Parkway, Meriden, Connecticut 06450, USA ²Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA ³Pacific Northwest National Laboratory, Richland, Washington 99354, USA

Received 29 November 2021; revised 21 March 2022; accepted 20 September 2022; published 17 November 2022)

- Dotted line corresponds to the SM CEvNS prediction with the Lindhard model QF.
- Solid line shows the SM CEvNS prediction using their new measurement of QF.
- A very strong preference (p < 1.2×10^{-3}) for the presence of CEvNS.
- Caveats: Incomplete background model may be employed.

Indirect measurement of QF

- A negative value of q is preferred by the Dresden data at 2.5σ in SM.
- This best-fit point is consistent with direct QF measurements using neutron source.

Blue (black) line are based on the data from the direct iron filter (photo-neutron) measurement.

JL, Liu, Marfatia, PRD 106, L031702 (2022)

Constraints on new physics

- Left panel assuming the standard Lindhard QF model is valid. A mild preference for the new physics if the Lindhard model is assumed.
- Right panel marginalizing over the (k,q) of the modified Lindhard model. Constraints are qualitatively affected by the QF model.

Measure reactor neutrinos below IBD

Reactor neutrino flux

TEXONO, hep-ex/0605006

Channels	Fractional Compositions	Relative Rates	Neutrino Yield	Neutrino Yield
	by Mass $(\%)$	per Fission	per Event	per Fission
²³⁵ U Fission	1.5	0.55	6.14	3.4
²³⁸ U Fission	98.0	0.07	7.08	0.5
²³⁹ Pu Fission	0.4	0.32	5.58	1.8
²⁴¹ Pu Fission	< 0.1	0.06	6.42	0.4
$^{238}{ m U}$ (n, γ) $^{239}{ m U}$	—	0.60	2.00	1.2

Theoretical predictions

- Conversion method: Huber-muller model, only allows an estimate of the reactor neutrino spectrum between 2–8 MeV. It does not predict the 5 MeV bump.
- Summation method: sum over all contributions of fission products from the nuclear data libraries, suffered from unknown branching ratios due to the Pandemonium effect.

NUCLEUS experiment

 NUCLEUS uses cryogenic calorimeters to measure the temperature rise and has achieved a 20 eV threshold using a 0.5 g prototype made from Al₂O₃.

EPJC 77, 506 (2017) [1704.04320]

 A total 10 g mass of CaWO₄ and Al₂O₃ crystals, and 1 kg of Ge is planned. NUCLEUS-1kg is expected to have a background below 100 ckkd and an ultralow energy threshold of 5 eV.

EPJC 79, 1018 (2019) [1905.10258]

NUCLEUS spectrum

$$N_j = N_T t \int_{E_R^j}^{E_R^{j+1}} dE_R \int dE_\nu \frac{d\Phi}{dE_\nu} \frac{d\sigma}{dE_R} \, .$$

$$h_j \equiv \frac{tN_T P}{4\pi d_{\text{eff}}^2 \tilde{\epsilon}} \int_{E_R^j}^{E_R^{j+1}} dE_R \int_{E_\nu > 2.0 \text{ MeV}}^{\infty} \frac{dN_\nu}{dE_\nu} dE_\nu \frac{d\sigma}{dE_R}$$

- High energy neutrino flux (E_v > 2 MeV) has a negligible contribution to the low-energy CEvNS spectrum.
- The existence of neutron capture component can be established at 3σ with 5 year·kg exposure.

Normal unfolding

CEvNS spectrum:

$$\mu_j = R_{ji}\nu_i + h_j + b_j$$

Response matrix

$$R_{ji} \equiv \frac{tN_T P}{4\pi \tilde{d}_{\text{eff}}^2 \epsilon} \int_{E_R^j}^{E_R^{j+1}} dE_R \int_{E_\nu^i}^{E_\nu^{i+1}} dE_\nu \frac{d\sigma}{dE_R}$$

Neutrino flux:

$$\boldsymbol{\nu} = \boldsymbol{R}^{-1}(\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{b})$$

Statistical fluctuations in observed spectrum

 $n_i = ext{Poisson}(N_i + b_i)$ Minimize: $\chi^2(oldsymbol{
u}) = \sum_{i=1}^m rac{(\mu_i(oldsymbol{
u}) - n_i)^2}{n_i}$

Regularized unfolding

Tikhonov regularization: $\varphi(\boldsymbol{\nu}) = \chi^2(\boldsymbol{\nu}) + \beta S(\boldsymbol{\nu})$

$$S(\boldsymbol{\nu}) = \sum_{i=1}^{m-2} (-\nu_i + 2\nu_{i+1} - \nu_{i+2})^2 = G_{ij}\nu_i\nu_j$$

The neutrino flux is obtained by minimizing the regularized function ϕ

$$rac{\partial arphi(oldsymbol{
u})}{\partial
u_i} = D_{ij}
u_j - K_j = 0\,, \quad i = 1, 2, \dots m$$

Estimated neutrino flux:

$$\hat{\boldsymbol{\nu}} = \boldsymbol{D}^{-1} \boldsymbol{K}$$

Estimated CEvNS spectrum:

 $\hat{\boldsymbol{\mu}}(eta, \boldsymbol{n}) = \boldsymbol{R}\,\hat{\boldsymbol{
u}}(eta, \boldsymbol{n}) + \boldsymbol{h} + \boldsymbol{b}$

Bias:
$$B = \sum_{i=1}^{m} \frac{\hat{b}_{i}^{2}}{W_{ii}}$$
 $\hat{b}_{i} = \sum_{j}^{m} C_{ij}(\hat{\mu}_{j} - n_{j})$

Covariance matrix: $m{W} = (m{C} m{R} m{C} - m{C}) m{V} (m{C} m{R} m{C} - m{C})^T$, $C_{ij} \equiv rac{\partial \hat{
u}_i}{\partial n_j}$

β selection criterion

- A large β suppresses the variance, but allows an increased bias.
- The physical criterion: we choose the smallest value of β that yields a positive definite flux at all energies.
- Average bias \overline{B} plateaus at a value that is not much larger than the number of bins *m*.
- Consistent with a strategy for selecting β that lowers β until B ~ m

Results

- scenario 1: $t = 1 \text{ kg} \cdot \text{year}$, $\text{bkg} = 100 \text{ counts}/(\text{keV} \cdot \text{kg} \cdot \text{day})$, $E_{R,\text{thr}} = 5 \text{ eV}$.
- scenario 2: $t = 3 \text{ kg} \cdot \text{year}$, $\text{bkg} = 1 \text{ count}/(\text{keV} \cdot \text{kg} \cdot \text{day})$, $E_{R,\text{thr}} = 5 \text{ eV}$.
- scenario 3: $t = 300 \text{ kg} \cdot \text{year}$, $\text{bkg} = 1 \text{ count}/(\text{keV} \cdot \text{kg} \cdot \text{day})$, $E_{R,\text{thr}} = 1 \text{ eV}$.
- For scenario 1 and 2, a meaningful upper bound can be placed on the low energy flux.
- For scenario 3, β=20 can separate the neutron capture component, but the physical criterion allows a smaller β, in which case the uncertainty bands will have considerable overlap.

Summary

- Recent direct measurements of Ge quenching factor indicates a departure from the standard Lindhard model at low energies.
- Modification of quenching factor can mimic the signal of new physics.
- CEvNS experiments can provide an independent measurement of quenching factor if there is no new physics at present.
- Majority of reactor neutrino flux has not been measured, and an ultra-low threshold CEvNS experiment like NUCLEUS has the potential to probe the reactor neutrino flux below IBD.

Backup slides

Pandemonium effect

- Limited efficiency of detecting gamma-rays from the de-excitation of high energy nuclear levels
- Leads to an underestimate of some beta branching fractions in the beta decay into the high energy levels of daughter nuclei.

J. C. Hardy et al., Phys. Lett. B 71, 307 (1977).

 Can be corrected by Total Absorption Gamma-ray Spectroscopy (TAGS) technique.

