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CEνNS with reactor neutrinos
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Coherent Elastic 𝜈-Nucleus Scattering

𝑞 ≲ 1/𝑅Moment transfer Nuclear radius

Nuclear recoil energy 𝐸( ≤
*+,-

./*+,
~𝑂(10) keV

detection thresholds of 10 keVDM direct detection experiments

Satisfied for 𝐸5 < 50 MeV
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COHERENT, Science 357,1123 (2017) 



CE𝜈NS experiments
• 𝜋DAR source @ SNS 

CEvNS with reactor neutrinos 

• Reactor neutrino source

COHERENT first observed CE𝜈NS in 2017 
at the 6.7σ CL with a CsI detector

COHERENT, Science 357,1123 (2017) 

Later confirmed in 2020 at more than 
3σ CL with LAr detector 

COHERENT, PRL 126, 012002 (2021) 
< 𝑚@/2
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CONNIE uses a Si detector with 0.1 keVBBthreshold
CONNIE, PRD 100, 092005 (2019) 

CONUS uses a Ge detector with 0.3 keVBB threshold
CONNIE, PRL 126, 041804 (2021) 

Dresden-II uses a Ge detector with 0.2 keVBB threshold 
Colaresi at al. , PRL 129, 211802 (2022)
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𝞶GeN uses a Ge detector with 0.3 keVBB threshold
𝞶GeN, PRD 106, L051101 (2022) 



CE𝜈NS spectrum
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Measured number of events:

Quenching factor (QF):

Only a small portion of nuclear recoiling energy 𝐸< will go into 
electronic ionization energy 𝐸D , which is measured. 

• Differential cross section

• Event spectrum



Lindhard Model
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dimensionless reduced energy:

A larger k value leads to larger fraction 
of total energy going into electron. 

Lindhard el al, Mat. Fys. Medd. 
Dan. Vid. Selsk. 33 10 (1963)

the slope of electronic stopping power

Collar, et al, PRD 103, 122003 (2021）

Lindhard, 𝑘 = 0.157



Lindhard model

• Atomic binding energy of electrons is negligible. 
• Energy transfers to electrons are small wrt energy transfers to atoms. 

Modified Lindhard Model

• A posifve q value allows a 
sharp cutoff in the energy 
given to electrons. 

• A negafve q value allows an 
enhancement in the energy 
given to electrons. 
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JL, Liu, Marfatia, PRD 104, 015005 (2021)

Key approximations made in Lindhard model：

Sorensen, PRD 91, 083509 (2015) [arXiv: 1412.3028]
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• Both the light Zʹ and scalar cases with the standard Lindhard model can fit the 
SM spectrum with the modified Lindhard model QF.

• This will lead to confusion in determining the nature of new physics. 

Mimic the signal of new physics

JL, Liu, Marfatia, PRD 104, 015005 (2021)



Indirect measurement of quenching factor
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• Dotted line corresponds to the SM 
CEνNS prediction with the Lindhard
model QF.

• Solid line shows the SM CEνNS 
prediction using their new
measurement of QF.

• A very strong preference (p < 1.2 ×
10−3) for the presence of CEνNS.

• Caveats: Incomplete background 
model may be employed.



Indirect measurement of QF

CEvNS with reactor neutrinos 

JL, Liu, Marfatia, PRD 106, L031702 (2022)

Jiajun Liao 12

Blue (black) line are based on the 
data from the direct iron filter 
(photo-neutron) measurement.

• A negative value of q is preferred 
by the Dresden data at 2.5σ in SM.

• This best-fit point is consistent 
with direct QF measurements 
using neutron source. 
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• Left panel assuming the standard Lindhard QF model is valid. A mild 
preference for the new physics if the Lindhard model is assumed.

• Right panel marginalizing over the (k,q) of the modified Lindhard
model. Constraints are qualitatively affected by the QF model.

Constraints on new physics 



Measure reactor neutrinos below IBD
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Reactor neutrino flux
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TEXONO, hep-ex/0605006
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𝐸IJ = 1.8 MeV



Theoretical predictions
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• Conversion method：
Huber-muller model, only 
allows an estimate of the 
reactor neutrino spectrum 
between 2−8 MeV. It does not 
predict the 5 MeV bump.

• Summation method：
sum over all contributions of 
fission products from the 
nuclear data libraries, suffered 
from unknown branching ratios 
due to the Pandemonium effect. 

Esfenne, et al., PRL 123, 022502 (2019)

Estienne, et al., J. Phys. Conf. Ser. 
1643, 012022 (2020).



NUCLEUS experiment 

CEvNS with reactor neutrinos 

• NUCLEUS uses cryogenic
calorimeters to measure the 
temperature rise and has achieved 
a 20 eV threshold using a 0.5 g 
prototype made from Al2O3. 

• A total 10 g mass of CaWO4 and 
Al2O3 crystals, and 1 kg of Ge is 
planned. NUCLEUS-1kg is 
expected to have a background 
below 100 ckkd and an ultralow 
energy threshold of 5 eV. 
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EPJC 77, 506 (2017) [1704.04320]

EPJC 79, 1018 (2019) [1905.10258]
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NUCLEUS spectrum

• High energy neutrino flux (Eν > 2 MeV) 
has a negligible contribution to the 
low-energy CEvNS spectrum.

• The existence of neutron capture 
component can be established at 3σ 
with 5 year⋅kg exposure.
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Normal unfolding
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CEνNS spectrum: 

Neutrino flux: 

Minimize:

Response matrix 

Statistical fluctuations in observed spectrum 



Regularized unfolding
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Bias: 

The neutrino flux is obtained by minimizing the regularized function φ
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Covariance matrix:

Estimated neutrino flux: 

Esfmated CEvNS spectrum: 

Tikhonov regularization: 



β selecfon criterion

CEvNS with reactor neutrinos 

• Consistent with a strategy for 
selecting β that lowers β until B ∼ m 

• A large β suppresses the variance, 
but allows an increased bias. 

• The physical criterion: we choose the 
smallest value of β that yields a 
positive definite flux at all energies.

• Average bias N𝐵 plateaus at a value 
that is not much larger than the 
number of bins m.
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Results

CEvNS with reactor neutrinos 

• For scenario 3, β=20 can separate the 
neutron capture component, but the 
physical criterion allows a smaller β, in 
which case the uncertainty bands will 
have considerable overlap. 

Jiajun Liao 22

• For scenario 1 and 2, a meaningful 
upper bound can be placed on the low 
energy flux.



Summary
• Recent direct measurements of Ge quenching factor indicates a 

departure from the standard Lindhard model at low energies.

• Modification of quenching factor can mimic the signal of new 
physics. 

• CEvNS experiments can provide an independent measurement of  
quenching factor if there is no new physics at present.

• Majority of reactor neutrino flux has not been measured, and an 
ultra-low threshold CEvNS experiment like NUCLEUS has the 
potential to probe the reactor neutrino flux below IBD. 
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Thanks!



CEvNS with reactor neutrinos 

Backup slides

Jiajun Liao 24



Pandemonium effect 
• Limited efficiency of detecting 

gamma-rays from the de-excitation 
of high energy nuclear levels 

• Leads to an underestimate of some 
beta branching fractions in the beta 
decay into the high energy levels of 
daughter nuclei. 

• Can be corrected by Total 
Absorption Gamma-ray 
Spectroscopy (TAGS) technique.
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J. C. Hardy et al., Phys. Lett. B 71, 307 (1977).

Ang, Li and Prasad, 2112.12250


