Neutrinoless Double Beta Decay

Experiments In China

Shaobo Wang 2023-07-04

Shaobo.wang@sjtu.edu.cn

Outline

- Neutrinoless double deta decay
- Detection of double beta decay
- Neutrinuless double deta decay experiments in China
 - PandaX experiment
 - ➤CDEX experiment
 - CUPID-CJPL experiment
 - ► NvDEx experiment
 - >JUNO-0νββ experiment
- Summary

Neutrinoless double beta decay (0 $\nu\beta\beta$)

• $2\nu\beta\beta$: 9 isotopes, including ¹³⁶Xe, ⁷⁶Ge, ¹³⁰Te, ⁸²Se and ¹⁰⁰Mo

Normal Inverted

- $0\nu\beta\beta$: Majorana Neutrino? Lepton number violation?
- Measures effective Majorana mass: relate $0\nu\beta\beta$ to the neutrino oscillation physics

Detection of $0\nu\beta\beta$

- Measure energies of emitted electrons
- Electron tracks are a huge plus
- Daughter nuclei identification

Sum of two electrons energy

Experiment: large exposure, high energy resolution, low background level and signal-background discrimination

Simulated tracks in high pressure Xe

$0\nu\beta\beta$ experiments

Expected $0\nu\beta\beta$ experiments in China

CJPL-II (China Jin Ping underground Lab-II)

CJPL: Deepest underground lab

- Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access with ~9 km long tunnel: large truck can drive in.
- National key science research facility for dark matter searches, neutrino physics, and astroparticle physics, etc.

CJPL-II: much enlarged underground lab space

PandaX project overview

Dual phase xenon TPC

Dark matter: nuclear recoil (NR)

γ background: electron recoil (ER)

(S2/S1)_{NR}<<(S2/S1)_{ER}

Dual phase xenon detector capability:

- S1: prompt scintillation signal
- S2: delayed ionization signal
- ER/NR identification
- 3D reconstruction and fiducialization
- Calorimeter from sub keV to MeV
- Self shielding effect can effectively suppress the background

Gamma

electron recoil

WIMP nuclear recoil

$0\nu\beta\beta$ search in PandaX

- 580kg natural xenon+403.1 day
 DM data
- First ¹³⁶Xe $0\nu\beta\beta$ search from a DM detector (2.4×10²³yr)
- Verified feasibility and potential of DM detector for $0\nu\beta\beta$ search

Comparison with other natural LXe TPC for $0\nu\beta\beta$

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Run time	Sensitivity/Limit (90% CL, year)
PandaX-II	~200	4.2%	219	403.1 days	2.4 ×10 ²³
PandaX-4T	9	1.9%	649.7 ± 6.5	94.9 days	> 10 ²⁴
XENON1T	~20	0.8%	741 ± 9	202.7 days	1.2×10^{24}
XENONnT	~2	0.8%	1128	1000 days	2.1×10^{25}
LZ	~0.1	1%	967	1000 days	1.06×10^{26}
DARWIN	~0.004	0.8%	5000	10 years	2.4×10^{27}

Upgrade of PandaX-4T with improved PMT bases is planned

- Better energy resolution
- Better SS/MS discrimination

PandaX-xT: 47-ton xenon, including 43-ton sensitive volume

PandaX-III experiment

- PandaX-III: high pressure (10 bar) gaseous TPC (140 kg ¹³⁶Xe of 90%), 1.2m×1.6m active volume
- Readout plane: 52 20×20 cm² Micromegas modules of 3 mm strip (64 strips in each side)
- The topological information is powerful for signal and background discrimination
- Detection sensitivity: 2.7×10^{26} yr with 5-year live time

PandaX-III detector

JHEP 06 (2021) 106

Shaobo Wang, SJTU

Micromegas

CDEX experiment

- HPGe detector for 0vββ: very good energy resolution and background control
- CDEX developed various HPGe detectors for 0vββ experiment
- CDEX has obtained 200kg of ⁷⁶Ge (>86%) material, with 100kg from Russia and 100kg from China

Sci. China PMA. 60, 071011 (2017)

CDEX experiment

Parameter	CDEX-300	CDEX-1T	CDEX-10T	
⁷⁶ Ge mass	225 kg	1000 kg	10000 kg	
BI@2039keV	10 ⁻⁴ cpkky	5×10 ⁻⁶ cpkky (20 times lower)	1×10 ⁻⁶ cpkky (5 times lower)	
Run time	Construction 5y (2021-2027) Run 5y (2027-2031)	Construction 5y (2028-2034) Run 5y (2035-2039)	Construction 5y (2035-2039) Run 10y (2040-2050)	
Exposure	>1 t·y	5 t∙y	100 t·y	
T _{1/2}	>1.0×10 ²⁷ y	>1.0×10 ²⁸ y	>1.0×10 ²⁹ y	
m _{ββ}	<[28.5~68.0] meV	<[11.6~26.4] meV	<[2.9~6.7] meV	
LAr purification system.	FADCrebe system	10^{-1} Excluded by $0\nu\beta\beta$ experiment (90%CL), smallest NME Excluded by $0\nu\beta\beta$ experiment (90%CL), largest NME Inverted 10^{-1} Excluded by $0\nu\beta\beta$ experiment (90%CL), largest NME Inverted 10^{-2} 10^{-2} 10^{-3} 10^{-4} 10^{-4} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-1}	 10²⁷yr CDEX-300 10²⁸yr CDEX-1T 10²⁹yr CDEX-10T See the talk of Wenhao Dai	

CUPID-CJPL experiment

CUPID-CJPL: A ^{100}Mo -based scintillating bolometer experiment for $0\nu\beta\beta$ search at CJPL-II

- ¹⁰⁰Mo-enriched LMO crystals : high $Q_{\beta\beta}$ (~3034 keV)
- High energy resolution $\Gamma_Q \sim 0.2\%$ (FWHM), $R_{2\nu\beta\beta/ROI} < 10^{-5}$
- Light-heat dual readout (particle identification)

A bolometer experiment for $0\nu\beta\beta$ like CUORE See the talk of Claudia Tomei and Long Ma

CUPID-CJPL experiment

CUPID-CJPL Roadmap

- > 10 kg prototype experiment
 - demonstrate CUPID technologies
- > 200 kg / 1T experiment
 - competitive results

$N\nu DEx$ experiment

- Ion TPC using high-pressure ⁸²SeF₆ gas (10 bar) and the top-metal silicon sensors for read-out
- N ν DEx-100 with 100 kg of SeF₆ gas, is being built and planned to complete with installation at CJPL around year 2025
- Background suppression using event topology information

arXiv: 2304.08362 (NvDEx-100 CDR)

$N\nu DEx$ experiment

- High Q value (2.996 MeV) of ⁸²Se and low background budget
- NvDEx-100 can achieve very low background level of 0.05 cts / yr in ROI
- $T_{1/2}$ sensitivity of 4 × 10²⁵ (4 × 10²⁶) yr at 90% CL after 5 years of running, using 100 kg of natural SeF₆ (enriched ⁸²SeF₆) gas

JINST 13 P03015

JUNO- $0\nu\beta\beta$ experiment

JUNO: 20 kton multi-purpose neutrino detector with the primary goal : See the talk of Yee Bob Hsiung

- Determine Neutrino mass ordering
- Precision measurement of neutrino oscillation
- JUNO offers an unique opportunity to search for $0\nu\beta\beta$ (JUNO- $0\nu\beta\beta$):
 - 20 kton LS \rightarrow 100-ton scale isotope loading (e.g., Tellurium)
 - Energy resolution < 3% @ 1 MeV → 2.4x better than KamLAND-Zen See the talk of Nanami Kawada
 - JUNO- $0\nu\beta\beta$ has the potential to explore the $|m\beta\beta|$ ~meV region w/ >100 tons of $0\nu\beta\beta$ isotope

Searching for $0\nu\beta\beta$ decays in JUNO, Snowmass2021 LOI Snowmass2021 Topical group report for NF05, arXiv 2209.03340 Shaobo Wang, SJTU

Concept of the experiment

- Searching for 0vββ decay is the most sensitive to probe the nature of neutrino mass and absolute neutrino masses
- $0\nu\beta\beta$ experiments in China
 - \geq PandaX experiment: PandaX-4T \rightarrow PandaX-xT
 - \succ CDEX experiment: CDEX-300 \rightarrow CDEX-1T \rightarrow CDEX-10T
 - >CUPID-CJPL experiment: CUPID-CJPL 10 kg \rightarrow 200kg/1T
 - ► NvDEx experiment: 100 kg natural SeF₆ or enriched ⁸²SeF₆
 - >JUNO-0v $\beta\beta$ experiment: 100-ton scale isotope of Te or Xe

CUPID-CJPL

International CUPID collaboration

International Collaboration: CUPID – Italy CUPID – US CUPID – France CUPID – China

~ 30 institutes, >150 collaborators

CUPID-China collaboration

~ 9 institutes, > 40 collaborators

CUPID-China is actively collaborating with CUPID- France, Italy and US

Possible isotope seperation/enrichment

- Xenon with artificially modified isotopic abundance (AMIA), either via a split of odd and even nuclei, or further enrichment of Xe-136
- To improve sensitivity to spin-dependence of DM-nucleon interactions and NLDBD

Major advantages of natural xenon measurement

- Fiducialization (and MS/SS discrimination) to suppress background.
- Robust determination of background throughout the FV
- Extremely versatile physics program (DM/neutrino/exotics)

\Rightarrow A very appealing interim solution.

40 Ton

JUNO- $0\nu\beta\beta$ experiment

- Liquid scintillator is a competitive technology to go beyond 10^{28} yr of $T_{1/2}$
- By 2030, the current LS experiments (KamLAND, SNO+) may reach 10²⁷ yr, next generation projects (LEGEND, nEXO, CUPID) may start running
- JUNO- $0\nu\beta\beta$ has the potential to explore the $|m\beta\beta|^{meV}$ region w/ >100 tons of $0\nu\beta\beta$ isotope

