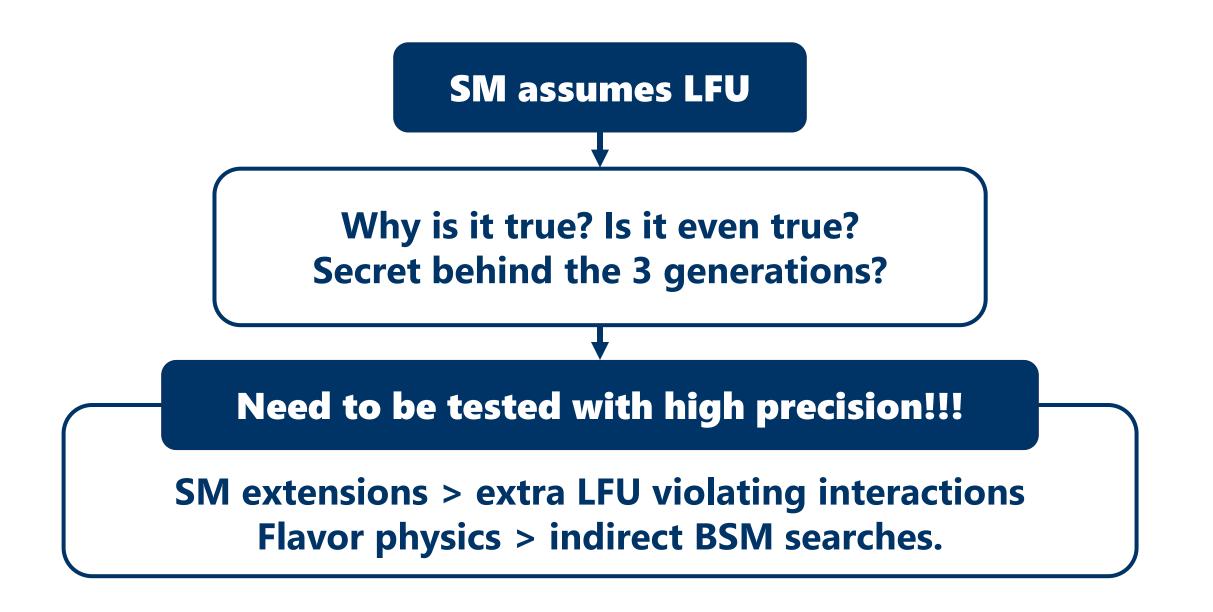
Testing

apton Flavor Universality

at Future Z Factories


WIN2023 7 July 2023

(Anson) Tsz Hong Kwok
 [Hong Kong University of Science and Technology]
 Based on arXiv:2212.02433 with Tin Seng Manfred Ho, Xu-Hui Jiang, Lingfeng Li, Tao Liu

What is LFU? And Why?

SM assumes:

Three generations of leptons are the same (having same couplings to the SM gauge bosons) except having different masses.

How to Test LFU?

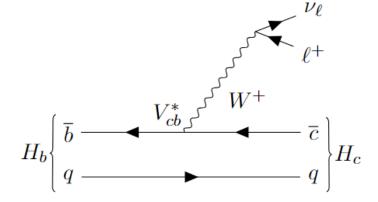
b-hadron decays:

 \overline{s}

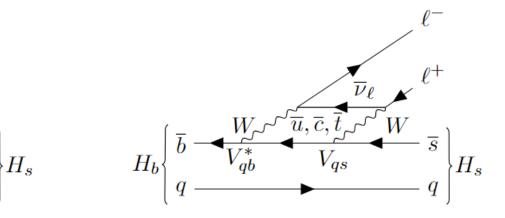
 γ, Z

 $\sim \sim \sim \sim$

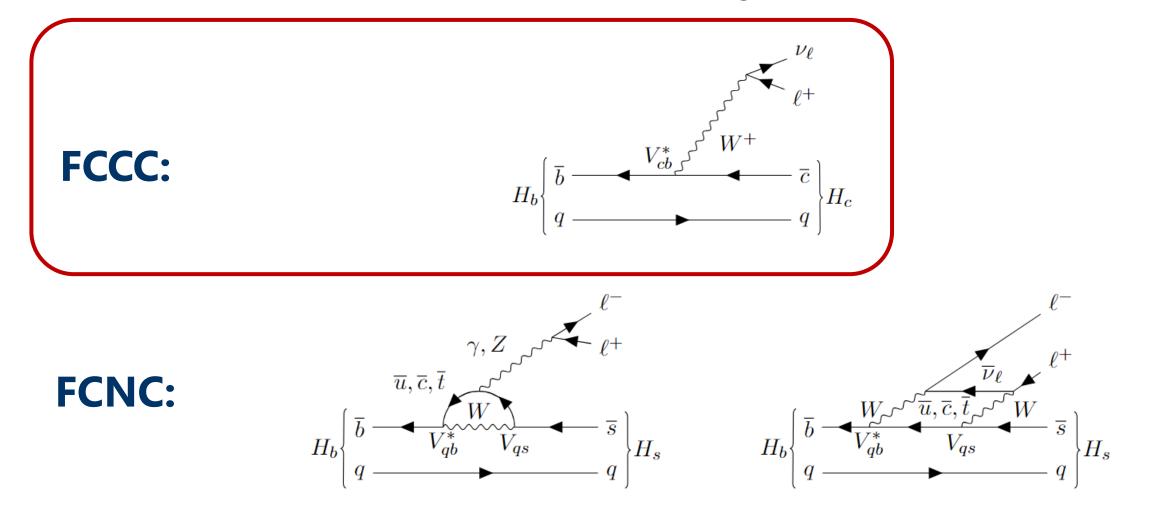
 V_{qs}


 $\overline{u},\overline{c},\overline{t}$

ab


 H_b

q



How to Test LFU?

b-hadron decays:

Future Z Factories

ee circular collider at COM energy ~ 91GeV Produces O(10¹²-10¹³) Z bosons [Tera / 10×Tera-Z]

CEPC @ China

Carlo Constant and a second second

FCC-ee @ CERN

5

Why Z Factories?

Z Factories v.s. b Factories

- Abundant H_b
- High boost

•

- Better tracking
- Low vertex uncertainty

Z Factories v.s. Hadronic Machine

- Clean environment
- High acceptance
- Fixed E_{cm}
- Direct E_{miss} measurement
- Better flavor tagging
- •

Goal: Set b>cτv baseline for Z Factories

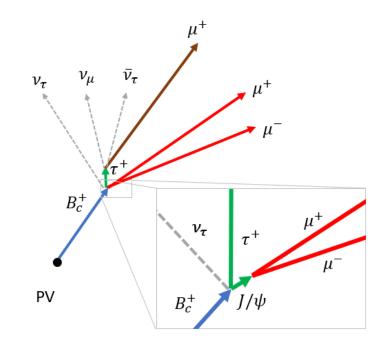
Advantages of Z Factories for us?

Variety b-hadrons accessible:
 ▶ b factories (e.g. Belle II) can't produce B_c⁺, Λ_b⁰, (only few B_s⁰)

Having v(s) Produced: (crucial to getting H_b info.) ▶ Better handle than LHCb

Studying τ Mode: ► More precise info. about τ decay

Signal (FCCC: b>cτν)


$$\begin{split} R_{J/\psi} &= \frac{\mathrm{Br}(B_c \to J/\psi\tau\nu)}{\mathrm{Br}(B_c \to J/\psi\mu\nu)} \qquad J/\psi \to \mu\mu, \tau \to \mu\nu\bar{\nu} \\ R_{D_s^{(*)}} &= \frac{\mathrm{Br}(B_s \to D_s^{(*)}\tau\nu)}{\mathrm{Br}(B_s \to D_s^{(*)}\mu\nu)} \qquad D_s^* \to D_s\gamma, D_s \to \phi(\to KK)\pi, \tau \to \mu\nu\bar{\nu} \\ R_{\Lambda_c} &= \frac{\mathrm{Br}(\Lambda_b \to \Lambda_c\tau\nu)}{\mathrm{Br}(\Lambda_b \to \Lambda_c\mu\nu)} \qquad \Lambda_c \to pK\pi, \tau \to \mu\nu\bar{\nu} \\ \end{split}$$

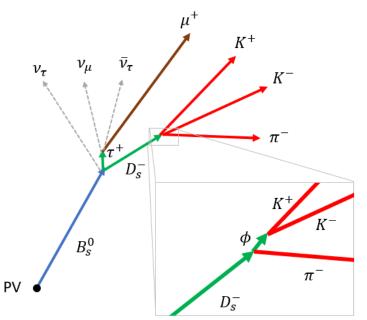
 H_c decays to charged final states: H_c can be fully reconstructed! Tera-Z can produce many of such H_b , while B-factories can't do! (or just few)

Reconstruction Scheme

- 1. Reconstruct H_c and identify μ
- 2. Deduce H_b decay vertex

If H_c is prompt: H_b decay vertex = H_c decay vertex

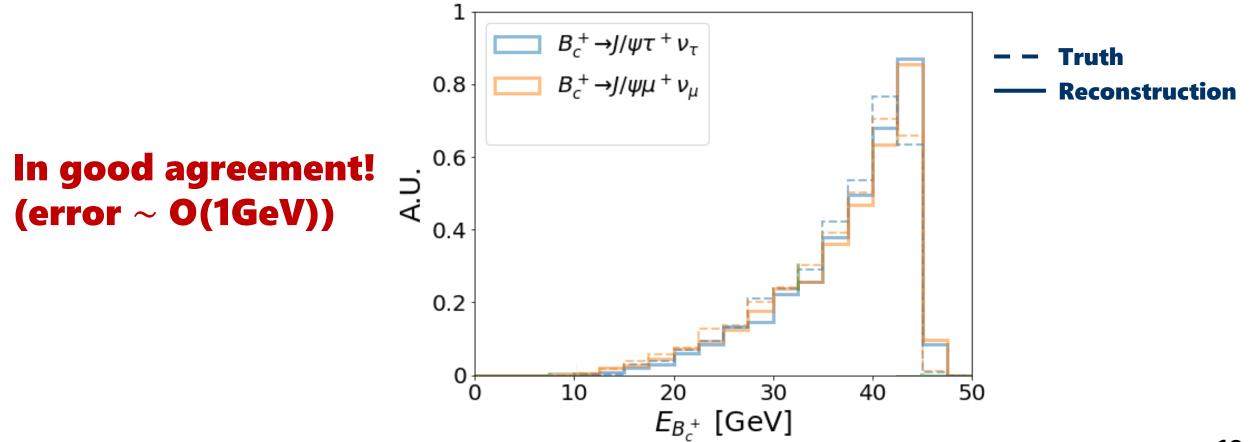
 H_b decay vertex = point at H_c trajectory closest to μ track


(4 MeV)

200

LHCb

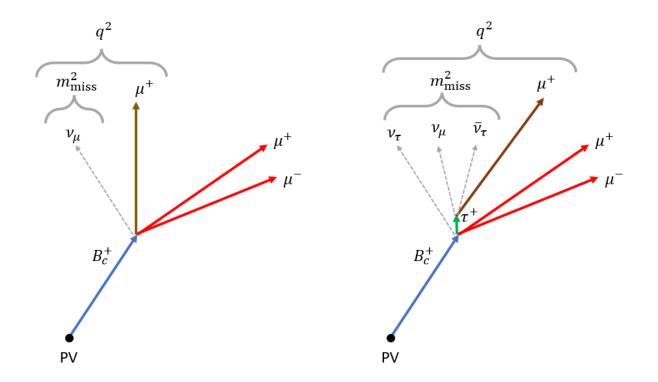
 $m(pK^{-}\pi^{+})$ [MeV]


2300

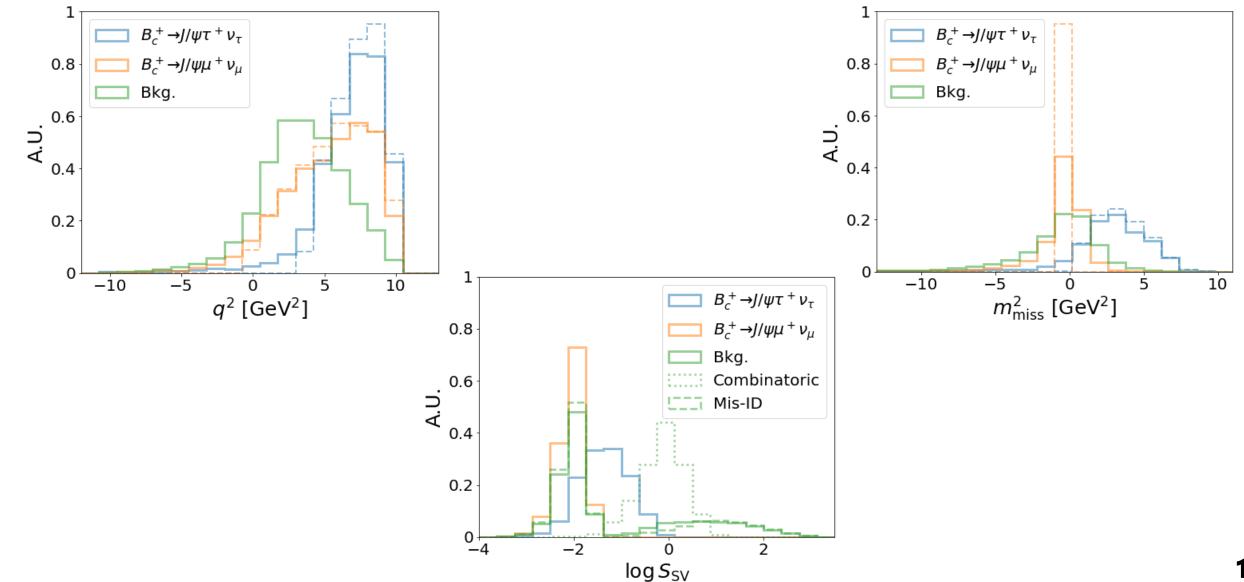
Reconstruction Scheme

3. Deduce b-hadron energy:

(Energy-momentum conversation)

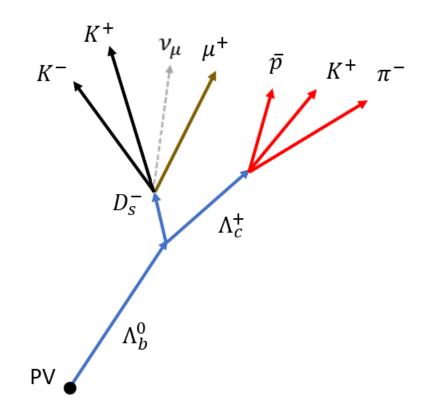


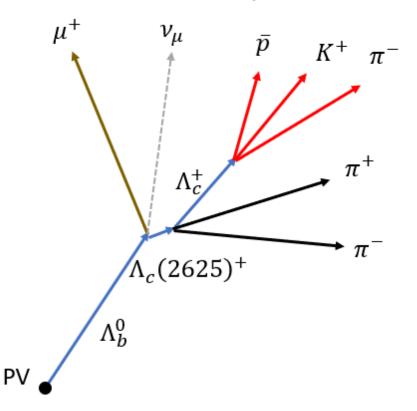
Discriminators for τ , μ Channel Separation


Momentum transferred to lepton system: $q^2 \equiv (p_{Bc} - p_{J/\psi})^2$

Missing mass: $m_{miss}^2 \equiv (p_{Bc} - p_{J/\psi} - p_{\mu})^2$

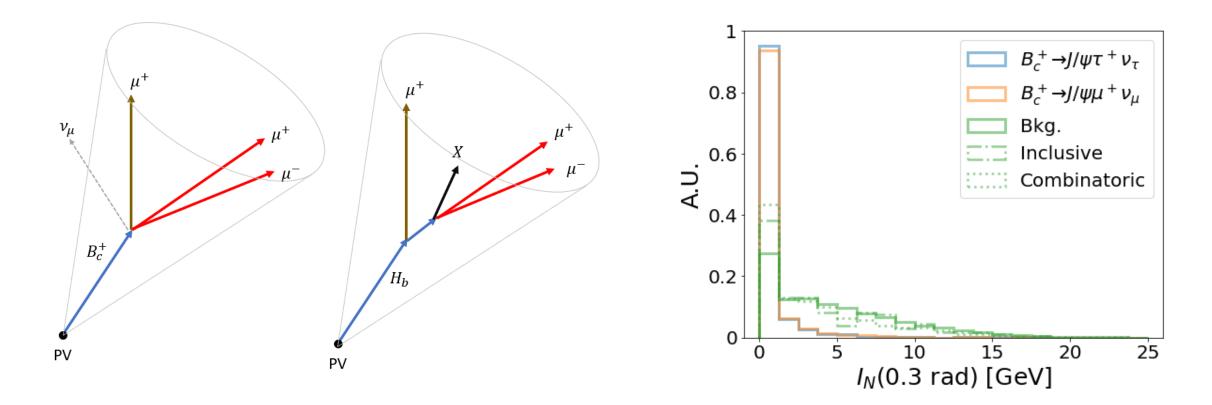
The closest distance between secondary vertex (SV) and muon track

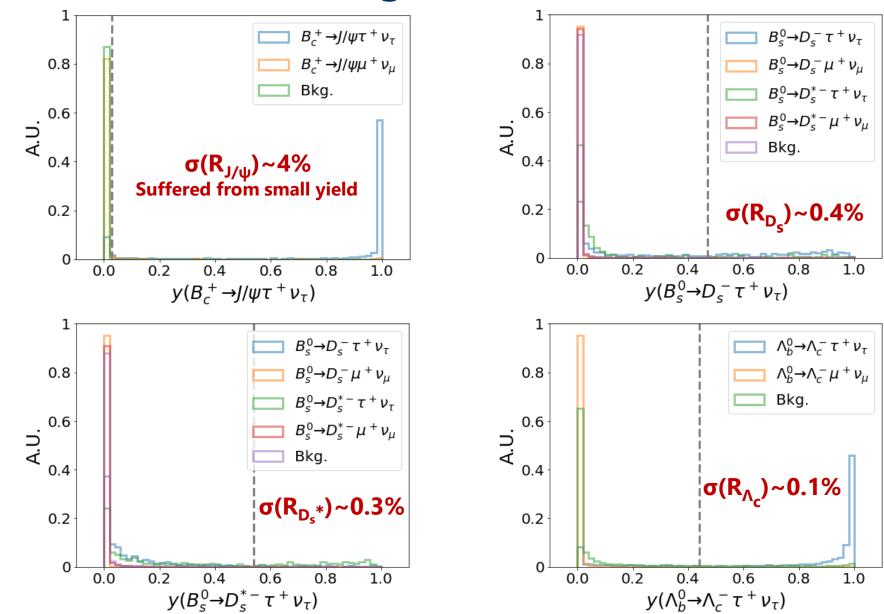

Discriminators for τ , μ Channel Separation

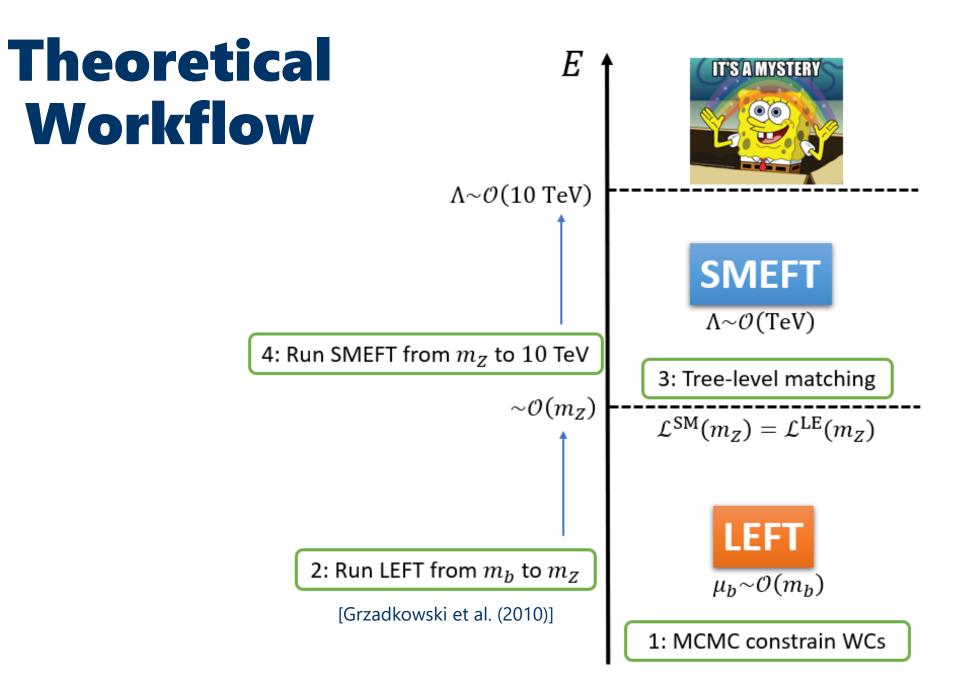

Wrong lepton Production

For example:

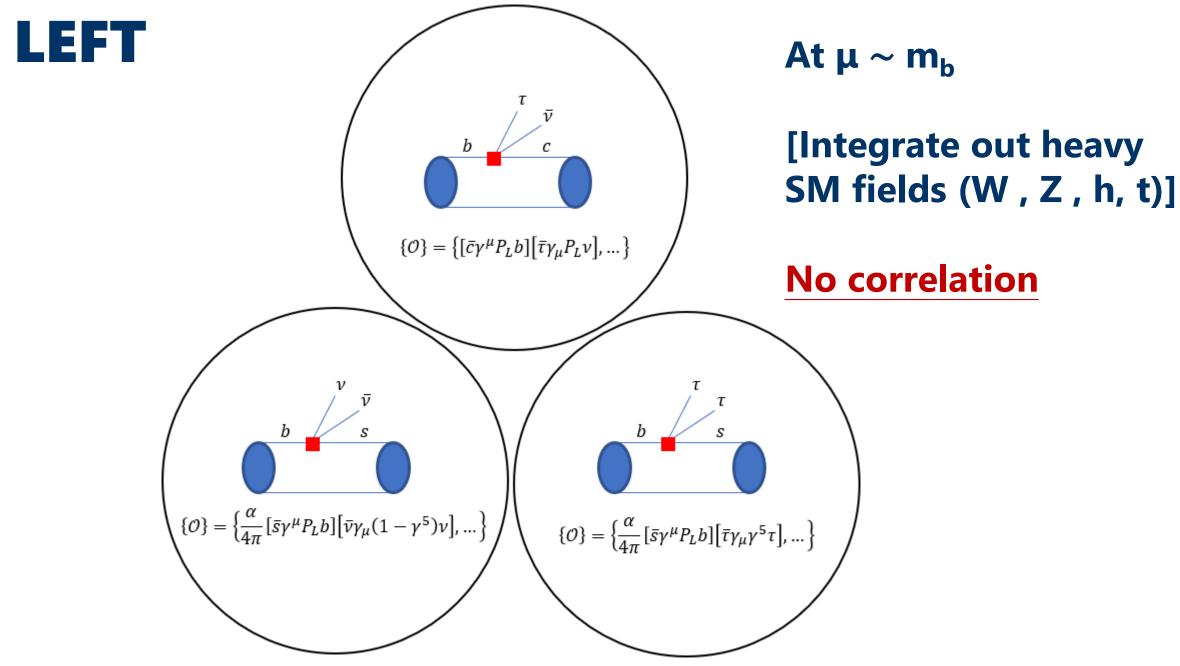
Wrong H_c Production


For example:

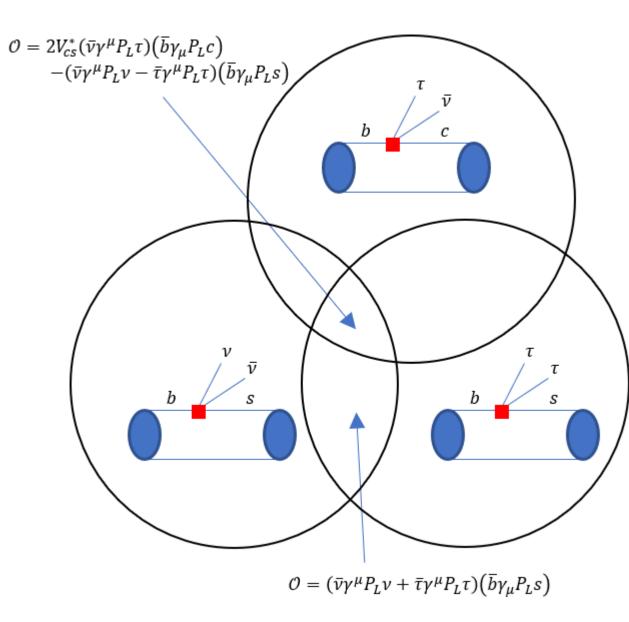

Discriminators for Background Separation


Isolation variable:

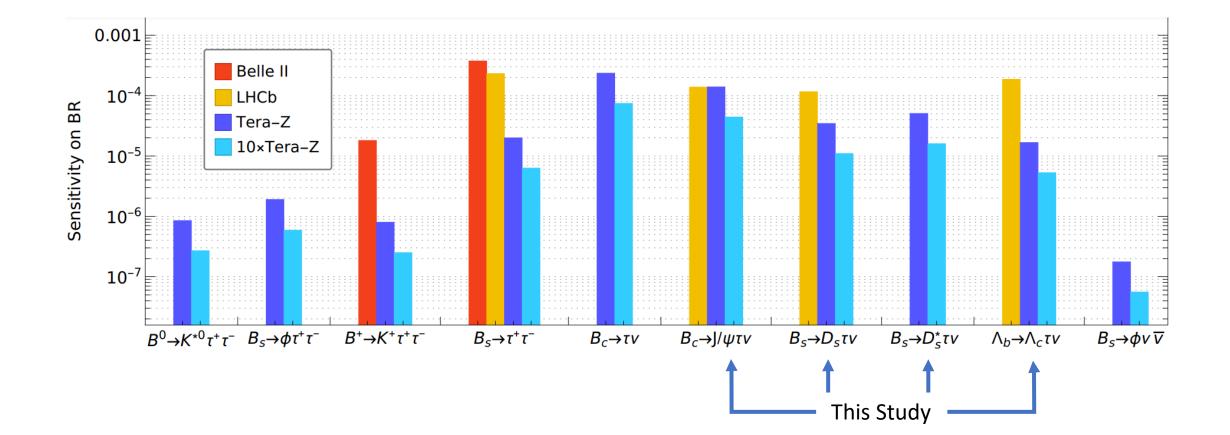
total energy, except the tagged final states, inside 0.3(0.6) rad of B cone

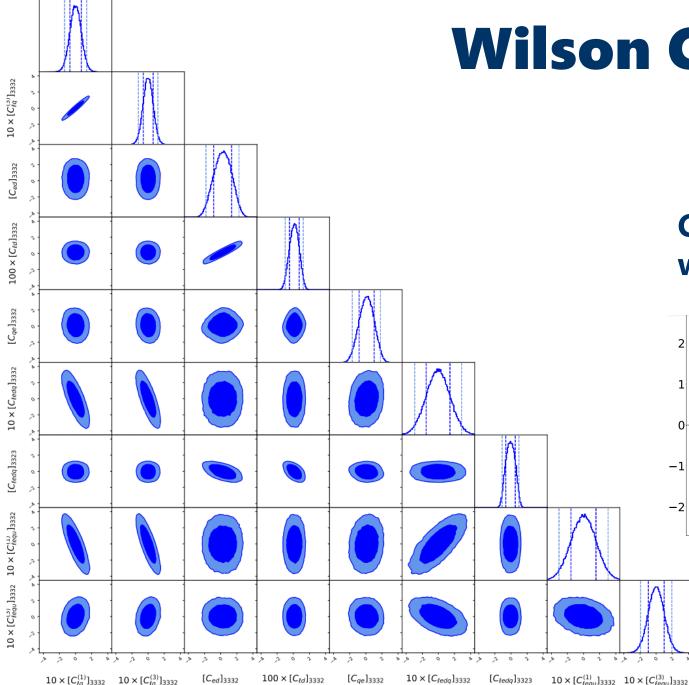


Stat. only BDT results



16

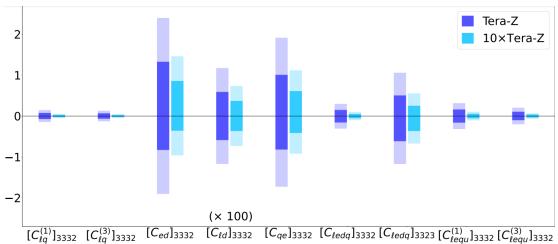



At Λ ~ multi-TeV

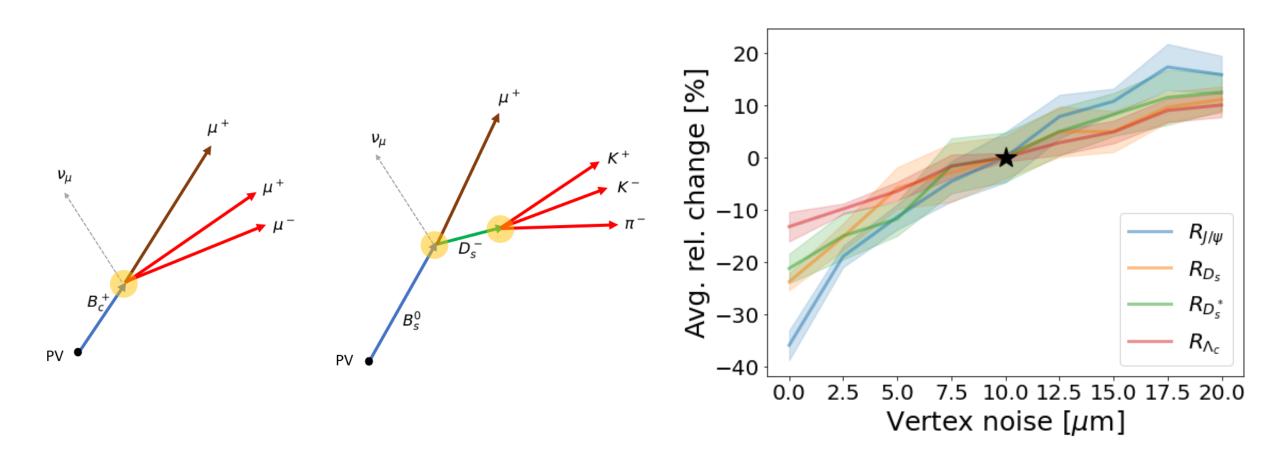
[All SM fields Under SM sym]

Correlated!!!

[Zheng et al. (2020); Kamenik et al. (2017); Capdevila et al. (2018); Li and Liu (2021); Buras et al. (2015); Li et al. (2022)]


 $100 \times [C_{td}]_{3332}$

 $[C_{ed}]_{3332}$


 $10 \times [C_{l_a}^{(1)}]_{3332}$ $10 \times [C_{l_a}^{(3)}]_{3332}$

Wilson Coeff. Constraints

Constraint of NP up to multi-TeV when Wilson Coeff. are about O(1)

Detector Tracking Resolutions

Robustness: Vary vertex noise level (0, .., **10**,..., 20 µm)

Conclusion

Z-pole can test Lepton Flavor Universality, the secret behind generations, in a clean way!!!

- Setting up a baseline of $b \rightarrow c\tau v$ for Z Factories
- High precision in $R_{J/\psi}$, $R_{D_{s'}}$, $R_{D_{s}}$ *, $R_{\Lambda c}$: O(0.1%) O(1%)
 - Abundant and energetic H_b
 - Clean environment
 - Known initial energy
- EFT can prob NP up to 10TeV
 - Constraint of NP up to multi-TeV when Wilson Coeff. Are about O(1)

Hadrons	Belle II	LHCb (300 fb^{-1})	CEPC $(10^{12}Z)$
$B^0, ar{B}^0$	5.4×10^{10}	$\sim 3 \times 10^{13}$	1.2×10^{11}
B^{\pm}	5.7×10^{10}	$\sim 3 \times 10^{13}$	1.2×10^{11}
B_s, \bar{B}_s	$6.0 imes 10^8$	$\sim 1 \times 10^{13}$	$3.1 imes 10^{10}$
B_c^{\pm}	-	$\sim 2 \times 10^{11}$	1.8×10^{8}
$\Lambda_b,ar\Lambda_b$	-	$\sim 2 \times 10^{13}$	2.5×10^{10}

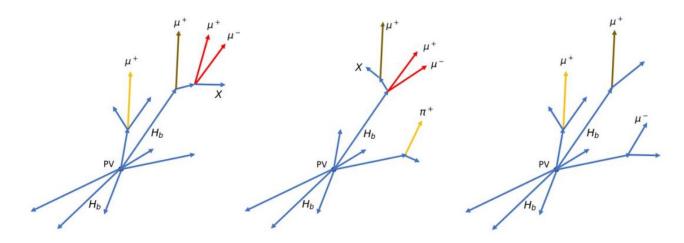
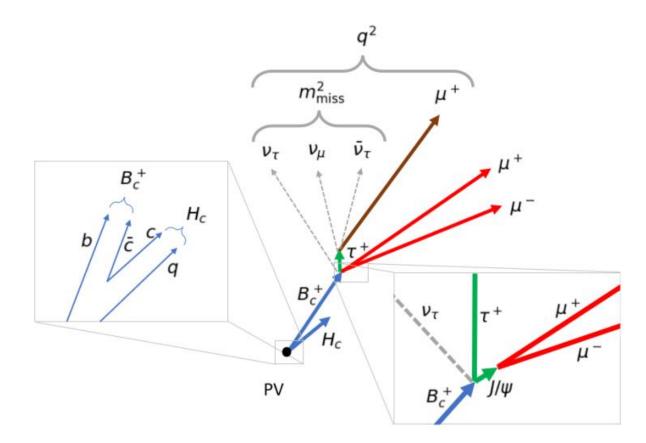
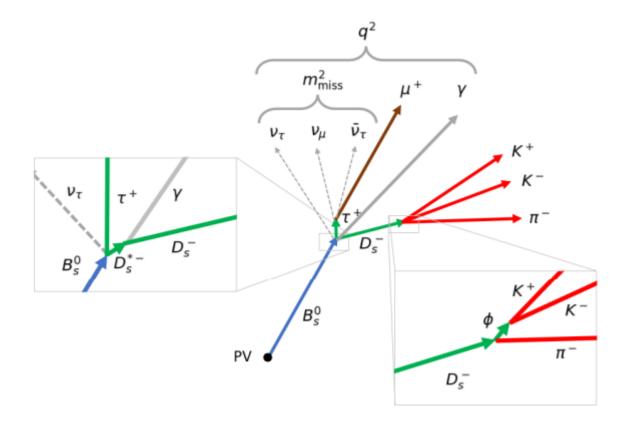
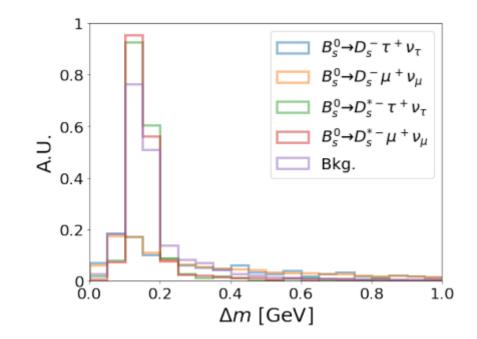
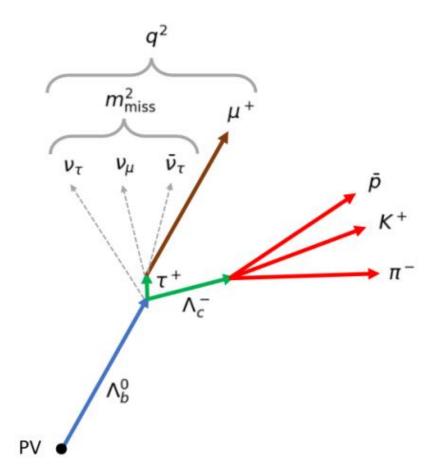




Figure 2: Schematics of the universal backgrounds in the $R_{J/\psi}$ measurement. Left: The typical topology for the inclusive backgrounds and the combinatoric backgrounds, where B_c^+ is reconstructed combining muons produced by the J/ψ (red), and the unpaired muon from semi-leptonic H_b decay (brown) or irrelevant particle decay (orange), respectively. Middle: The typical topology for the cascade backgrounds and the Mis-ID backgrounds, where B_c^+ is reconstructed combining the muons decayed from J/ψ (red), and the unpaired muon from intermediate hadron decay (brown) and pion misidentification (orange), respectively. Right: The typical topology for the fake H_c backgrounds, where the muons which do not share a parent particle (brown and orange) are used to reconstruct J/ψ .



Channel	Events at Tera- Z	$N(3\mu)$	$N(J/\psi)$	$N(B_c^+)$	Total eff.
$B_c^+ \to J/\psi \tau^+ \nu_\tau$	$9.83 imes 10^3$	$6.53 imes 10^3$	$3.83 imes 10^3$	$3.08 imes 10^3$	31.34%
$B_c^+ \to J/\psi \mu^+ \nu_\mu$	$2.39 imes 10^5$	$1.63 imes 10^5$	$9.66 imes 10^4$	$8.40 imes 10^4$	35.13%
Inclusive bkg.	$1.27 imes 10^4$	$8.20 imes 10^3$	$5.29 imes 10^3$	$3.90 imes 10^3$	30.63%
Cascade bkg.	1.81×10^4	4.89×10^3	$3.32 imes 10^3$	$1.84 imes 10^3$	10.15%
Combinatoric bkg.	$4.64 imes 10^7$	$3.93 imes 10^7$	$2.66 imes 10^7$	$7.78 imes 10^4$	0.17%
Mis-ID bkg.	$\epsilon_{\mu\pi} \times 1.45 \times 10^9$	$\epsilon_{\mu\pi} \times 1.03 \times 10^9$	$\epsilon_{\mu\pi} \times 6.96 \times 10^8$	$\epsilon_{\mu\pi} \times 1.10 \times 10^8$	7.61%

q^2 range	$B_c^+ \to J/\psi \tau^-$	$^+\nu_{ au}$	$B_c^+ \to J/\psi\mu$	$+\nu_{\mu}$	$R_{J/\psi}$
<i>q</i> range	Rel. precision	S/B	Rel. precision	S/B	Rel. precision
$q^2 < 7.15 \text{ GeV}^2$	8.19×10^{-2}	0.18	5.18×10^{-3}	48.80	8.20×10^{-2}
$q^{-} < 7.15 \text{ GeV}^{-}$	(2.59×10^{-2})	0.10	(1.64×10^{-3})	40.00	(2.59×10^{-2})
$q^2 \ge 7.15 \text{ GeV}^2$	4.56×10^{-2}	0.47	$6.93 imes 10^{-3}$	96.27	4.61×10^{-2}
$q \geq 7.15 \text{ GeV}$	(1.44×10^{-2})	0.47	(2.19×10^{-3})	90.27	(1.46×10^{-2})
Full a^2	4.23×10^{-2}	0.29	4.15×10^{-3}	58.31	4.25×10^{-2}
Full q^2	(1.34×10^{-2})	0.29	(1.31×10^{-3})	00.01	(1.35×10^{-2})


Channel	Events at Tera- Z	$N(KK\pi\mu)$	$N(D_s^-)$	$N(B_s^0)$	Total eff.
$B_s^0 \rightarrow D_s^- \tau^+ \nu_{\tau}$	1.03×10^6	7.92×10^{5}	6.45×10^{5}	4.81×10^{5}	46.77%
$B_s^0 \to D_s^- \mu^+ \nu_\mu$	1.50×10^7	$1.18 imes 10^7$	$9.93 imes 10^6$	8.41×10^6	56.08%
$B_s^0 \to D_s^{*-} \tau^+ \nu_{\tau}$	$1.72 imes 10^6$	$1.30 imes 10^6$	$1.05 imes 10^6$	$7.65 imes 10^5$	44.61%
$B_s^0 \to D_s^{*-} \mu^+ \nu_\mu$	$3.35 imes 10^7$	2.56×10^7	$2.11 imes 10^7$	$1.78 imes 10^7$	53.11%
Inclusive bkg.	$5.78 imes 10^6$	4.28×10^6	$3.28 imes 10^6$	$2.72 imes 10^6$	47.03%
Cascade bkg.	$8.44 imes 10^7$	$6.20 imes 10^7$	$2.33 imes 10^7$	$8.71 imes 10^6$	10.33%
Combinatoric bkg.	1.36×10^8	1.16×10^8	$2.24 imes 10^7$	$2.17 imes 10^4$	0.02%
Mis-ID bkg.	$\epsilon_{\mu\pi} \times 1.05 \times 10^{10}$	$\epsilon_{\mu\pi} \times 4.33 \times 10^9$	$\epsilon_{\mu\pi} \times 8.41 \times 10^8$	$\epsilon_{\mu\pi} \times 8.50 \times 10^7$	0.81%

BVUID

q^2 range	$B_s^0 \to D_s^- \tau^+ \nu_\tau$		$B_s^0 \to D_s^- \mu^+ \nu_\mu$		R_{D_s}	Correlation	
q range	Rel. precision	S/B	Rel. precision	S/B	Rel. precision	$ ho \le R_{D_s^*}$	
$q^2 < 7.15 \ { m GeV}^2$	$8.17 imes 10^{-3}$	0.49	$5.83 imes10^{-4}$	1.57	$9.37 imes 10^{-3}$	-0.56	
$q^{-} < 7.15 \text{ GeV}^{-}$	(2.58×10^{-3})	0.49	(1.84×10^{-4})	1.07	(2.96×10^{-3})	-0.50	
$q^2 \ge 7.15 \text{ GeV}^2$	4.43×10^{-3}	0.62	$1.39 imes 10^{-3}$	0.74	4.72×10^{-3}	-0.48	
$q \ge 1.15 \text{ GeV}$	(1.40×10^{-3})	0.02	(4.38×10^{-4})	0.74	(1.49×10^{-3})	-0.40	
Full q^2	$3.81 imes 10^{-3}$	0.60	$5.42 imes 10^{-4}$	1.28	$4.09 imes 10^{-3}$	-0.49	
run q	(1.21×10^{-3})	0.00	(1.72×10^{-4})	1.20	(1.30×10^{-3})	-0.45	

q^2 range	$B_s^0 \to D_s^{*-} \tau^+ \nu_\tau$		$B_s^0 \to D_s^{*-} \mu^+ \nu_\mu$		$R_{D_s^*}$	Correlation
<i>q</i> range	Rel. precision	S/B	Rel. precision	S/B	Rel. precision	$ ho$ w/ R_{D_s}
$q^2 < 7.15 \ { m GeV}^2$	$9.93 imes 10^{-3}$	0.53	5.24×10^{-4}	7.90	$9.93 imes 10^{-3}$	-0.56
-	(3.14×10^{-3})	0.55	(1.66×10^{-4})	7.90	(3.14×10^{-3})	-0.50
$q^2 \ge 7.15 \text{ GeV}^2$	$3.50 imes 10^{-3}$	1.04	$5.94 imes 10^{-4}$	15.25	$3.49 imes 10^{-3}$	-0.48
<i>q</i> ≥ 1.15 Gev	(1.11×10^{-6}) (1.88×10^{-4})	10.20	(1.10×10^{-3})	0.40		
Full q^2	$3.27 imes 10^{-3}$	0.95	$3.94 imes 10^{-4}$	9.93	$3.26 imes 10^{-3}$	-0.49
run q	(1.03×10^{-3})	0.90	(1.24×10^{-4})	3.30	(1.03×10^{-3})	-0.45

Channel	Events at Tera- $\!Z$	$N(pK\pi\mu)$	$N(\Lambda_c^+)$	$N(\Lambda_b^0)$	Total eff.
$\Lambda_b^0 \to \Lambda_c^- \tau^+ \nu_{\tau}$	4.46×10^{6}	3.52×10^6	$2.96 imes 10^6$	2.22×10^6	49.89%
$\Lambda_b^0 o \Lambda_c^- \mu^+ u_\mu$	7.58×10^7	$6.23 imes 10^7$	5.26×10^7	4.48×10^7	59.11%
Inclusive bkg.	$2.75 imes 10^6$	$2.17 imes10^6$	6.75×10^5	$5.79 imes 10^5$	21.05%
Cascade bkg.	$1.03 imes 10^6$	$8.05 imes 10^5$	4.05×10^5	$2.18 imes 10^5$	21.19%
Combinatoric bkg.	$1.57 imes 10^7$	$1.33 imes 10^7$	$4.93 imes 10^5$	$7.91 imes 10^2$	0.01%
Mis-ID bkg.	$\epsilon_{\mu\pi} imes 1.36 imes 10^9$	$\epsilon_{\mu\pi} \times 5.43 \times 10^8$	$\epsilon_{\mu\pi} \times 4.05 \times 10^7$	$\epsilon_{\mu\pi} imes 1.52 imes 10^7$	1.12%

q^2 range	$\Lambda_b^0 \to \Lambda_c^- \tau^+ \nu_\tau$		$\Lambda_b^0 o \Lambda_c^- \mu^+ u_\mu$		R_{Λ_c}
q range	Rel. precision	S/B	Rel. precision	S/B	Rel. precision
$q^2 < 7.15 \text{ GeV}^2$	$2.01 imes 10^{-3}$	1 69	2.22×10^{-4}	71.81	2.02×10^{-3}
$q^{-} < 7.15 \text{ GeV}^{-}$	(6.34×10^{-4})	1.63	(7.01×10^{-5})	11.01	(6.38×10^{-4})
$q^2 \ge 7.15 \text{ GeV}^2$	1.10×10^{-3}	3.74	$2.86 imes 10^{-4}$	77.94	1.14×10^{-3}
$q \ge 1.15 \text{ GeV}$	$q^{-} \ge 7.15 \text{ GeV}^{-}$ (3.49 × 10 ⁻⁴)	5.74	(9.04×10^{-5})	11.94	(3.60×10^{-4})
Full q^2	$9.61 imes 10^{-4}$	2.83	$1.75 imes 10^{-4}$	75.98	9.77×10^{-4}
Full q	(3.04×10^{-4})	2.00	(5.54×10^{-5})	10.90	(3.09×10^{-4})

LEFT

Semileptonic $b \rightarrow c \tau \nu$:

$$\mathcal{L}_{b\to c\tau\nu}^{\text{eff}} \supset -\frac{4G_F V_{cb}}{\sqrt{2}} [(1 + \delta C_{V_L}^{\tau}) O_{V_L}^{\tau} + C_{V_R}^{\tau} O_{V_R}^{\tau} + C_{S_L}^{\tau} O_{S_L}^{\tau} + C_{S_R}^{\tau} O_{S_R}^{\tau} + C_T^{\tau} O_T^{\tau}] + h.c.^1$$
(1)

- Contains 5 dimension-6 LEFT operators at Tera-Z
- Covers 4 types of translation:
 - ► Vector: $R_{J/\psi}$, $R_{D_s^*}$
 - Pseudo-scalar: R_{Ds}
 - **b** Baryon: R_{Λ_c}
 - Annihilation: $Br(B_c \rightarrow \tau \nu)$ [Zheng et al. (2020)]

LEFT

FCNC $b \rightarrow s \tau \tau$:

$$\mathcal{L}_{b\to s\tau^{+}\tau^{-}}^{\text{eff}} = + \frac{4 \, G_F \, V_{tb} \, V_{ts}^{*}}{\sqrt{2}} [(C_9^{\tau}|_{\text{SM}} + \delta C_9^{\tau}) O_9^{\tau} + (C_{10}^{\tau}|_{\text{SM}} + \delta C_{10}^{\tau}) O_{10}^{\tau} + C_9^{\prime \tau} \, O_9^{\prime \tau} + C_{10}^{\prime \tau} \, O_{10}^{\prime \tau} + C_S^{\tau} \, O_S^{\tau} + C_S^{\prime \tau} \, O_S^{\prime \tau} + C_P^{\tau} \, O_P^{\tau} + C_P^{\prime \tau} \, O_P^{\prime \tau} + C_T^{\tau} O_T^{\tau} + C_{T5}^{\tau} O_{T5}^{\tau}] + h.c.$$
(2)

- Contains 10 dimension-6 LEFT operators at Tera-Z
- Related to: $Br(B \to K\tau\tau)$, $Br(B \to K^*\tau\tau)$, $Br(B_s \to \phi\tau\tau)$, $Br(B_s \to \tau\tau)$ [Kamenik et al. (2017); Capdevila et al. (2018); Li and Liu (2021)]

FCNC $b \rightarrow s \nu \nu$:

$$\mathcal{L}_{b\to s\bar{\nu}\nu}^{\text{eff}} = +\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} [C_L^{\nu} O_L^{\nu} + C_R^{\nu} O_R^{\nu}] + h.c.$$
(3)

Contains 2 dimension-6 LEFT operators at Tera-Z

Related to: $Br(B \to K\nu\nu)$, $Br(B \to K^*\nu\nu)$, $Br(B_s \to \phi\nu\nu)$ [Buras et al. (2015); Li et al. (2022)]

SMEFT

$$\begin{split} \mathcal{L}^{\dim 6} \supset \frac{1}{\Lambda^2} \sum_{i,j,k,l} \left([C_{\ell q}^{(1)}]_{ijkl} [O_{\ell q}^{(1)}]_{ijkl} + [C_{\ell q}^{(3)}]_{ijkl} [O_{\ell q}^{(3)}]_{ijkl} + [C_{ed}]_{ijkl} [O_{ed}]_{ijkl} \right. \\ \left. + [C_{\ell d}]_{ijkl} [O_{\ell d}]_{ijkl} + [C_{qe}]_{ijkl} [O_{qe}]_{ijkl} + [C_{\ell edq}]_{ijkl} [O_{\ell edq}]_{ijkl} \right. \\ \left. + [C_{\ell equ}^{(1)}]_{ijkl} [O_{\ell equ}^{(1)}]_{ijkl} + [C_{\ell equ}^{(3)}]_{ijkl} [O_{\ell equ}^{(3)}]_{ijkl} \right) + h.c. \end{split}$$

► After matching: 9 LFUV operators in dim6 SMEFT

SMEFT Operator	Expansion in Down Basis
$[O_{lq}^{(1)}]_{3332}$	$(ar{ u}\gamma^{\mu}P_{L} u+ar{ au}\gamma^{\mu}P_{L} au)(ar{b}\gamma_{\mu}P_{L}s)$
$[O_{lq}^{(3)}]_{3332}$	$2V_{cs}^*(ar{ u}\gamma^\mu P_L au)(ar{b}\gamma_\mu P_L c) - (ar{ u}\gamma^\mu P_L u - ar{ au}\gamma^\mu P_L au)(ar{b}\gamma_\mu P_L s)$
$[O_{ed}]_{3332}$	$(ar{ au}\gamma^\mu P_R au)(ar{b}\gamma_\mu P_Rs)$
[O _{ld}] ₃₃₃₂	$(ar{ u}\gamma^{\mu} P_L u + ar{ au}\gamma^{\mu} P_L au) (ar{b}\gamma_{\mu} P_R s)$
$[O_{qe}]_{3332}$	$(ar{ au}\gamma^{\mu} P_{R} au)(ar{b}\gamma_{\mu} P_{L}s)$
[<i>O_{ledq}</i>]3332	$V^*_{cs}(ar{ u} P_R au)(ar{b} P_L c) + (ar{ au} P_R au)(ar{b} P_L s)$
[<i>O_{ledq}</i>]3323	$(\bar{\tau}P_R\tau)(\bar{s}P_Lb)$
$[O_{lequ}^{(1)}]_{3332}$	$V_{cs}^*(ar{ u} P_R au)(ar{b} P_R c)$
$[O_{lequ}^{(3)}]_{3332}$	$V_{cs}^*(ar{ u}\sigma^{\mu u}P_R au)(ar{b}\sigma_{\mu u}P_Rc)$

