New Physics beyond three neutrino mixing: Status of Reactor and Gallium anomalies

Yu-Feng Li

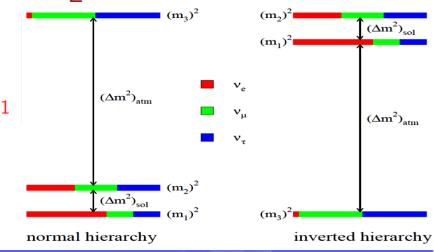
Institute of High Energy Physics & University of Chinese Academy of Sciences, Beijing

The 29 International Workshops on Weak Interactions and Neutrinos (WIN2023)

7th July 2023

Three Neutrino Paradigm

> See Talk by Prof. Karsten Heeger


Standard Parameterization of Mixing Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$=\begin{pmatrix}c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13}\end{pmatrix}\begin{pmatrix}1 & 0 & 0\\ 0 & e^{i\lambda_{21}} & 0\\ 0 & 0 & e^{i\lambda_{31}}\end{pmatrix}$$

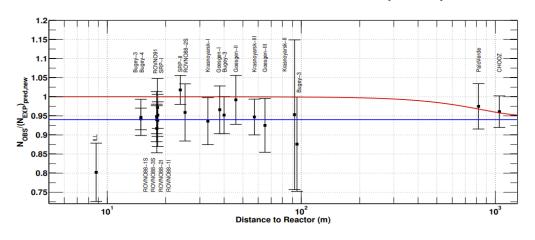
$$c_{ab} \equiv \cos \vartheta_{ab}$$
 $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$

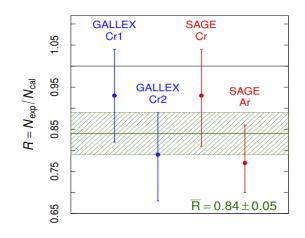
- 3 Mixing Angles: ϑ_{12} , ϑ_{23} , ϑ_{13}
- 1 CPV Dirac Phase: δ_{13}
- 2 independent $\Delta m_{ki}^2 \equiv m_k^2 m_i^2$: Δm_{21}^2 , Δm_{31}^2
- Absolute Neutrino Masses
- > Two CPV Majorana Phases

New Physics Beyond Three Neutrino Mixing

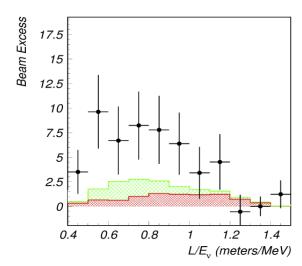
- ➤ Light sterile neutrinos at the eV scale

 **Anomalies-driven sterile neutrino model

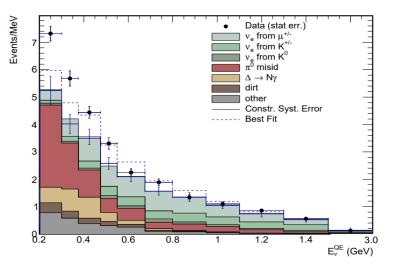

 **Giunti, YFL, Ternes and Xin, 2212.09722, 2209.00916, 2110.06820
- New neutrino interactions (Nonstandard Interactions)
 Coloma et al, arXiv:2305.07698
- Unitarity Violation of Neutrino Mixing Matrix Blennow et al, arXiv:2306.01040
- Neutrino Electromagnetic Properties

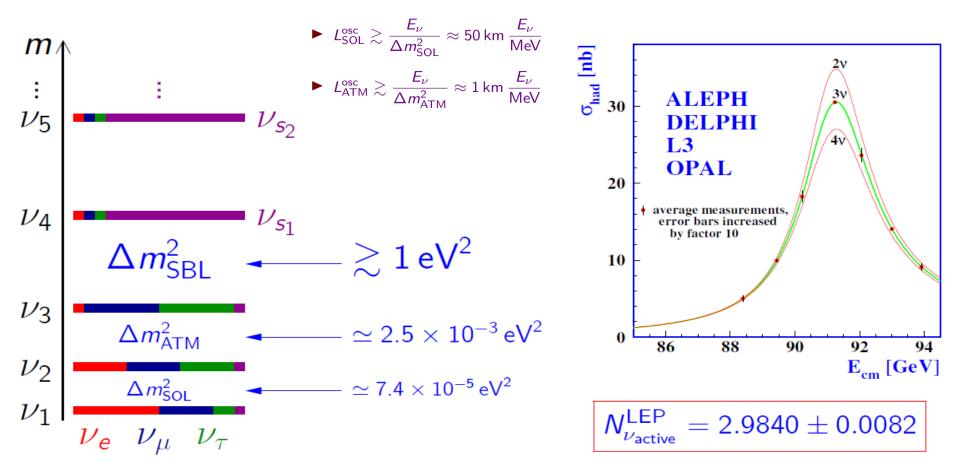

Atzori Corona et al, 2205.09484 See also the talk by Yingying Li

Historical Short-Baseline Anomalies


2011 Reactor Anomaly: $\bar{\nu}_e \rightarrow \bar{\nu}_{\times}$ (2.5 σ)

2005 Gallium Anomaly: $\nu_e
ightarrow
u_ imes (2.9\sigma)$




1995 LSND Anomaly: $ar
u_{\mu}
ightarrow ar
u_{e} \ (\sim 4\sigma)$

2008 MiniBooNE Anomaly: $\stackrel{(-)}{
u_{\mu}} \rightarrow \stackrel{(-)}{
u_{e}}$ (4.8 σ)

Beyond 3-v oscillation: Sterile neutrinos

Explanation of short baseline oscillations:

eV-scale sterile neutrinos (which have mixing with active mass eigenstates)

Parameterization and SBL Oscillations

Appearance $(\alpha \neq \beta)$

Disappearance

$$P_{(\nu_{\alpha} \to \nu_{\beta})}^{\mathsf{SBL}} \simeq \sin^{2} 2\vartheta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right) \qquad P_{(\nu_{\alpha} \to \nu_{\alpha})}^{\mathsf{SBL}} \simeq 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right)$$

$$\sin^{2} 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^{2}|U_{\beta4}|^{2} \qquad \sin^{2} 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2}\right)$$

$$U = \begin{pmatrix} c_{12}c_{13}c_{14} & s_{12}c_{13}c_{14} & c_{14}s_{13}e^{-i\delta_{13}} & s_{14}e^{-i\delta_{14}} \\ \cdots & \cdots & c_{14}s_{24} \\ \cdots & \cdots & c_{14}c_{24}s_{34}e^{-i\delta_{34}} \\ \cdots & \cdots & \cdots & c_{14}c_{24}c_{34} \end{pmatrix}$$

$$\Delta m_{\mathsf{SBL}}^2 = \Delta m_{41}^2 \simeq \Delta m_{42}^2 \simeq \Delta m_{43}^2$$

Different Notations

Effective short-baseline survival probability of ν_e (Gallium) and $\bar{\nu}_e$ (reactor):

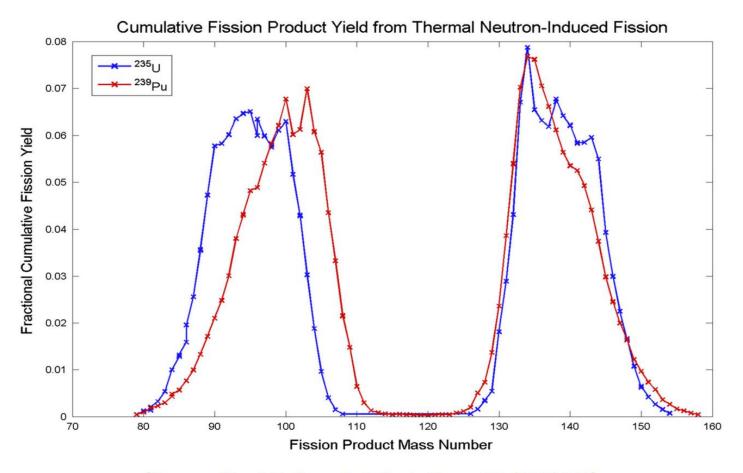
$$P_{ee}^{\mathrm{SBL}} \simeq 1 - \sin^2 2\vartheta_{ee} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right)$$

with different notations in the literature:

$$\vartheta_{ee} = \vartheta_{14} = \vartheta_{new} = \vartheta$$

and

$$\Delta m_{41}^2 = \Delta m_{\rm SBL}^2 = \Delta m_{\rm new}^2 = \Delta m^2$$


Reactor Antineutrino Anomaly

Reactor Flux Calculations

- Summation method (ab initio)
- Conversion method

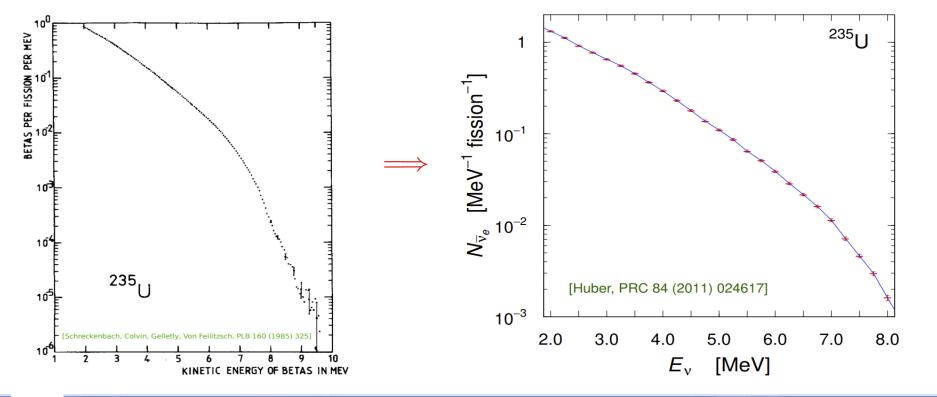
Reactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of

²³⁵U ²³⁸U ²³⁹Pu ²⁴¹Pu

[Dayman, Biegalski, Haas, Rad. Nucl. Chem. 305 (2015) 213]

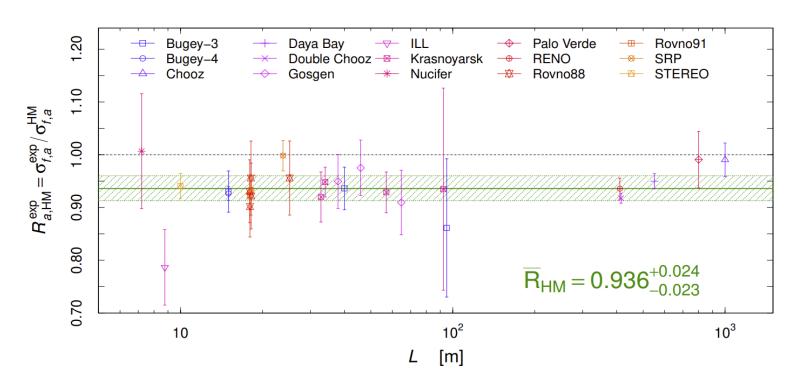
Summation (ab initio) Method

Aggregate reactor spectrum (electron or neutrino):


$$S_{\text{tot}}(E, t) = \sum_{k} F_k(t) S_k(E) \qquad (k = 235, 238, 239, 241)$$
fission fractions

$$S_k(E) = \sum_n Y_n^k \sum_b \mathsf{BR}_n^b S_n^b(E) \leftarrow \begin{cases} \mathsf{forbidden} \\ \mathsf{decay} \end{cases}$$
 spectrum cumulative branching fission ratio yield

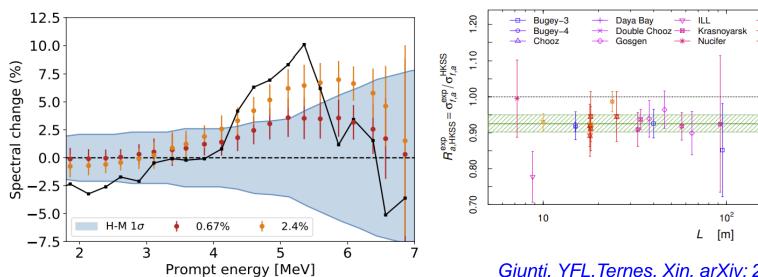
- ▶ The calculation of each $S_k(E)$ requires knowledge of about 1000 spectra and branching ratios.
- Large uncertainties, because nuclear databases are incomplete and sometimes inexact.


Conversion Method

- In the 80's Schreckenbach et al. measured the aggregate β spectra of 235 U, 239 Pu, and 241 Pu exposing thin foils to the thermal neutron flux of the ILL reactor in Grenoble.
- Semi-empirical method: conversion $S_k^e(E_e) \rightarrow S_k^{\nu}(E_{\nu})$ considering ~ 30 virtual allowed β decay spectra. (k = 235, 239, 241)

2011: HM fluxes (conversion method)

[Mueller et al, arXiv:1101.2663], Huber, arXiv:1106.0687]


 $2.5 \sigma \text{ deficit} \Longrightarrow \text{Anomaly!}$

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

ightharpoonup Original 2011 Reactor Antineutrino Anomaly: 2.5 σ [Mention et al, arXiv:1101.2755]

2019: HKSS fluxes (conversion method)

[Hayen, Kostensalo, Severijns, Suhonen, arXiv:1908.08302]

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

Palo Verde

 $\overline{R}_{HKSS} = 0.925^{+0.025}_{-0.023}$

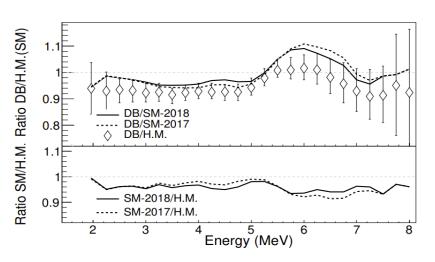
RENO

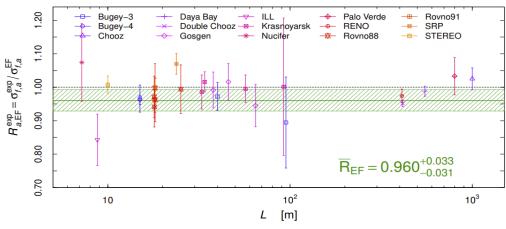
Rovno91

STEREO

10³

SRP


2.9σ deficit \Longrightarrow Anomaly larger than the 2.5σ HM anomaly!


[See also: Berryman, Huber, arXiv:1909.09267, arXiv:2005.01756]

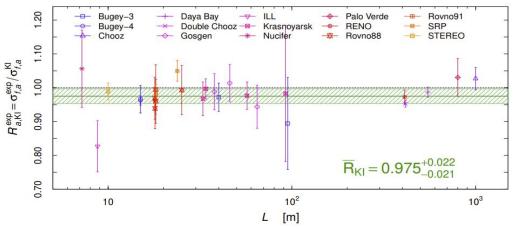
HM + HKSS uncertainties.

2019: EF fluxes (summation method)

[Estienne, Fallot, et al, arXiv:1904.09358]

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

1.2σ deficit \Longrightarrow No Anomaly!


[See also: Berryman, Huber, arXiv:1909.09267, arXiv:2005.01756]

- UNKNOWN UNCERTAINTIES!
- ► Rough estimation used in our calculations: 5% for ²³⁵U, ²³⁹Pu, ²⁴¹Pu and 10% for ²³⁸U. [Hayes, Jungman, McCutchan, Sonzogni, Garvey, Wang, arXiv:1707.07728]

2021: KI fluxes (conversion method)

[Kurchatov Institute: Kopeikin, Skorokhvatov, Titov, arXiv:2103.01684]

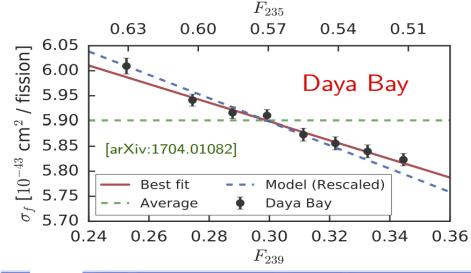
Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

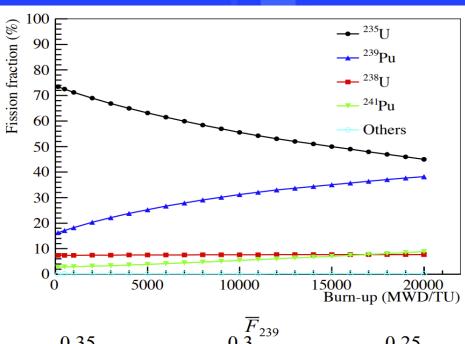
 1.1σ deficit \Longrightarrow No Anomaly!

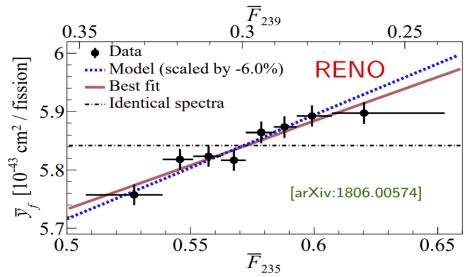
Approximate agreement with ab initio EF fluxes!

HM + KI uncertainties.

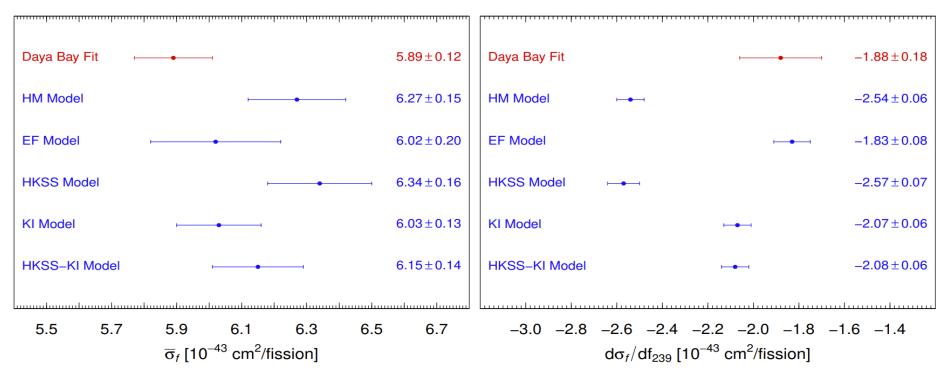
Reactor Fuel Evolution

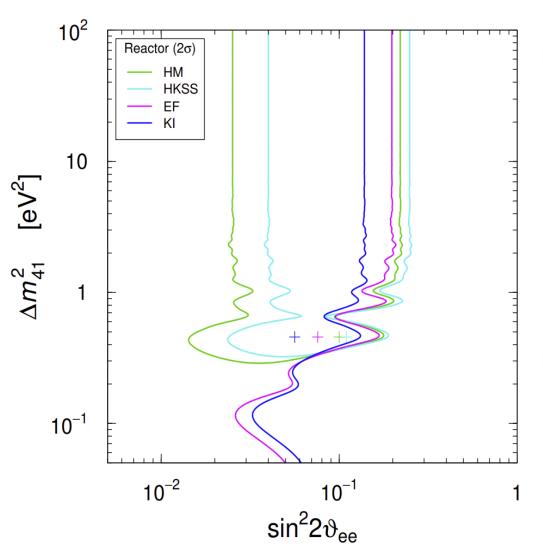

- PReactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of 235 U 238 U 239 Pu 241 Pu
- Effective fission fractions:


$$F_{235}$$
 F_{238} F_{239} F_{241}


Cross section per fission (IBD yield):

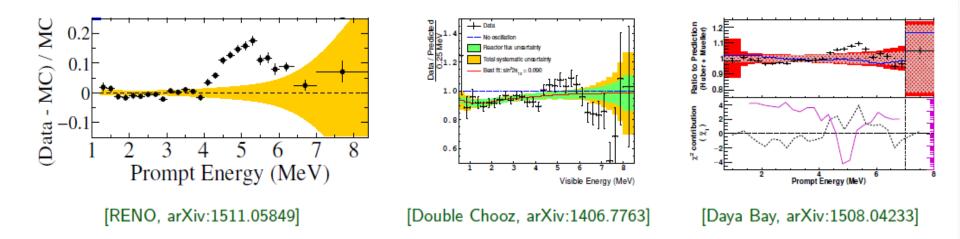
$$\sigma_f = \sum_k F_k \, \sigma_{f,k}$$


for k = 235, 238, 239, 241


Model v.s. Data Comparison

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

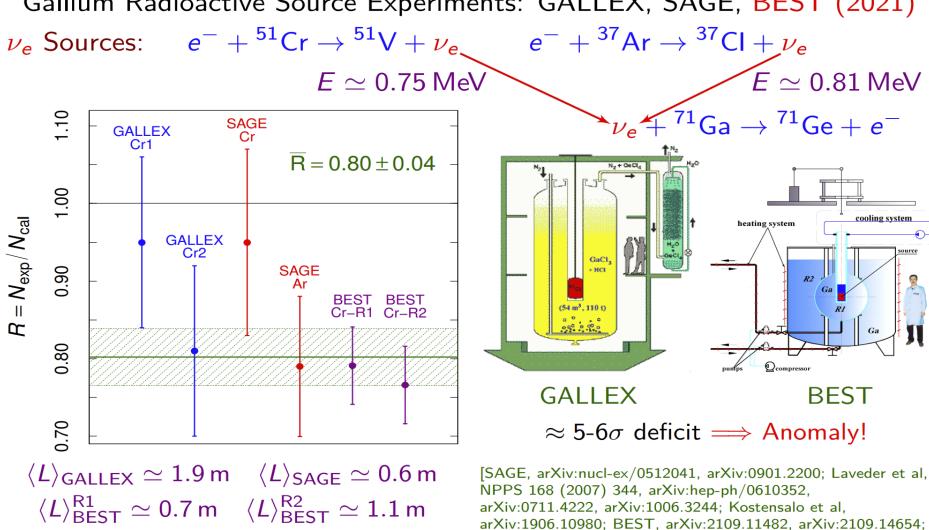
- ▶ Tension with HM (2.6σ) , HKSS (2.8σ) , and HKSS-KI (1.9σ) .
- Agreement with EF (0.8σ) and KI (1.2σ) .


Limits on the SBL mixing

- The favored KI and EF models are compatible with the absence of SBL oscillations and give only 2σ upper bounds on the effective mixing parameter $\sin^2 2\vartheta_{ee} = \sin^2 2\vartheta_{14}$.
- Independently from the reactor neutrino flux model, we have

$$\sin^2 2\vartheta_{ee} \lesssim 0.25$$
 at 2σ .

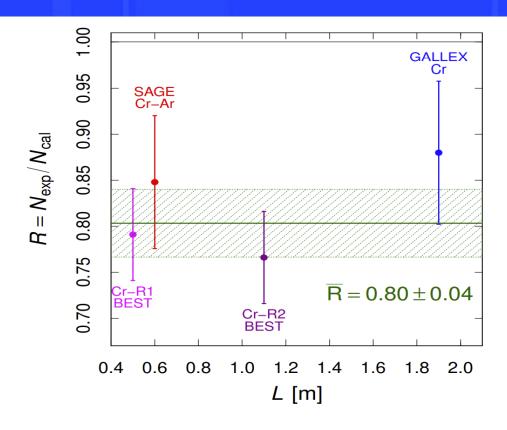
Reactor Antineutrino 5 MeV Bump (Shoulder)


- (1) The "5 MeV bump" cannot be explained by neutrino oscillations (SBL oscillations are averaged in RENO, Double Chooz and Daya Bay)
- (2) Most of recent studies (a hot topic) attribute to the nuclear physics calculations
- (3) Theoretical miscalculation of the spectrum \rightarrow same for the rate?
- (4) Still NO complete calculation of the neutrino flux, spectrum and associated uncertainty: *e.g., recent attempt in 2304.14992*

Gallium Anomaly

Gallium Anomaly

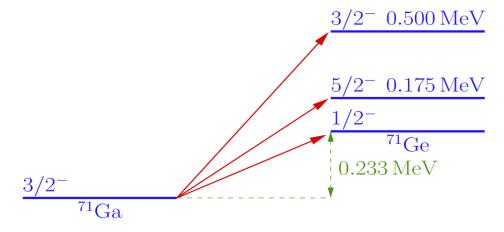
 $\Delta m_{
m SBL}^2 \gtrsim 1\,{
m eV}^2 \gg \Delta m_{
m ATM}^2$


Gallium Radioactive Source Experiments: GALLEX, SAGE, BEST (2021)

Berryman et al, arXiv:2111.12530]

21

Gallium Anomaly


- No clear model-independent anomaly from different path lengths.
- Puzzling quasi-equality of the two BEST measurements at different distances.
- ► After the BEST measurements, the Gallium Anomaly is still an anomaly based on the absolute comparison of observed and predicted rates.

Cross section?

► A deficit could be due to an overestimate of

$$\sigma(
u_e + {}^{71}{
m Ga}
ightarrow {}^{71}{
m Ge} + e^-)$$

First calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

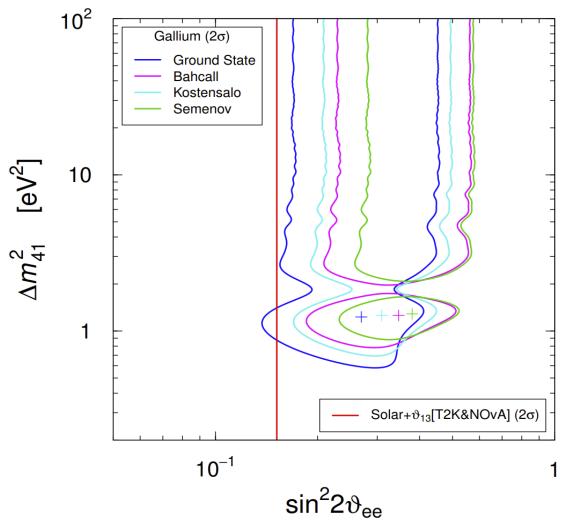
 $\sigma_{G.S.}$ from $T_{1/2}(^{71}\text{Ge}) = 11.43 \pm 0.03 \,\text{days}$

[Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{\rm G.S.}(^{51}{\rm Cr}) = (5.54 \pm 0.02) \times 10^{-45} \, {\rm cm}^2$$

$$\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr}) \left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{G.S.}} \right)$$

▶ The contribution of excited states is only $\sim 5\%!$

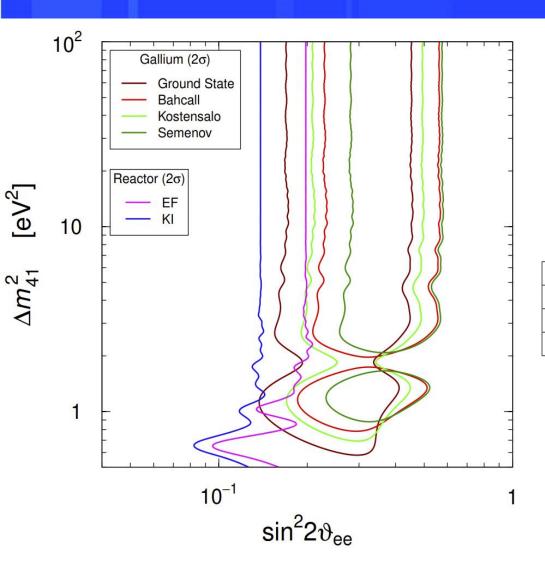

[Bahcall, hep-ph/9710491]

Cross section?

 $\nu_e + {}^{71}{
m Ga}
ightarrow {}^{71}{
m Ge} + e^-$ cross sections in units of $10^{-45}\,{
m cm}^2$:

		⁵¹ Cr		³⁷ Ar			
		$\sigma_{\sf tot}$	$\delta_{\sf exc}$	$\sigma_{\sf tot}$	$\delta_{\sf exc}$	\overline{R}	GA
Ground State [Phys.Atom.Nucl. 83 (2020) 1549]	$T_{1/2}(^{71}{ m Ge})$	5.539 ± 0.019	_	6.625 ± 0.023	_	0.844 ± 0.031	5.0σ
Bahcall [hep-ph/9710491]	71 Ga $(p, n)^{71}$ Ge	5.81 ± 0.16	4.7%	$\textbf{7.00} \pm \textbf{0.21}$	5.4%	0.802 ± 0.037	5.4σ
Kostensalo et al. [arXiv:1906.10980]	Shell Model	5.67 ± 0.06	2.3%	6.80 ± 0.08	2.6%	0.824 ± 0.031	5.6σ
Semenov [Phys.Atom.Nucl. 83 (2020) 1549]	⁷¹ Ga(³ He, ³ H) ⁷¹ Ge	5.938 ± 0.116	6.7%	7.169 ± 0.147	7.6%	0.786 ± 0.033	6.6σ

Gallium – Solar neutrino tension

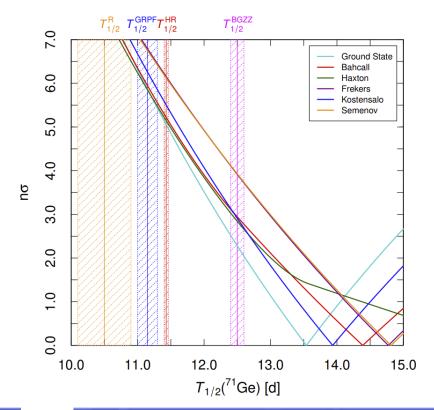

	Solar neutrinos +		
	ϑ_{13} [T2K&NOvA]		
	$\Delta\chi^2_{\sf PG}$	GoF_{PG}	
Ground State	10.65	0.49%	
Bahcall	14.14	0.085%	
Kostensalo	12.79	0.17%	
Semenov	17.24	0.018%	

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

- Both Gallium and solar experiments detect neutrinos.
- No CPT-violating solution of the tension!

[see also: Goldhagen, Maltoni, Reichard, Schwetz, arXiv:2109.14898; Berryman, Coloma, Huber, Schwetz, Zhou, arXiv:2111.12530]

Gallium – Reactor rates tension



	EF		KI		
	$\Delta\chi^2_{\sf PG}$	GoF_{PG}	$\Delta\chi^2_{\sf PG}$	GoF_{PG}	
Ground State	9.1	1.1%	11.9	0.26%	
Bahcall	12.9	0.16%	16.3	0.029%	
Kostensalo	11.5	0.31%	15.3	0.049%	
Semenov	17.0	0.02%	22.5	0.0013%	

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

Nuclear effects for Gallium Anomaly?

$$\begin{split} T_{1/2}^{\rm BGZZ}(^{71}{\rm Ge}) &= 12.5 \pm 0.1\,\mathrm{d} \quad \text{(Bisi, Germagnoli, Zappa, and Zimmer, 1955) [39],} \\ T_{1/2}^{\rm R}(^{71}{\rm Ge}) &= 10.5 \pm 0.4\,\mathrm{d} \quad \text{(Rudstam, 1956) [40],} \quad \textit{Giunti, YFL,Ternes, Xin, arXiv: 2212.09722} \\ T_{1/2}^{\rm GRPF}(^{71}{\rm Ge}) &= 11.15 \pm 0.15\,\mathrm{d} \quad \text{(Genz, Renier, Pengra, and Fink, 1971) [41],} \\ T_{1/2}^{\rm HR}(^{71}{\rm Ge}) &= 11.43 \pm 0.03\,\mathrm{d} \quad \text{(Hampel and Remsberg, 1985) [42].} \end{split}$$

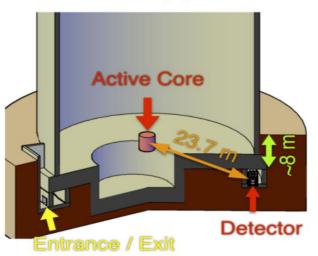
See also in Brdar, Gehrlein, Kopp, 2303.05528 a) Enlarged life time of Ge71

- b) New excited states
- c) Changes of branching ratios

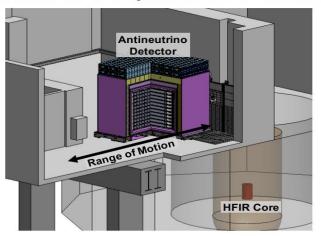
scenario	comments	our rating
Explanations within the St	andard Model	
increased 71 Ge half-life (Section 2.1 and Ref. [39])	would lead to smaller matrix element for $\nu + ^{71}{\rm Ga}$; but the $^{71}{\rm Ge}$ half-life has been measured many times with different methods in [38], all of which yield consistent results. So it is hard to imagine a bias in these measurements.	
new 71 Ga excited state (Section 2.2)	would imply a bias in the extraction of the $\nu + ^{71}{\rm Ga}$ matrix element from the measured $^{71}{\rm Ge}$ half-life. Some very old experiments claim the existence of such a state, but this has not been confirmed in more recent observations.	
increased BR($^{51}\mathrm{Cr} \rightarrow ^{51}\mathrm{V}^*$) (Section 3)	would cause a bias in translating the heat output of the source to a neutrino production rate. Measurements of BR(51 Cr \rightarrow 51 V*) show some tension, but it is far less than the shift required to explain the gallium anomaly.	
⁷¹ Ge extraction efficiency (Section 4)	one of SAGE's calibration runs has revealed a large bias. Could a small, unnoticed, bias have been present in all gallium experiments?	

Beyond Simple 3+1 mixing scheme

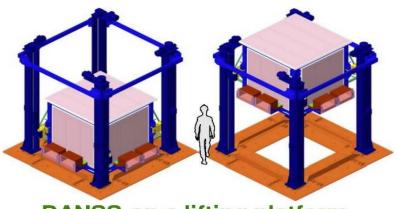
Explanations beyond the Standard Model


ν_s coupled to ultralight DM (MSW resonance, Sec. 5.1.1)	several exotic ingredients; somewhat tuned MSW resonance; new ν_4 decay channel required for cosmology.	★★★☆
ν_s coupled to dark energy (MSW resonance, Sec. 5.1.2)	several exotic ingredients; somewhat tuned MSW resonance; cosmology similar to the previous scenario.	★★★☆☆
ν_s coupled to ultralight DM (param. resonance, Sec. 5.1.3)	several exotic ingredients; somewhat tuned parametric resonance; cosmology requires post-BBN DM production via misalignment.	****
decaying ν_s (Section 5.2)	difficult to reconcile with reactor and solar data; regeneration of active neutrinos in ν_s decays alleviates tension, but does not resolve it.	***
vanilla eV-scale ν_s (Refs. [17, 18])	preferred parameter space is strongly disfavored by solar and reactor data.	****
ν_s with CPT violation (Refs. [130])	avoids constraints from reactor experiments, but those from solar neutrinos cannot be alleviated.	
extra dimensions (Refs. [131–133])	neutrinos oscillate into sterile Kaluza–Klein modes that propagate in extra dimensions; in tension with reactor data.	
stochastic neutrino mixing (Ref. [134])	based on a difference between sterile neutrino mixing angles at production and detection (see also [135, 136]); fit worse than for vanilla ν_s .	
decoherence (Refs. [137, 138])	non-standard source of decoherence needed; known experimental energy resolutions constrain wave packet length, making an explanation by wave packet separation alone challenging.	
ν_s coupled to ultralight scalar (Ref. [139])	ultralight scalar coupling to ν_s and to ordinary matter affects sterile neutrino parameters; can not avoid reactor constraints	

Status of light sterile neutrinos

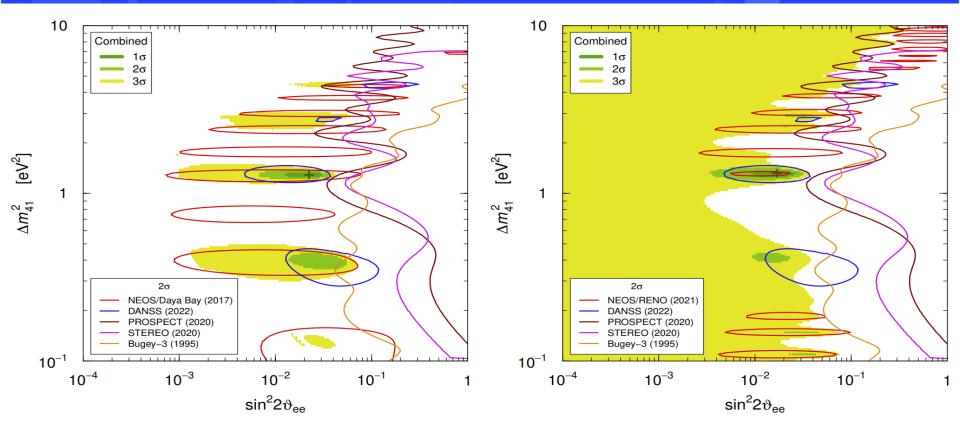

Model Indep. Measurements at Reactors

Ratios of spectra at different distances


NEOS

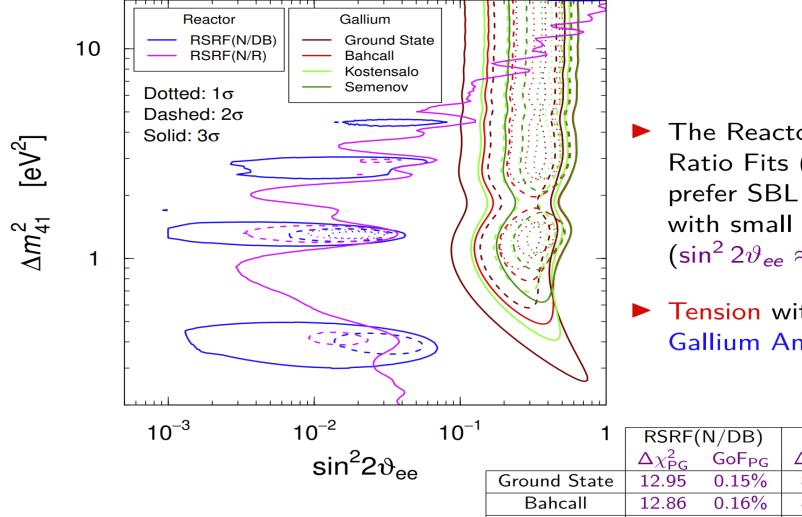
PROSPECT [Roca Catala @ NOW 2022]

DANSS [Alekseev @ NOW 2022]



DANSS on a lifting platform

STEREO [del Amo Sanchez @ NOW 2022]


Model Indep. Measurements at Reactors

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

- ► Fit with NEOS/Daya Bay: $\Delta \chi^2_{3\nu-4\nu} = 12.6 \Longrightarrow 3.1 \ \sigma$
- ► Fit with NEOS/RENO: $\Delta \chi^2_{3\nu-4\nu} = 9.1 \Longrightarrow 2.6 \ \sigma$

Gallium – Reactor spectral-ratio tension

The Reactor Spectral Ratio Fits (RSRF) prefer SBL oscillations with small mixing $(\sin^2 2\vartheta_{ee} \approx 0.02)$.

Tension with the Gallium Anomaly!

RSRF(N/R) $\Delta\chi^2_{\mathsf{PG}}$ GoF_{PG} 1.2% 8.91 8.74 1.3% 1.2% Kostensalo 0.16% 12.91 8.89 Semenov 12.88 0.16% 8.70 1.3%

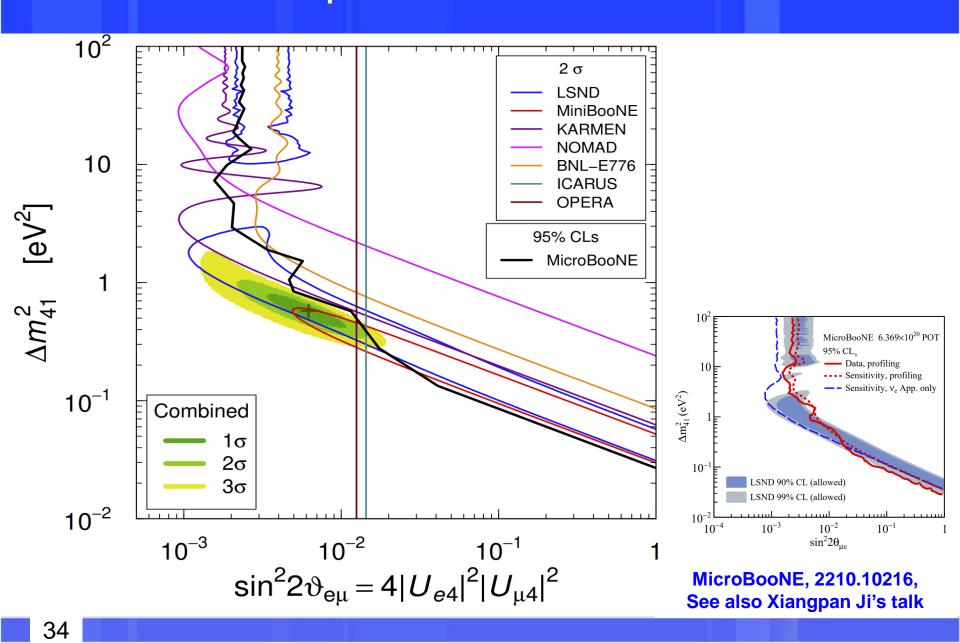
Giunti, YFL, Ternes, Tyaqi, Xin, arXiv: 2209.00916

3+1 Appearance vs Disappearance

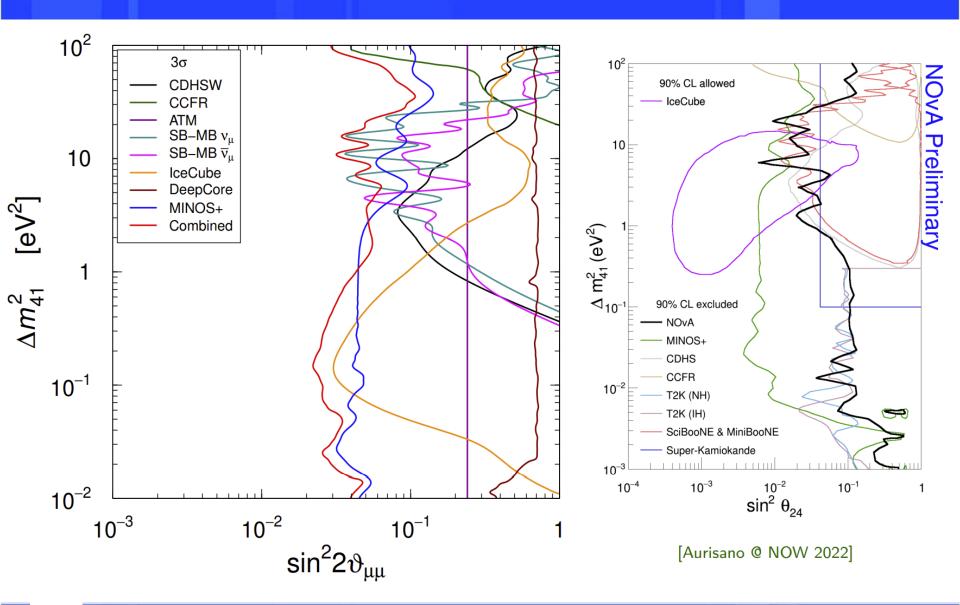
- ► SBL Oscillation parameters: $\Delta m_{41}^2 |U_{e4}|^2 |U_{\mu 4}|^2$ ($|U_{\tau 4}|^2$)
- \blacktriangleright Amplitude of ν_e disappearance:

$$\sin^2 2\theta_{ee} = 4|U_{e4}|^2 (1 - |U_{e4}|^2) \simeq 4|U_{e4}|^2$$

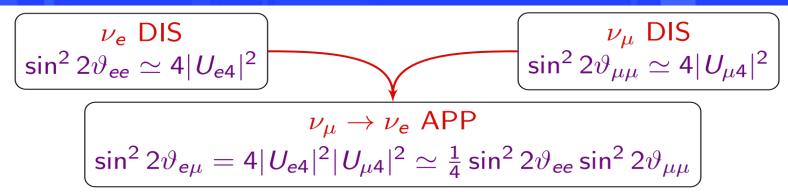
▶ Amplitude of ν_{μ} disappearance:

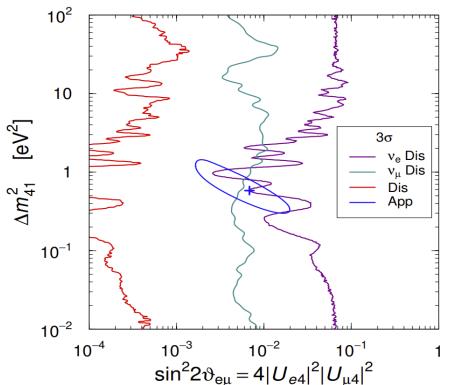

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu 4}|^2 \left(1 - |U_{\mu 4}|^2\right) \simeq 4|U_{\mu 4}|^2$$

▶ Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ transitions:


$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$
 quadratically suppressed for small $|U_{e4}|^2$ and $|U_{\mu4}|^2$

Appearance-Disappearance Tension


Appearance $(\nu_{\mu} \rightarrow \nu_{e})$ channel



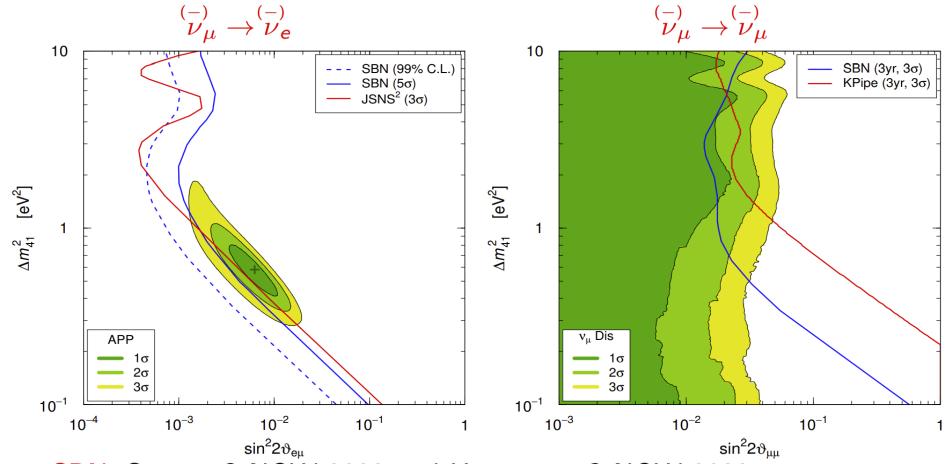
Disappearance (v_{μ}) channel

Global Appearance-Disappearance Tension

- $ightharpoonup
 u_{\mu}
 ightarrow
 u_{e}$ is quadratically suppressed!
- ▶ 2019 Global Fit:

$$\chi^2/{\sf NDF} = 843.6/794$$

 ${\sf GoF} = 11\%$


$$\chi^2_{PG}/NDF_{PG} = 46.7/2$$
 $GoF_{PG} = 7 \times 10^{-11} \leftarrow \bigcirc$

Similar tension in

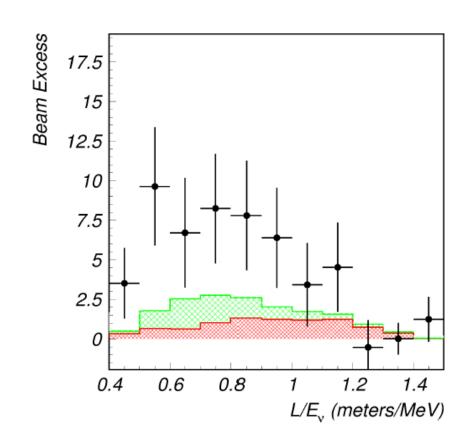
$$3+2$$
, $3+3$, ..., $3+N_s$

1508.03172

New Dedicated Experiments

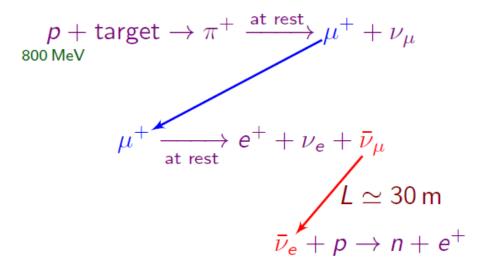
- ► SBN: Stanco @ NOW 2022 and Karagiorgi @ NOW 2022.
- ▶ JSNS²: August 2022 Long-Baseline Neutrino News: They are working on the blind analysis of the 1.45×10^{22} POT data taken until June 2021.

Conclusion


- Light Sterile Neutrinos can be powerful messengers of BSM New Physics.
- Historically, the existence of light sterile neutrinos is motivated by the LSND, Gallium, and Reactor Anomalies.
- The Reactor Antineutrino Anomaly, discovered in 2011, is practically resolved with new flux models.
- The Gallium Neutrino Anomaly, discovered in 2007, has been revived by the BEST results.
- Puzzling Gallium-Reactor tension, DIS-APP tension?
- Beyond simple 3+1 scheme?

Thank you for your attention!

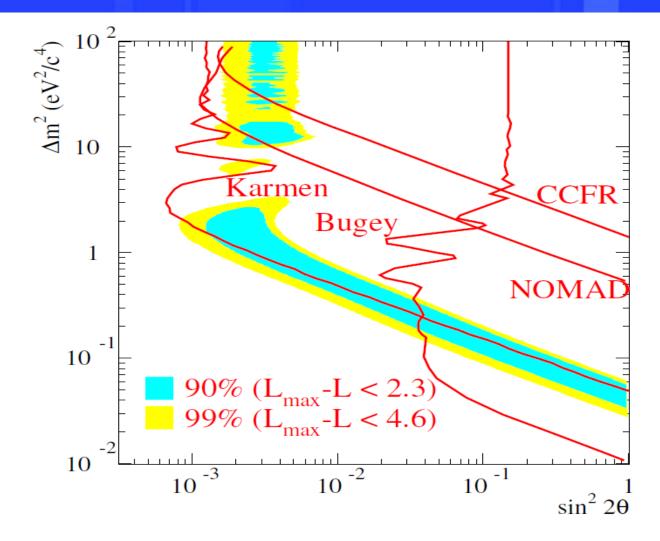
Backup


$$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$$

 $20 \text{ MeV} \le E \le 52.8 \text{ MeV}$

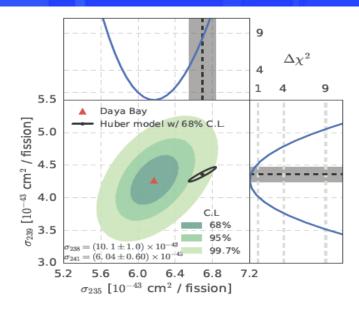
$$\Delta m_{
m SBL}^2 \gtrsim 0.1\,{
m eV}^2 \gg \Delta m_{
m ATM}^2$$

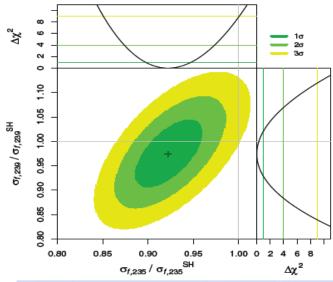
 \blacktriangleright Well-known and pure source of $\bar{\nu}_{\mu}$



Well-known detection process of $\bar{\nu}_e$

- $\triangleright \approx 3.8\sigma$ excess
- ▶ But signal not seen by KARMEN at $L \simeq 18 \, \mathrm{m}$ with the same method


[PRD 65 (2002) 112001]


Allowed parameter space

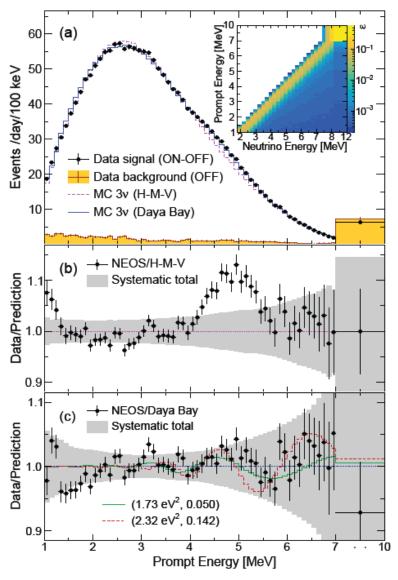
$$\Delta m_{\rm SBL}^2 \gtrsim 3 \times 10^{-2} \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2 \simeq 2.5 \times 10^{-3} \, {\rm eV}^2 \gg \Delta m_{\rm SOL}^2$$

Daya Bay fuel evolution data

- ▶ Best fit: mainly suppression of $\sigma_{f,235}$
- Equal fluxes suppression:

$$\Delta \chi^2/\text{NDF} = 7.9/1$$

disfavored at 2.8σ

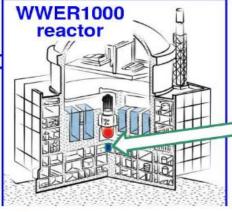

 Equal fluxes suppression corresponds to SBL oscillations, but theoretical flux uncertainties must be taken into account

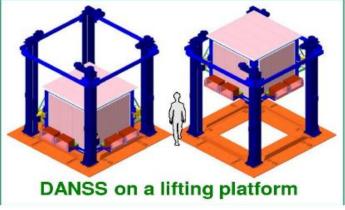
With theoretical flux uncertainties:

Daya Bay	²³⁵ U	OSC
χ^2_{min}	3.8	9.5
NDF	7	7
GoF	80%	22%

 \blacktriangleright MC: OSC disfavored at 2.6 σ

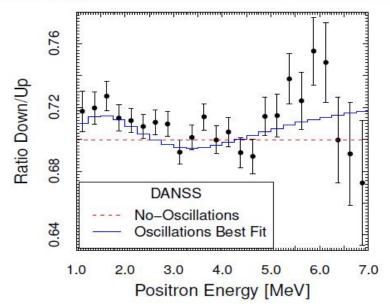
New development: NEOS PRL 118 (2017) 121802


- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- ► Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- ► The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.


New development: DANSS

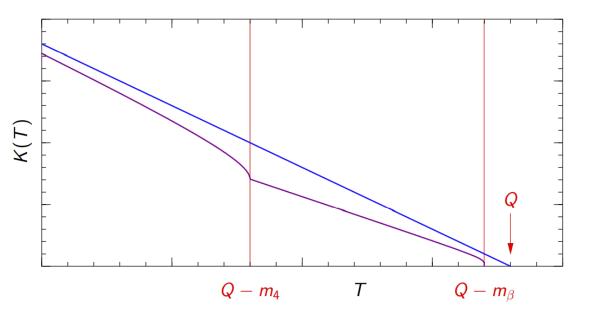
[Solvay Workshop, 1 December 2017; La Thuile 2018, 3 March 2018; Neutrino 2018, 8 June 2018]

Detector of reactor AntiNeutrino based on Solid Scintillator



- Installed on a movable platform under a 3 GW reactor.
- Large neutrino flux.
- Reactor shielding of cosmic rays.
- Variable source-detector distance with the same detector!

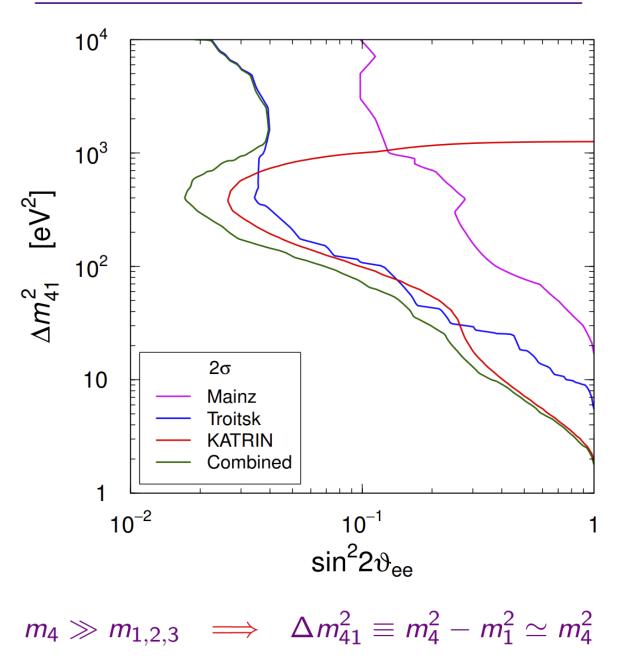
 $\begin{array}{rcl} \mathsf{Down} &=& 12.7\,\mathsf{m} \\ \mathsf{Up} &=& 10.7\,\mathsf{m} \end{array}$

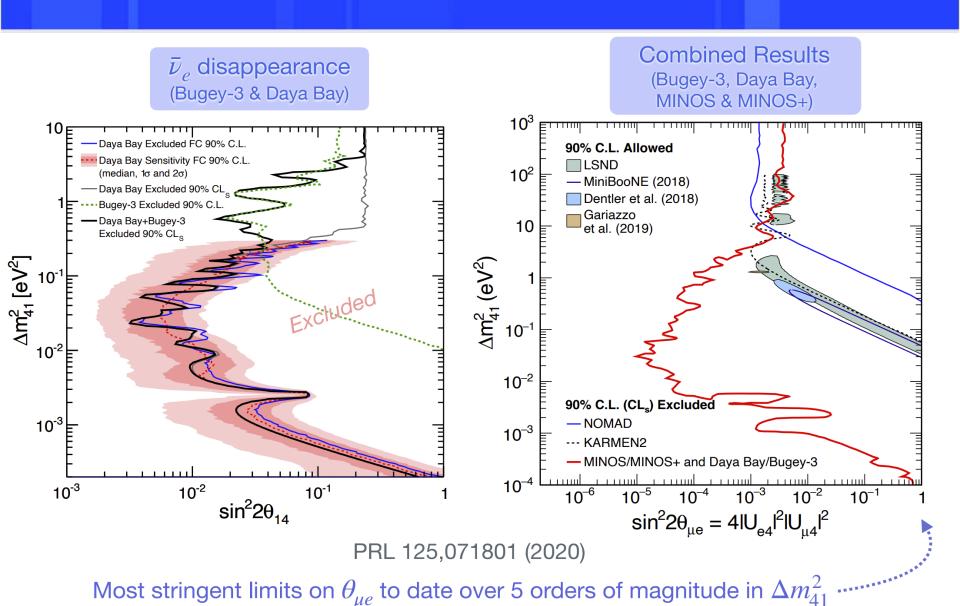


Robust kinematical probe of $\nu_e - \nu_s$ mixing

$$\frac{K^{2}(T)}{Q-T} = \sum_{k} |U_{ek}|^{2} \sqrt{(Q-T)^{2} - m_{k}^{2}} \; \theta(Q-T-m_{k})$$

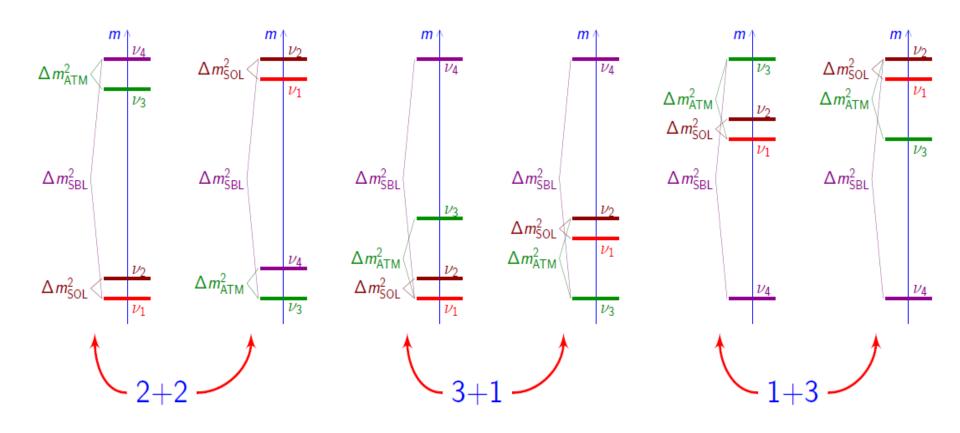
$$m_{4} \gg m_{1,2,3} \Rightarrow \simeq (1 - |U_{e4}|^{2}) \sqrt{(Q-T)^{2} - m_{\beta}^{2}} \; \theta(Q-T-m_{\beta})$$

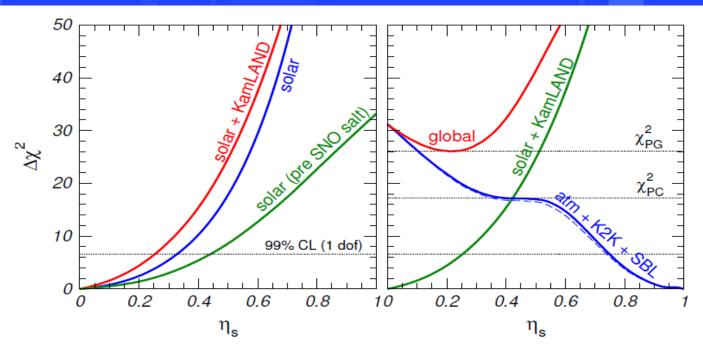

$$+ |U_{e4}|^{2} \sqrt{(Q-T)^{2} - m_{4}^{2}} \; \theta(Q-T-m_{4})$$


$$Q = M_{^{3}\text{H}} - M_{^{3}\text{He}} - m_{e}$$

= 18.58 keV

$$m_{\beta}^2 = \sum_{k=1}^3 |U_{ek}|^2 m_k^2$$


Tritium Neutrino Mass Bound


Model Indep. Measurement at Daya Bay

Schemes of four neutrino mixing

2+2 Scheme: strongly disfavored

Solar: Matter Effects + SNO NC

Atmospheric: Matter Effects

$$\eta_s = |U_{s1}|^2 + |U_{s2}|^2 = 1 - |U_{s3}|^2 + |U_{s4}|^2$$

99% CL:
$$\begin{cases} \eta_s < 0.25 & (\text{Solar} + \text{KamLAND}) \\ \eta_s > 0.75 & (\text{Atmospheric} + \text{K2K}) \end{cases}$$

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122]

Goodness of Fit

- Assumption or approximation: Gaussian uncertainties and linear model
- \triangleright χ^2_{\min} has χ^2 distribution with Number of Degrees of Freedom

$$NDF = N_D - N_P$$

$$N_{\rm D}=$$
 Number of Data $N_{\rm P}=$ Number of Fitted Parameters

- $\blacktriangleright \langle \chi^2_{\min} \rangle = \mathsf{NDF}$ $\mathsf{Var}(\chi^2_{\min}) = 2\mathsf{NDF}$
- ► GoF = $\int_{\chi^2_{\min}}^{\infty} p_{\chi^2}(z, \text{NDF}) dz$ $p_{\chi^2}(z, n) = \frac{z^{n/2 1} e^{-z/2}}{2^{n/2} \Gamma(n/2)}$

Parameter Goodness of Fit

Maltoni, Schwetz, PRD 68 (2003) 033020, arXiv:hep-ph/0304176

- Measure compatibility of two (or more) sets of data points A and B under fitting model
- $\chi^2_{PGoF} = (\chi^2_{min})_{A+B} [(\chi^2_{min})_A + (\chi^2_{min})_B]$
- $\blacktriangleright \chi^2_{\rm PGoF}$ has χ^2 distribution with Number of Degrees of Freedom NDF_{\rm PGoF}= \textit{N}_{\rm P}^{\rm A}+\textit{N}_{\rm P}^{\rm B}-\textit{N}_{\rm P}^{\rm A+B}
- $PGoF = \int_{\chi^2_{PGoF}}^{\infty} p_{\chi^2}(z, NDF_{PGoF}) dz$