

Recent results of the exotic states studies at LHCb

Dongliang Zhang (Central China Normal University) on behalf of LHCb collaboration

The 29th International Workshop on Weak Interactions and Neutrinos July 03-08, 2023 Zhuhai, China

LHCb detector

Data

- pp collisions
 - Run 1 (7, 8 TeV) + Run 2 (13 TeV) data, 9 fb⁻¹
- p-Pb and Pb-p data in 2016
 - ~32.3 nb⁻¹

LHCb Integrated Luminosity in p-Pb/Pb-p in 2016

https://lbgroups.cern.ch/online/OperationsPlots/index.htm

$\chi_{c1}(3872)$, aka X(3872)

- Discovered in 2003 by Belle collaboration
- First non-conventional state
 - its nature is still not clear

- Extensive studies at LHCb
 - mass and lineshape study: <u>PRD102 (2020) 092005</u>, <u>JHEP 08 (2020) 123</u>
 - determination of $J^{PC} = 1^{++} PRL 110 (2013) 222001, PRD92 (2015) 011102(R)$
 - production
 - inclusive production JHEP 01 (2022) 131
 - multiplicity dependence: <u>PRL 126 (2021) 092001</u> ~
 - $\Lambda_b \rightarrow \chi_{c1}(3872) p K^- JHEP 09 (2019) 028$
 - $B_{s}^{0} \rightarrow \chi_{c1}(3872) \oint \underline{JHEP \ 02 \ (2021) \ 024}$
 - decay
 - search for $\chi_{c1}(3872) \rightarrow p\overline{p}$ <u>PLB769 (2017) 305</u>
 - $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ <u>Nucl. Phys. B886 (2014) 665</u>

$\chi_{c1}(3872)$ production in pPb collisions

- The ratio of $\chi_{c1}(3872)$ and $\psi(2S)$
 - use $\psi(2S)$ as the conventional states for reference
- Check the dependence of system size
 - pp collisions
 - CMS results in Pb-Pb collisions (<u>Phys.</u> <u>Rev. Lett. 128 (2022) 032001</u>)

- $\sqrt{s} = 8.16 \text{ TeV}$
 - p-Pb: 12.5 nb (1.5 < y < 4)
 - Pb-p: 19.3 nb (-5 < y < -2)

LHCb-CONF-2022-001

6

$\chi_{c1}(3872)$ production in pPb collisions

- The ratio increase with the system size
 - $\psi(2S)$ production is supressed in pA collisions
 - The ratio decrease with multiplicity in pp collisions
- Further measurement of the nuclear modification factor of $\psi(2S)$ and $\chi_{c1}(3872)$ are in progress

Measured value of *R*: p-Pb: 0.27 ± 0.08 ± 0.05 Pb-p: 0.36 ± 0.15 ± 0.11

LHCb-CONF-2022-001

First observation of $B_s^0 \rightarrow \chi_{c1}(3872)\pi^+\pi^-$

7/4/2023

First observation of $B_s^0 \rightarrow \chi_{c1}(3872)\pi^+\pi^-$

- Large contribution from $f_0(980)$
- Simultaneous fit of the dipion mass spectra in both processes
 - S-wave Breit–Wigner for $f_0(1500)$

- $F(m) \propto mqp^3 \left| f \mathcal{A}_{f_0(980)}(m) + e^{i\varphi} \mathcal{A}_{f_0(1500)}(m) \right|^2$
- modified Flatté–Bugg amplitude for $f_0(980)$

ω contribution in $\chi_{c1}(3872)$ decay

- $\chi_{c1}(3872) \rightarrow J/\psi \rho^0$ violates isospin symmetry
- $\chi_{c1}(3872) \rightarrow J/\psi\omega$ measured by Belle, Babar and BESIII using $\omega \rightarrow \pi^+\pi^-\pi^0$
- $\pi^+\pi^-$ final state
 - Interference between ω and ρ^0
 - studied by CDF and Belle but large statistical uncertainties
- B⁺ $\rightarrow \chi_{c1}(3872)$ K⁺ decay
 - 6788 ± 117 signal

arXiv:2204.12597

ω contribution in $\chi_{c1}(3872)$ decay

- $m_{\pi\pi}$ spectrum from fits in $m_{\pi\pi}$ intervals
- Fit with K-matrix parametrization
 - For ρ^0 only model use Breit-Wigner

Total ω contribution: $(21.4\pm2.3\pm2.0)\%$ Exclude interference: $(1.9\pm0.4\pm0.3)\%$ Isospin violation ratio: 0.29 ± 0.04

arXiv:2204.12597

Discovery of $T^{\theta}_{\psi s1}(4000)^0 \rightarrow J/\psi K_s^0$

• Similar to the early study in B⁺ \rightarrow J/ $\psi \varphi K^+$ (<u>PRL 128 (2022) 082001</u>)

 $B^{0}(B^{+})$

d(u)

- two states were discovered in $J/\psi K^+$ system
- $T^{\theta}_{\psi s1}(4000)^+$, $T^{\theta}_{\psi s1}(4220)^+$
- $B^0 \rightarrow J/\psi \varphi K_s^0$ decay
 - 1866 ± 47 signal events

 $\frac{\overline{c}}{c} J/\psi$

 W^+

Discovery of $\overline{T^{\theta}}_{\psi s1}(4000)^0 \rightarrow J/\psi K_s^0$

- Isospin partner of $T^{\theta}_{\psi s1}(4000)^+$? (<u>PRL 128 (2022) 082001</u>)
- $T^{\theta}_{\psi s1}(4220)^{0}$ is constrained to $T^{\theta}_{\psi s1}(4220)^{+}$

New neutral state: $m = 3991^{+12+9}_{-10-17} \text{ MeV}$ $\Gamma = 105^{+29+17}_{-25-23} \text{ MeV}$

Discovery of $T^a_{C\overline{s}0}(2900)^0$ and $T^a_{C\overline{s}0}(2900)^{++}$

• In $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

• ~4000 B^0 and 3750 B^+ selected

Discovery of $T^a_{C\overline{S}0}(2900)^0$ and $T^a_{C\overline{S}0}(2900)^{++}$

- In $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$
 - Isospin symmetry
- First observation of a doubly charged opencharm tetraquark

 $m = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.011 \text{ GeV}$ $J^P = 0^+$

$X(3960) \rightarrow D_s^+ D_s^-$

- In B⁺ \rightarrow D_s⁺D_s⁻K⁺ decays
 - 360 ± 22 signal events

$X(3960) \rightarrow D_s^+ D_s^-$

- Flatte-like function for X(3960)
- $X_0(4140)$ is needed to describe the dip
 - $J^{PC} = 0^{++}$
 - significance 3.7σ

- $m = 3956 \pm 5 \pm 10 \text{ MeV}$ $\Gamma = 43 \pm 13 \pm 8 \text{ MeV}$ $J^{PC} = 0^{++}$
- might be a new Tetraquark or coupled channel effect $J/\psi \varphi \leftrightarrow D_s^+ D_s^-$

7/4/2023

Discovery of $P^{\Lambda}_{\psi s0}(4338)^0 \rightarrow J/\psi \Lambda$

- In $B^- \to J/\psi \Lambda \overline{p}$ decay
 - ~4400 signal events

7/4/2023

```
B⁻ mass:
m = 5279.44 \pm 0.05 \pm 0.07 \text{ MeV}
```

- Most precise single measurement of the B⁻ mass to date
 - Thanks to the small Q-value of the decay!

Discovery of $P^{\Lambda}_{\psi s0}(4338)^0 \rightarrow J/\psi \Lambda$

- A new resonance is needed in the amplitude fit
- First pentaquark containing strange quark

$$m = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$$

 $\Gamma = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$
 $J^{P} = \frac{1}{2}^{-7}$ preferred

arXiv:2210.10346 7/4/2023

Summary

- LHCb continue exploring the treasure in data
- New results about the $\chi_{c1}(3872)$ state
 - production in p-Pb collisions
 - ω contribution in $\chi_{c1}(3872)$ decay
 - new production mode in B_s decay: B_s $\rightarrow \chi_{c1}(3872)\pi^{+}\pi^{-}$
- New exotic states
 - $T^{\theta}_{\psi s1}(4000)^{0} [c \overline{c} s \overline{d}]$ -- isospin partner of $T^{\theta}_{\psi s1}(4000)^{+} [c \overline{c} s \overline{u}]$
 - $T^{a}_{c\overline{s}0}(2900)^{0} [c\overline{s}\overline{u}d]$ and $T^{a}_{c\overline{s}0}(2900)^{++}[c\overline{s}u\overline{d}]$
 - $X(3960)[C\overline{C}S\overline{S}]$
 - $P^{\Lambda}_{\psi s0}(4338)^{0}[c\overline{c}sud]$
- More studies on-going...stay tuned!

ω contribution in X(3872) decay

X(3960)

 $M(\overline{D}\pi) > 2.7 \,\mathrm{GeV}$

